用户名: 密码: 验证码:
非小细胞肺癌发生分子机制的生物信息学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肺癌是一种常见的肺部恶性肿瘤。近年来,随着各种环境因素的影响,世界各国特别是工业发达国家,肺癌的发病率和病死率均迅速上升,位居恶性肿瘤发病率和死亡率首位,严重威胁了人们身体健康。然而,到目前为止,肺癌的发生分子机制依然不清楚,难以有效的进行早期诊断和治疗。鉴于此,本论文利用生物信息学方法,分别从基因差异表达数据挖掘、蛋白质相互作用预测及其网络的构建等方面探讨了非小细胞肺癌的分子作用机制。同时对部分生物信息学分析结果进行了分子生物学验证。考虑到非小细胞肺癌是肺癌的主要类型,因此本论文所用数据来源于GEO数据库中肺鳞癌、肺腺癌数据集,具体工作内容如下:
     第一,综合BRB-Array Tools和MATLAB程序,分别对肺鳞癌数据集(GDS1312)和肺腺癌数据集(GDS1650)进行数据挖掘。试图阐述两个方面问题:一是基因表达模式是如何在非小细胞肺癌中发生变化的;二是差异表达基因参与的代谢途径有哪些以及代谢途径在非小细胞肺癌发生过程中的可能作用。
     GDS1312中包括5例肺鳞癌组织及对应正常癌旁组织的全基因组表达数据。数据挖掘结果显示,肺鳞癌中共筛选出409条表达上调的基因和877条表达下调基因;经GO分类对比共有1730条基因与95个GO分类匹配,主要涉及细胞骨架、细胞增殖调控、程序性细胞死亡、免疫应答及蛋白酶等;KEGG通路主要涉及物质代谢、细胞周期及疾病相关等通路;BioCarta通路主要涉及细胞黏附、细胞周期调控、细胞免疫、细胞信号及物质代谢等通路。
     GDS1650中包括10例肺腺癌组织及对应正常癌旁组织的全基因组表达数据。数据挖掘结果显示,肺腺癌中共筛选632条表达上调基因和975条表达下调基因;经GO分类对比共有1358条基因与63个GO分类匹配,主要涉及细胞骨架发生、细胞黏附、细胞识别、血管发育、蛋白激酶束缚等;KEGG通路分别涉及细胞黏附分子通路、白细胞跨内皮迁移通路、VEGF信号通路、mTOR信号通路与细胞周期通路;BioCarta通路与肺鳞癌类似,分别涉及细胞黏附、细胞周期调控、细胞免疫、细胞信号及物质代谢等通路。
     第二,基于支持向量机(SVM)的蛋白质相互作用(PPI)预测。以任意连续的两个氨基酸所构成的特征作为一个描述符(二氨基酸特征单元),计算每一个特征单元在蛋白质序列中出现的频率。以此构建一个二元向量空间(V, F)来描述每一个蛋白质序列,将蛋白质序列的PPI信息映射进入特征向量空间。利用支持向量机(SVM)的学习方法,采用径向基函数作为核函数,构建了蛋白质相互作用预测模型。并用10次的10倍交叉验证以检测预测模型的可靠性。这种方法能够产生一个精确度超过83%的稳定PPI预测模型。
     第三,以肺鳞癌、肺腺癌的差异表达基因为依据,构建与肺癌相关的蛋白质数据,通过二次筛选获得与肺鳞癌、肺腺癌发生高度相关的蛋白质分别为95个和178个,其中有19个蛋白在肺鳞癌、肺腺癌中共表达。将这些蛋白质分别与HPRD数据库进行检索,获得目前已有的全部PPI数据,并整合SVM预测的蛋白质相互作用信息。删除自作用数据和冗余数据后,利用Cytoscape程序构建肺癌相关蛋白质相互作用网络。计算网络的中心节点(核心蛋白),其中肺鳞癌相关PPI网络有19个核心蛋白,肺腺癌相关PPI网络有35个核心蛋白。探讨核心蛋白在肺癌发生分子机制中的可能作用,并提出肺癌发生的“分子群”假设。
     第四,为验证上述生物信息学分析结果,从在肺鳞癌、肺腺癌共表达的基因中筛选6个基因,采用半定量RT-PCR方法检测这些基因在肺鳞癌、肺腺癌细胞株中的表达情况。结果表明,5个基因在两种肺癌细胞株中均有表达,显示这些基因在肺癌细胞株中的表达具有一定的“相关性”,其中SOX4基因呈现高表达,提示该基因可能与肺癌发生有一定关系。为此,采用PCR-SSCP及DNA测序技术,对90例肺癌组织标本进行SOX4基因突变检测,发现部分肺癌组织中有SOX4突变的发生。综合MATLAB与SwissPdbViewer程序,对突变SOX4蛋白三级结构进行预测。结果显示,突变导致SOX4蛋白的侧链结构发生改变,影响了该蛋白与其它分子的相互作用功能。由于SOX4蛋白是一类与发育相关的转录调控因子,暗示SOX4突变可能是导致肺癌发生的一个潜在因素。
     综上所述,肺癌发生并非是由单个或几个基因或蛋白质能够决定其发生机制的,它可能是由众多与肿瘤发生相关的“分子群”形成的复杂调控系统。
     本论文的主要创新点:
     1.综合MATLAB程序与BRB-Array Tools软件,对非小细胞肺癌差异表达基因数据进行挖掘,为基因芯片数据挖掘提供了新的研究方法,并从基因表达水平探讨了肺癌发生的可能分子机制。
     2.以任意连续的两个氨基酸特征作为一个描述符,设计一种基于支持向量机(SVM)的蛋白质相互作用(PPI)预测方法。该方法能最大限度地保证蛋白质对中氨基酸信息的完整性,并以MATLAB作为实验平台,极大地减小算法实现的难度。
     3.利用基因表达数据挖掘结果,获得与肺癌发生高度相关的蛋白质数据,并结合数据库中的PPI信息,构建了肺癌发生相关蛋白质相互作用网络。以PPI网络中的核心蛋白为主体,提出肿瘤发生的“分子群”假设,为肺癌发生分子机制研究提供了新的研究思路。
     4.发现了肺癌组织中SOX4基因突变的发生,综合MATLAB与SwissPdbViewer程序,对SOX4蛋白三级结构进行预测,为蛋白质三级结构的同源建模提供了新的研究方法。
Lung cancer is the most common lung malignant tumor. In recent years, along with the many environmental factor influence, the morbidity rate and mortality rate of lung cancer were rapid rise in the world, especially in developed industry country. However, the molecular mechanism of lung cancer is by far still ambiguous, and difficulty in early diagnose and therapy. In view of this, the bioinformatics methods were used in this dissertation, and discussed the mechanism of non-small cell lung cancer (NSCLC) from the data mining of genes differentially expression, the prediction of protein-protein interaction (PPI) and constructed PPI network, respectively. In the meantime, the partial bioinformatics results were validated based on molecular biological experiment. Because the NSCLC was main type in lung cancer, the data of this dissertation were root in squamous carcinoma and adenocarcinoma database in GEO. The main works of this dissertation are as follows: Firstly, in order to elucidate that the changes of gene expressed mode, the metabolic pathway of differentially expressed genes (DEGs) and its possible roles in NSCLC development, using computer program BRB-Array Tools and MATLAB, the lung squamous carcinoma database (GDS1312) and adenocarcinoma database (GDS1650) were mined, respectively.
