用户名: 密码: 验证码:
同型半胱氨酸代谢途径关键酶基因多态性及维生素B6缺乏与乳腺癌遗传易感性关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
丝氨酸羟甲基转移酶(SHMT)在叶酸代谢过程中可逆性地催化丝氨酸和四氢叶酸到甘氨酸和5,10-甲基四氢叶酸的合成,参与生物体众多甲基化反应,其与DNA合成、甲基化及同型半胱氨酸(Hcy)代谢密切相关;胱硫醚p-合成酶(CBS)、甲硫氨酸合成酶(MS)、甲硫氨酸合成还原酶(MTRR)在叶酸代谢过程中通过转硫化/转甲基途径,催化Hcy转化为半胱氨酸或甲硫氨酸,CBS、MS、MTRR酶活性降低可能使血浆Hcy水平升高,因而成为动脉硬化等心血管疾病的重要风险因素;维生素B6(B6)作为SHMT及CBS的重要辅助因子,亦存在影响叶酸代谢的潜力。
     本论文以荧光偏振免疫分析(FPIA)、胞质分裂阻滞微核分析(CBMN)、 PCR-RFLP等技术,探讨了B6及SHMT C1420T、CBS C699T/C1080T、MS A2756G、 MTRR A66G基因型多态性对人类基因组稳定性、Hcy代谢的影响及机制;探索上述因素与乳腺癌风险间的可能关联。
     研究发现:(1)病例组血浆Hcy浓度显著高于对照组血浆Hcy浓度;所有样本SHMT1420TT型血浆Hcy显著低于野生型,MS2756GG,CBS699TT/1080T1型血浆Hcy水平显著高于野生型,仅病例组MTRR66GG型血浆Hcy水平显著高于野生型;(2)SHMT C1420T (OR=0.527,95%CI=0.55-1.24), MS A2756G (OR=2.32,95%CI=0.29-0.82), MTRR A66G (OR=1.84,95%CI=0.25~1.66)基因多态性与乳腺癌风险存在显著关联;(3)B6在6-24nmol/L对,病例及对照组遗传损伤[微核化双核细胞(MNBN)、核质桥(NPB)、核芽(NBUD)和微核化单核细胞(MONO)]频率均显著高于48nmol/L以上各组;B6在6,12nmol/L时,病例及对照组凋亡(APO)和坏死(NEC)频率显著高于24nmol/L以上各组;(4)病例及对照组遗传损伤及细胞损伤频率与B6浓度间呈显著负相关;(5)病例组遗传损伤及细胞损伤频率均高于对照组,经Difference of Difference Analysis(DDA)排除二组样本之间遗传损伤基线差异后,病例组MNBN、MONO频率在6、12nmol/L B6,NPB频率在6nmol/L B6时显著高于对照组:(6)B6缺乏对遗传损伤及细胞损伤频率的变异贡献率显著高于基因多态性及样本(肿瘤状态)状况;(7)结合基因型,病例及对照组所有B6浓度组SHMT1420CC型MNBN频率均显著高于TT型,仅病例组CC型NBUD、APO和NEC频率在6、12nmol/LB6,NPB频率在6nmol/L B6时显著高于TT型;病例组MS2756GG型MNBN频率在6-48nmol/L B6,MONO、NBUD、NPB和NEC频率在6、12nmol/L B6,APO频率在6nmol/L B6时显著高于野生型:病例及对照组WTRR66GG基因型MNBN、MONO和APO频率在6nmol/L B6时均显著高于野生型,仅病例组GG型NBUD频率在6nmol/L B6时显著高于野生型。
     研究证实了B6缺乏可诱发人类基因组不稳定性,48nmol/LB6为离体条件下维护人类基因组稳定性的最适浓度;SHMT C1420T位点突变可能使乳腺癌易感性下降,而MS A2756G位点及MTRR A66G位点突变可能导致乳腺癌易感性上升,但SHMT、MS、MTRR和CBS基因的多态性对基因组稳定性的作用不及B6;SHMT C1420T, MSA2756G,MTRR A66G,CBS C699T/C1080iT位点突变可能是血浆Hcy水平变化的一个因素,而Hcy水平与乳腺癌风险可能存在正关联。该实验结果暗示在B6长期缺乏的情况下可能会增加人体遗传损伤和细胞损伤,但不同基因型人群对B6缺乏的遗传敏感度不同,加之Hcy代谢酶基因的多态性与乳腺癌间的可能关联,提示适量的提高B6的摄入能够有效的降低血浆Hcy的浓度,同时有利于基因组健康和相关疾病的防范。
The serinehydroxymethyhransferase (SHMT) reversible generates serine and methyleneTHF for thymidylate and methionine biosynthesis in folate metabolic pathway. It is therefore involved in numerous methylation reactions, which are closely related with DNA synthesis, methylation and the homocysteine (Hey) metabolism. Cystathionine-β synthase (CBS), methionine synthase (MS), methionine synthase reductase (MTRR) catalyze the homocysteine to form cystathionine or methyltetrahdrofolate through folate-mediated one-carbon metabolism or the transsulfuration pathway. So abnormality in CBS, MS, MTRR's activity is manifested an important risk factors of vein thrombosis and other cardiovascular diseases. Vitamine B6(B6) as an important cofactor for SHMT and CBS also has the potential effect in the folate metabolism pathway.
     This research aimed to discusse the effects of B6and SHMT C1420T, CBS C699T/C1080T, MS A2756G, MTRR A66G polymorphism on human genome stability, Hey metabolism as well as to explore the mechanism of these actions on the risk factors of breast cancer by the radioimmunoassay, cytokinesis blocked micronucleus assay (CBMN) and PCR-RFLP technique.
     Results showed that (1) The plasma Hey of SHMT1420TT was significantly lower than that of the wild type, while the plasma Hey level of MS2756GG, CBS699TT/1080TT significantly higher than that of the wild type in case and the control group. The plasma Hey levels of MTRR66GG only in case group was significantly higher than that of wild type. The plasma Hey levels of the same genotype in case group were significantly higher than those of control group except SHMT1420CC, MS2756AA, MTRR66GG;(2) SHMT C1420T (OR=0.527,95%CI=0.55-1.24), MS A2756G (OR=2.32,95%CI=0.29-0.82), MTRR A66G (OR=1.84,95%CI=0.25-1.66) polymorphism is significantly associated with breast cancer risk;(3)The genetic damage markers[the micronucleus of binucleate cells (MNBN), nucleoplasmic bridge (NPB), nuclear buds (NBUD) and the micronucleus of monucleate cells (MONO)] frequencies of6-24nmol/L B6were increased significantly than48~200nmol/L B6 in the case and normal group. The APO, NEC of6,12nmol/L B6were significantly higher than that in24-200nmol/L B6, but there were no significant difference among24-200nmol/L;(4) All genetic damage and cytotoxic indexes showed negative correlation with B6concentration;(5) All indexes in case group were higher than those of the control, however the DDA analysis revealed that MNBN, MONO, NPB frequencies is significant different sensitivity to B6deficiency between those2groups;(6) B6on the genetic and cell damage variance contribution of each index was significantly higher than that of genotype and sample (tumor state);(7) MNBN frequency of SHMT1420CC genotype in various concentrations of B6were significantly higher than that of TT group in case group and control group. NBUD, APO and NEC frequencies in the6,12nmol/L B6while the NPB frequency only in6nmol/L of SHMT1420CC genotype was significantly higher than those of TT in case group. The MNBN frequency of MS2756GG in6-48nmol/L B6were significantly higher than that of AA genotype in cases group. The MONO, NBUD, NPB and NEC frequencies in6and12nmol/L while the APO frequency in6nmol/L significantly higher than that of TT in case group. The MNBN, MONO and APO frequencies of MTRR66GG in6nmol/L B6were significantly higher than those of AA in case and control group, NBUD frequency in6nmol/L B6was significantly higher than that of TT in case group.
     The research conclude the human genome instability can be induced by vitamin B6deficiency,48nmol/L B6was the most suitable concentration to maintain genomic stability of lymphocytes in vitro. SHMT C1420T mutation may reduce breast cancer susceptibility; while MS A2756G and MTRR A66G mutation may increase breast cancer susceptibility, But the role of polymorphisms of SHMT, MS, MTRR and CBS genotype polymorphism in the genome stability is less than B6. SHMT C1420T, MS A2756G, MTRR A66G, CBS C1080T, CBS C699T locus mutation may be a factor in affectting plasma level of Hcy. Hcy level is positively associated with breast cancer risk. The results suggest that the long-term lack of B6in the circumstances may increase the body's genetic damage and cell injury, and individual with various genotypes has different sensitivity to B6deficiency. The Hcy metabolic enzyme genes polymorphism may be associated with breast cancer. So adequate B6intake at the same time may be reduce the concentration of plasma Hcy, which is good for preventing genome health and related diseases.
引文
1. Shetty M.K., Screening for breast cancer with mammography:current status and an overview. Indian J Surg Oncol,2010.1(3):p.218-23.
    2. Zhivetskii A.V., Incidence of breast cancer in a goiter region of Northern Bukovina. Vrach Delo,1968.7(4):p.37-41.
    3. Zakharova N.A., Duffy S.W., Mackay J., et al., Evaluation of the screening program for early diagnosis of breast cancer in the Khanty-Mansy Autonomous Region-Yugra. Vopr Onkol,2010.56(5):p.609-12.
    4. Miller A.B., Screening for breast cancer in the Eastern Mediterranean Region. East Mediterr Health J,2010.16(10):p.1022-4.
    5. Kwok C., Fethney J., White K., Breast cancer screening practices among Chinese-Australian women. Eur J Oncol Nurs,2012.16(3):p.247-52.
    6. Kwok C., Fethney J., White K., Chinese Breast Cancer Screening Beliefs Questionnaire:development and psychometric testing with Chinese-Australian women. J Adv Nurs,2010.66(1):p.191-200.
    7. Alsaker M.D., Opdahl S., Romundstad P.R., et al., Association of time since last birth, age at first birth and parity with breast cancer survival among parous women:a register-based study from Norway. Int J Cancer,2013.132(1):p.174-81.
    8. Jehn C.F., Flath B., Strux A., et al., Influence of age, performance status, cancer activity, and IL-6 on anxiety and depression in patients with metastatic breast cancer. Breast Cancer Res Treat,2012.136(3):p.789-94.
    9. Anders C.K., Johnson R., Litton J., et al., Breast cancer before age 40 years. Semin Oncol,2009.36(3):p.237-49.
    10. Brachetto D., Moguilgvsky L., Grinberg R., et al., Age of menarche, menopause and duration of the menstrual life in women with breast cancer. Prensa Med Argent, 1951.38(5):p.236-8.
    11. Bouchardy C., Usel M., Verkooijen H.M., et al., Changing pattern of age-specific breast cancer incidence in the Swiss canton of Geneva. Breast Cancer Res Treat,2010. 120(2):p.519-23.
    12. Igisinov N., Kokteubaeva N., Kudaibergenova I. et al., Epidemiology of breast cancer in females of reproductive age in Kyrgyzstan. Asian Pac J Cancer Prev,2005. 6(1):p.37-40.
    13. Kargl O., Relation between age and histological form of cancer of the breast. Dtsch Med Wochenschr,1951.76(44):p.1368.
    14. Jayasinghe U.W., Taylor R., Boyages J., Is age at diagnosis an independent prognostic factor for survival following breast cancer? ANZ J Surg,2005.75(9):p. 762-7.
    15. Jaworowska E., Serrano-Fernandez P., Tarnowska C., et al., Familial association of laryngeal, lung, stomach and early-onset breast cancer. Breast Cancer Res Treat, 2008.112(2):p.359-61.
    16. Javid S.H., Unger J.M., Gralow J.R., et al., A prospective analysis of the influence of older age on physician and patient decision-making when considering enrollment in breast cancer clinical trials (SWOG S0316). Oncologist,2012.17(9):p.1180-90.
    17. Jeffreys M., McKenzie F., Firestone R., et al., A multi-ethnic breast cancer case-control study in New Zealand:evidence of differential risk patterns. Cancer Causes Control,2013.24(1):p.135-52.
    18. Jeffreys M., Warren R., Gunnell D., et al., Life course breast cancer risk factors and adult breast density (United Kingdom). Cancer Causes Control,2004.15(9):p. 947-55.
    19. Jeffreys M., Warren R., Highnam R., et al., Breast cancer risk factors and a novel measure of volumetric breast density:cross-sectional study. Br J Cancer,2008.98(1): p.210-6.
    20. van Schoor G, Broeders M.J., Paap E., et al., A rationale for starting breast cancer screening under age 50. Ann Oncol,2008.19(6):p.1208-9.
    21. Bae S.H., Park W, Huh SJ., et al., Radiation treatment in pathologic n0-n1 patients treated with neoadjuvant chemotherapy followed by surgery for locally advanced breast cancer. J Breast Cancer,2012.15(3):p.329-36.
    22. Anastasov N., Hofig I., Vasconcellos I.G, et al., Radiation resistance due to high. expression of miR-21 and G2/M checkpoint arrest in breast cancer cells. Radiat Oncol, 2012.7:p.206.
    23. Faedo M., Ford C.E., Mehta R., et al., Mouse mammary tumor-like virus is associated with p53 nuclear accumulation and progesterone receptor positivity but not estrogen positivity in human female breast cancer. Clin Cancer Res,2004.10(13):p. 4417-9.
    24. Zhong S., Yeo W., Schroder C., et al., High hepatitis B virus (HBV) DNA viral load is an important risk factor for HBV reactivation in breast cancer patients undergoing cytotoxic chemotherapy. J Viral Hepat,2004.11(1):p.55-9.
    25. Javitt M.C., Breast cancer awareness:taking charge of women's health. AJR Am J Roentgenol,2006.187(4):p.947.
    26. Colomer R., Ruibal A., Navarro M., et al., Circulating CA 15.3 levels in breast cancer. Our present experience. Int J Biol Markers,1986.1(2):p.89-92.
    27. Dhillon V.S., Bhasker R., Kler R.S., et al., Sister chromatid exchange (SCE) studies in breast cancer patients:a follow-up study. Cancer Genet Cytogenet,1995. 80(2):p.115-7.
    28. Dobricic J., Brankovic-Magic M., Filipovic S., et al., Novel BRCA1/2 mutations in Serbian breast and breast-ovarian cancer patients with hereditary predisposition. Cancer Genet Cytogenet,2010.202(1):p.27-32.
    29. Vodusek A.L., Novakovic S., Stegel V, et al., Genotyping of BRCA1, BRCA2, p53, CDKN2A, MLH1 and MSH2 genes in a male patient with secondary breast cancer. Radiol Oncol,2011.45(4):p.296-9.
    30. Vorechovsky I., Rasio D., Luo L., et al., The ATM gene and susceptibility to breast cancer:analysis of 38 breast tumors reveals no evidence for mutation. Cancer Res, 1996.56(12):p.2726-32.
    31. Tseng S.L., Yu I.C., Yue C.T., et al., Allelic loss at BRCA1, BRCA2, and adjacent loci in relation to TP53 abnormality in breast cancer. Genes Chromosomes Cancer, 1997.20(4):p.377-82.
    32. Couch F.J., Gaudet M.M., Antoniou A.C., et al., Common variants at the 19p13.1 and ZNF365 loci are associated with ER subtypes of breast cancer and ovarian cancer risk in BRCA1 and BRCA2 mutation carriers. Cancer Epidemiol Biomarkers Prev, 2012.21(4):p.645-57.
    33. Bagnyukova T.V., Powell C.L., Pavliv O., et al., Induction of oxidative stress and DNA damage in rat brain by a folate/methyl-deficient diet. Brain Res,2008.1237:p. 44-51.
    34. Duthie S.J., Folate and cancer:how DNA damage, repair and methylation impact on colon carcinogenesis. J Inherit Metab Dis,2011.34(1):p.101-9.
    35. Fenech M., Folate, DNA damage and the aging brain. Mech Ageing Dev,2010. 131(4):p.236-41.
    36. James S.J., Pogribny I.P., Pogribna M., et al., Mechanisms of DNA damage, DNA hypomethylation, and tumor progression in the folate/methyl-deficient rat model of hepatocarcinogenesis. J Nutr,2003.133(11 Suppl 1):p.3740S-7S.
    37. Naushad S.M., Pavani A., Rupasree Y., et al., Modulatory effect of plasma folate and polymorphisms in one-carbon metabolism on catecholamine methyltransferase (COMT) H108L associated oxidative DNA damage and breast cancer risk. Indian J Biochem Biophys,2011.48(4):p.283-9.
    38. Zwart S.R., Jessup J.M., Ji J., et al., Saturation diving alters folate status and biomarkers of DNA damage and repair. PLoS One,2012.7(2):p. e31058.
    39. Wang T.C., Song Y.S., Wang H., et al., Oxidative DNA damage and global DNA hypomethylation are related to folate deficiency in chromate manufacturing workers. J Hazard Mater,2012.213-214:p.440-6.
    40. Pufulete M., Emery P.W., Sanders T.A., Folate, DNA methylation and colo-rectal cancer. Proc Nutr Soc,2003.62(2):p.437-45.
    41. Radivoyevitch T., Folate system correlations in DNA microarray data. BMC Cancer,2005.5(12):p.95.
    42. Sharp L., Little J. Polymorphisms in genes involved in folate metabolism and colorectal neoplasia:a HuGE review. Am J Epidemiology,2004.15(1):p.423-443.
    43. Blount B.C., Mack M.M., Wehr C.M., et al. Folate deficiency causes uracil misincorporation into human DNA and chromosome breakage. Proc Natl Acad Sci U S A,1997.94(3):p.3290-5.
    44. Fenech M. The role of folic acid and vitamin B12 in genomic stability of human cells. Mutat Res,2001.475(4):p.56-67.
    45. Wang X., Wu X., Liang Z., et al. A comparison of folic acid deficiency-induced genomic instability in lymphocytes of breast cancer patients and normal non-cancer controls from a Chinese population in Yunnan. Mutagenesis,2006.21(7):p.41-7.
    46. Pelucchi C., Talamini R., Negri E., et al. Folate intake and risk of oral and pharyngeal cancer. Ann Oncol,2003.14(8):p.1677-81.
    47. Hadithi M., Mulder C.J., Stam F., et al. Effect of B vitamin supplementation on plasma homocysteine levels in celiac disease. World J Gastroenterol,2009.15(11):p. 955-60.
    48. Hernandez B.Y., McDuffie K., Wilkens L.R., et al. Diet and premalignant lesions of the cervix:evidence of a protective role for folate, riboflavin, thiamin, and vitamin B12. Cancer Causes Control,2003.14(8):p.859-70.
    49. Rosenberg I.H., Miller J.W. Nutritional factors in physical and cognitive functions of elderly people. Am J Clin Nutr,1992.55(14):p.1237S-43S
    50. Huang Y.C., Chen W, Evans M.A., et al. Vitamin B6 requirement and status assessment of young women fed a high-protein diet with various levels of vitamin B6. Am J Clin Nutr,1998.67(2):p.208-20.
    51. Ink S.L., Mehansho H., Henderson L.M. The binding of pyridoxal to haemoglobin. J Biol Chem,1982.257(11):p.4753-7.
    52. Lui A., Lumeng L., Aronoff G.R., et al. Relationship between body store of vitamin B6 and plasma pyridoxal-P clearance:metabolic balance studies in humans. J Lab Clin Med,1985.106(7):p.491-7.
    53. Gregory J.F.,3rd:Bioavailability of vitamin B6. Eur J Clin Nutr,1997.51(5):p. S43-8.
    54. Ebbing M., Bleie O., Ueland P.M., et al. Mortality and cardiovascular events in patients treated with homocysteine- lowering B vitamins after coronary angiography: a randomized controlled trial. JAMA,2008.300(12):p.795-804.
    55. Lima C.P., Davis S.R., Mackey A.D., et al. Vitamin B-6 deficiency suppresses the hepatic transsulfuration pathway but increases glutathione concentration in rats fed AIN-76A or AIN-93G diets. J Nutr,2006.136(1):p.2141-7.
    56. Kannan K., Jain S.K. Effect of vitamin B6 on oxygen radicals, mitochondrial membrane potential, and lipid peroxidation in H2O2-treated U937 monocytes. Free Radic Biol Med,2004.36(8):p.423-8.
    57. Bitsch R. Vitamin B6. Int J Vitam Nutr Res,1993.63(10):p.278-82.
    58. Dakshinamurti K. Vitamin B6:its role in health and disease. New York:Alan R LIss Inc. p.1985.
    59. Wozenski J.R., Leklem J.E., Miller L.T. The metabolism of small doses of vitamin B6 in men. J Nutr 1980.110(5):p.275-85.
    60. Jansonius J.N. Structure, evolution and action of vitamin B6-dependent enzymes. Curr Opin Struct Biol,1998.8(4):p.759-69.
    61. Fishman S.M., Christian P., West K.P. The role of vitamins in the prevention and control of anaemia. Public Health Nutr,2000.3(2):p.125-50.
    62. Selhub J., Bagley L.C., Miller J., et al. B vitamins, homocysteine, and neurocognitive function in the elderly. Am J Clin Nutr,2000.71(4):p.614S-20S.
    63. Zhang S.M., Moore S.C., Lin J., et al. Folate, vitamin B6, multivitamin supplements, and colorectal cancer risk in women. Am J Epidemiol,2006.163(3):p. 108-15.
    64. Selhub J., Miller J.W. The pathogenesis of homocysteinemia:interruption of the coordinate regulation by S-adenosylmethionine of the remethylation and transsulfuration of homocysteine. Am J Clin Nutr,1992.55(4):p.131-8.
    65. Lee J.E., Li H., Giovannucci E, et al. Prospective study of plasma vitamin B6 and risk of colorectal cancer in men. Cancer Epidemiol Biomarkers Prev,2009.18(7):p. 1197-202.
    66. Shen J., Lai C.Q., Mattei J., et al. Association of vitamin B-6 status with inflammation, oxidative stress, and chronic inflammatory conditions:the Boston Puerto Rican Health Study.Am J Clin Nutr,2010.91(8):p.337-42.
    67. Leklem J.E. Vitamin B6. A status report. J Nutr,1990.120(5):p1503-1507.
    68. De Bree A., Verschuren W.M., Blom H.J., et al. Lifestyle factors and plasma homocysteine concentrations in a general population sample. Am J Epidemiol,2001, 154:p.150-4.
    69. Lonn E., Yusuf S., Arnold M.J., et al. Heart Outcomes Prevention Evaluation (HOPE) 2 Investigators. Homocysteine lowering with folic acid and B vitamins in vascular disease. N Engl J Med,2006.354(6):p.1567-77.
    70. Brown R.R., Rose D.P., Leklem J.E., et al. Urinary 4-pyridoxic acid, plasma pyridoxal phosphate and erythrocyte aminotransferase levels in oral contraceptive users receiving controlled intakes of vitamin B6. Am J Clin Nutr,1975.28(2):p.10-9.
    71. Bender DA. Vitamin B6 requirements and recommendations. Eur J Clin Nutr 1989. 43(5):p.289-309.
    72. Miller J.W., Green R., Mungas D.M., et al., Homocysteine, vitamin B6, and vascular disease in AD patients. Neurology,2002.58(10):p.1471-5.
    73. Mizrahi EH, Jacobsen DW, Debanne SM, et al., Plasma total homocysteine levels, dietary vitamin B6 and folate intake in AD and healthy aging. J Nutr Health Aging, 2003.7(3):p.160-5.
    74. Borroni B., Agosti C., Panzali A.F., et al., Homocysteine, vitamin B6, and vascular disease in patients with AD. Neurology,2002.59(9):p.1475.
    75. Franzblau A., Rock C.L., Werner R.A., et al., The relationship of vitamin B6 status to median nerve function and carpal tunnel syndrome among active industrial workers. J Occup Environ Med,1996.38(5):p.485-91.
    76. Chaverri G., Proverbio F., Effect of maternal diet deficient in vitamin B6 on the development of the optic nerve of suckling rats. Acta Cient Venez,1986.37(4):p. 420-5.
    77. Ito K., Nakahara I., Sakamoto Y., Studies on Vitamin B6 Metabolism of Cancer Cells and Tumor-Bearing Rat Liver. Ii. Uptake of Pyridoxine Derivatives by Tumor Cells and the Liver of Tumor-Bearing Rats. Gann,1964.55:p.379-85.
    78. Kune G, Watson L., Colorectal cancer protective effects and the dietary micronutrients folate, methionine, vitamins B6, B12, C, E, selenium, and lycopene. Nutr Cancer,2006.56(1):p.11-21.
    79. Schernhammer E.S., Ogino S., Fuchs C.S., Folate and vitamin B6 intake and risk of colon cancer in relation to p53 expression. Gastroenterology,2008.135(3):p. 770-80.
    80. Sujol G, Docquier A., Boulahtouf A., et al., Vitamin B6 and cancer:from clinical data to molecularly mechanisms. Bull Cancer,2011.98(10):p.1201-8.
    81. Tryfiates G.P., Morris H.P., Sonidis G.P., Vitamin B6 and cancer (review). Anticancer Res,1981.1(5):p.263-7.
    82. Wu X.Y., Lu L., Vitamin B6 deficiency, genome instability and cancer. Asian Pac J Cancer Prev,2012.13(11):p.5333-8.
    83. Devor E.J., Dill-Devor R.M., Magee H.J., et al., Serine hydroxymethyltransferase pseudogene, SHMT-psl:a unique genetic marker of the order primates. J Exp Zool, 1998.282(1-2):p.150-6.
    84. Vainer A.S., Boiarskikh U.A., Voronina E.N., et al., Polymorphic variants of folate metabolizing genes (C677T and A1298C MTHFR, C1420T SHMT1 and G1958A MTHFD) are not associated with the risk of breast cancer in West Siberian Region of Russia. Mol Biol (Mosk),2010.44(5):p.816-23.
    85. Heil S.G., Van der Put N.M., Waas E.T., et al., Is mutated serine hydroxymethyltransferase (SHMT) involved in the etiology of neural tube defects? Mol Genet Metab,2001.73(2):p.164-72.
    86. Wang Y., Guo W., He Y, et al., Association of MTHFR C677T and SHMT(1) C1420T with susceptibility to ESCC and GCA in a high incident region of Northern China. Cancer Causes Control,2007.18(2):p.143-52.
    87. Beckmann K., Wang N., Li Y, et al., Photosynthesis and fluorescence quenching, and the mRNA levels of plastidic glutamine synthetase or of mitochondrial serine hydroxymethyltransferase (SHMT) in the leaves of the wild-type and of the SHMT-deficient stm mutant of Arabidopsis thaliana in relation to the rate of photorespiration. Planta,1997.202(3):p.379-86.
    88. Jacques P.F., bostom A.G, Wilson P.W., et al. Dcterm inan ts of plasma total homocyst ein e concent ration in the framin gham offspring cohort. Am J Clin Nutr, 2001.73(5):p.613-21.
    89. Edith W.M., Jan P.K., cystathionine B-synthase:structure, Function, Regulation and location of Homocystinuria causing mutations. The Journal of Biologial chemistry, 2004.279(1):p.29871-4.
    90. Morris M.S., Jacques P.F., Selhub J., et al., Total homocys t eine and estrogen status indicators in the third national heath and nutrition examination survey. Am J Epidemiol,2000.152(11):p.140-8.
    91. Weinstein S.J., Hartman T.J., Stolzenberg-Solomon R., et al., Null association between prostate cancer and serum folate, vitamin B6, vitamin B12, and homocysteine. Cancer Epidemiol Biomarkers Prev,2003.12(17):p.1271-2.
    92 Hultdin J., Guelpen B.V., Bergh A., et al., Plasma folate, vitamin B12, and homocysteine and prostate cancer risk:A prospect ive study. Int J C ancer,2005. 113(2):p.819-24.
    93. King W.D., Ho V., Dodds L., et al., Relationships among biomarkers of one-carbon metabolism.Mol Biol Rep,2012.39(3):p.7805-12.
    94. Almadori G, Bussu F., Galli J., Serum folate and homocysteine levels in head and neck squamous cell carcinoma. Cancer,2002.94(10):p.1006-11.
    95. Toffoli G, Gafa R., Russo A., Methylenetetrahydrofolate reductase 677 C-T polymorphism and risk of proximal colon cancer in north Italy. Clin Cancer Res,2003. 9(8):p.743-8.
    96. Song C., Xing D., Tang W., et al. Methylenetetrahydrofolate reductase polymorphisms increase risk of esophageal squamous cell carcinoma in a Chinese population. Cancer Res,2001.6(9):p.3272-5.
    97 Yin G, Ming H., Zheng X., et al. Methylenetetrahydrofolate reductase C677T gene polymorphism and colorectal cancer risk:A case-control study. Oncol Lett,2012,4:p. 365-9.
    98. Palomba S., Falbo A., Giallauria F., et al. Effects of metformin with or without supplementation with folate on homocysteine levels and vascular endothelium of women with polycystic ovary syndrome. Diabetes Care,2010,33 (4):p.246-51.
    99.杨致远,李亚娟,马聪敏.血浆同型半胱氨酸与缺血性脑血管病关系的研究.中国实用神经疾病杂志,2007,10(5):p.1-3.
    100. Hung R.J., Hashibe M, McKay J., et al., Folate-related genes and the risk of tobacco- related cancers in Cetral Europe. Carcinogenesis,2007.28(7):p.1334-1340
    101. Summers C.M., Mitchell L.E., Stanislawska-Sachadyn A., et al., Genetic and lifestyle variables associated with homocysteine concentrations and the distribution of folate derivatives in healthy premenopausal women. Birth Defects Res A Clin Mol Teratol,2010.88(1):p.679-88.
    102. Polyzos S.A., Anastasilakis A.D., Efstathiadou Z., et al. Serum homocysteine, folate and vitamin B12 in patients with Paget's disease of bone:the effect of zoledronic acid. J Bone Miner Metab,2010.28(7):p.314-9.
    103. Coppin J.F., Qu W., Waalkes M.P., Interplay between cellular methyl metabolism and adaptive efflux during oncogenic transformation from chronic arsenic exposure in human cells. J Biol Chem,2008.283(6):p.19342-50.
    104.荣蝾,张爱民,樊春红,等.血清同型半胱氨酸与冠心病患者及多项生化指标关系的分析.中国实验诊断学,2009,13(7):p.77-80.
    105.熊燕,石胜,黄华兴.原发性肝癌患者血浆同型半胱氨酸水平变化的研究.中国医师杂志,2005,增刊:p.325-6.
    106. Pryzimirska T.V., Pogribny I.P., Chekhun V.F., The impact of tumor growth on plasma homocysteine levels and tissue-specific DNA methylation in Walker-256 tumor-bearing rats. Exp Oncol,2007.29(4):p.262-6.
    107. Cao W.X., Ou J.M., Fei X.F. et al. Methionine-dependence and combination chemotherapy on human gastric cancer cells in vitro. World J Gastroenterol,2002,8 (6):p.230-2.
    108. Vainer A.S., Boiarskikh U.A., Voronina E.N., et al. Polymorphic variants of folate metabolizing genes (C677T and A1298C MTHFR, C1420T SHMT1 and G1958A MTHFD) are not associated with the risk of breast cancer in West Siberian Region of Russia. Mol Biol (Mosk).2010.44(1):p.816-23.
    109.郝婷.叶酸、同型半胱氨酸与哈萨克族食管癌关系的研究.硕士学位论文.
    110. Ozkan Y., Yardim-Akaydin S., Firat H., et al., Usefulness of homocysteine as a cancer marker:total thiol compounds and folate levels in untreated gullet cancer patients. Anticancer Res,2007,27 (8):p.1185-9.
    111.Robert K., Maurin N., Vayssettes C., et al., Cystathionine beta synthase deficiency affects mouse endochondral ossification. Anat Rec A Discov Mol Cell Evol Biol,2005.282(1):p.1-7.
    112.de Franchis R., Kraus E., Kozich V., et al., Four novel mutations in the cystathionine beta-synthase gene:effect of a second linked mutation on the severity of the homocystinuric phenotype. Hum Mutat,1999.13(6):p.453-7.
    113.Dawson P.A., Cochran D.A., Emmerson B.T. et al., Variable hyperhomocysteinaemia phenotype in heterozygotes for the Gly307Ser mutation in cystathionine beta-synthase. Aust N Z J Med,1996.26(2):p.180-5.
    114.Zoossmann-Diskin A., Gazit E., Peleg L., et al.,844ins68 in the cystathionine beta-synthase gene in Israel and review of its distribution in the world. Anthropol Anz, 2004.62(2):p.147-55.
    115.Linnebank M., Janosik M., Kozich V., et al., The cystathionine beta-synthase (CBS) mutation c.1224-2A>C in Central Europe:Vitamin B6 nonresponsiveness and a common ancestral haplotype. Hum Mutat,2004.24(4):p.352-3.
    116. Kozich V, Sokolova J., Klatovska V., et al., Cystathionine beta-synthase mutations:effect of mutation topology on folding and activity. Hum Mutat,2010. 31(7):p.809-19.
    117. Sen S., Banerjee R., A pathogenic linked mutation in the catalytic core of human cystathionine beta-synthase disrupts allosteric regulation and allows kinetic characterization of a full-length dimer. Biochemistry,2007.46(13):p.4110-6.
    118. Yang M., Yang L., Qi L., et al., Association between the methionine synthase A2756G polymorphism and neural tube defect risk:A meta-analysis. Gene, 2013.11(6):p:73-6
    119.Yates Z., Lucock M., Methionine synthase polymorphism A2756G is associated with susceptibility for thromboembolic events and altered B vitamin/thiol metabolism. Haematologica,2002.87(7):p.751-6.
    120. Yu K., Zhang J., Zhang J., et al., Methionine synthase A2756G polymorphism and cancer risk:a meta-analysis. Eur J Hum Genet,2010.18(3):p.370-8
    121. Vaughn J.D., Bailey L.B., Shelnutt K.P., et al., Methionine synthase reductase 66A->G polymorphism is associated with increased plasma homocysteine concentration when combined with the homozygous methylenetetrahydrofolate reductase 677C->T variant. J Nutr,2004.134(11):p.2985-90.
    122. Zeng W., Liu L., Tong Y., et al., A66G and C524T polymorphisms of the methionine synthase reductase gene are associated with congenital heart defects in the Chinese Han population. Genet Mol Res,2011.10(4):p.2597-605.
    123. Lincz L.F., Scorgie F.E., Kerridge I., et al., Methionine synthase genetic polymorphism MS A2756G alters susceptibility to follicular but not diffuse large B-cell non-Hodgkin's lymphoma or multiple myeloma. Br J Haematol,2003.120(6): p.1051-4.
    124. Scazzone C., Acuto S., Guglielmini E., et al., Methionine synthase reductase (MTRR) A66G polymorphism is not related to plasma homocysteine concentration and the risk for vascular disease. Exp Mol Pathol,2009.86(2):p.131-3.
    125. Fenech M., Cytokinesis-block micronucleus assay evolves into a "cytome" assay of chromosomal instability, mitotic dysfunction and cell death, Mutat. Res,2006.600 (1):p.58-66.
    126. Accardi L., Di Bonito P., Antibodies in single-chain format against tumour-associated antigens:present and future applications. Curr Med Chem,2010. 17(17):p.1730-55.
    127. Berndt A., Kollner R., Richter P., et al., A comparative analysis of oncofetal fibronectin and tenascin-C incorporation in tumour vessels using human recombinant SIP format antibodies. Histochem Cell Biol,2010.133(4):p.467-75.
    128. Read M., Muller I.B., Mitchell S.L., et al., Dynamic subcellular localization of isoforms of the folate pathway enzyme serine hydroxymethyltransferase (SHMT) through the erythrocytic cycle of Plasmodium falciparum. Malar J,2010.9(5):p.351.
    129. Goenaga-Infante H., Kassam S., Stokes E., et al., Capabilities of HPLC with APEX-Q nebulisation ICP-MS and ESI MS/MS to compare selenium uptake and speciation of non-malignant with different B cell lymphoma lines. Anal Bioanal Chem, 2011.399(5):p.1789-97.
    130. Ibanez C., Simo C., Garcia-Canas V., et al., CE/LC-MS multiplatform for broad metabolomic analysis of dietary polyphenols effect on colon cancer cells proliferation. Electrophoresis,2012.33(15):p.2328-36.
    131. Fenech M., Cytokinesis-block micronucleus assay evolves into a "cytome" assay of chromosomal instability, mitotic dysfunction and cell death, Mutat. Res,2006. 600(1):p.58-66.
    132. Bracker T.U., Sommer A., Fichtner I., et al., Efficacy of MS-275, a selective inhibitor of class I histone deacetylases, in human colon cancer models. Int J Oncol, 2009.35(4):p.909-20.
    133. Yuan L.J., Jin T.B., Yin J.K., et al., Polymorphisms of tumor-related genes IL-10, PSCA, MTRR and NOC3L are associated with the risk of gastric cancer in the Chinese Han population. Cancer Epidemiol,2012.36(6):p. e366-72.
    134. Spillman M.A., Bowcock A.M., BRCA1 and BRCA2 mRNA levels are coordinately elevated in human breast cancer cells in response to estrogen. Oncogene, 1996.13(8):p.1639-45.
    135. Escribano-Diaz C., Orthwein A., Fradet-Turcotte A., et al., A Cell Cycle-Dependent Regulatory Circuit Composed of 53BP1-RIF1 and BRCA1-CtIP Controls DNA Repair Pathway Choice. Mol Cell,2013.49(5):p.872-83.
    136. Deng C.X., BRCA1:cell cycle checkpoint, genetic instability, DNA damage response and cancer evolution. Nucleic Acids Res,2006.34(5):p.1416-26.
    137. Jhanwar-Uniyal M., BRCA1 in cancer, cell cycle and genomic stability. Front Biosci,2003.8(7):p. s1107-17.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700