     The database GDS1312 including 5 cases lung squamous carcinoma tissues and 5 cases normal paracancerous tissues. The result shows that 409 DEGs were screened as up-regulated in squamous carcinoma, whereas 877 DEGs were screened as down-regulated. The Gene Ontology (GO) comparison result show that 95 GO categories were obtained from 1730 genes, and main involved cellular cytoskeleton, cell cycle regulation, programmed cell death, immune response, protein enzyme, and so on. KEGG pathways were main involved metabolism, cell cycle, and disease related pathway. BioCarta pathways were main involved cell adhesion, cell cycle regulation, immunology, cell signaling and metabolism.
     The database GDS1650 including 10 cases lung adenocarcinoma tissues and 10 cases normal paracancerous tissues. The result shows that 632 DEGs were up-regulated and 975 DEGs down-regulated. 63 GO categories were chosen from 1358 genes, and main involved cellular cytoskeleton biogenesis, regulation of cell adhesion, cell recognition, blood vessel development, and protein-kinase binding, and so on. Three KEGG pathways were involved Cell adhesion molecules (CAMs) pathway, Leukocyte transendothelial migration pathway, VEGF signaling pathway, mTOR signaling pathway and cell cycle pathway. BioCarta pathways are likely lung squamous carcinoma related pathways, also involved cell adhesion, cell cycle regulation, immunology, cell signaling and metabolism.
     Secondly, prediction of protein-protein interaction (PPI) based on support vector machine (SVM). The properties of any two continuous amino acids as a descriptor (two amino acids units), and counting the frequencies of each two amino acids units. Then, constructing a binary space (V, F) to represent a protein sequence, and the PPI information of protein sequences were mapped into a vector space. The predicted models of PPI were constructed using the radial basis function kernel, and the learning methods of SVM to construct. In order to validate the forecasting reliability, the 10 times 10-folds cross validation method were used. This method can obtain a stabilized PPI predicted model which the accuracy overrun 83%. Thirdly, the lung cancer protein-protein interaction (PPI) network constructed.
     The lung cancer related protein database was formed based on the up-regulated DEGs genes, and 95 proteins were obtained which high related to squamous carcinoma, whereas 178 proteins were obtained which high related to adenocarcinoma. 19 co-expressed proteins were also simultaneously obtained in two type lung cancer from comparison. The complete PPI data were searched from HPRD database based on these proteins, and integrate the predicted PPI information using SVM. To delete the self-interaction data and redundancy data, and the PPI network of lung carcinogenesis was constructed by Cytoscape program. Using Degree sorted computer program, the hub proteins of PPI network were obtained, including 19 proteins in lung squamous carcinoma and 35 proteins in adenocarcinoma. Discuss the possible role of hub proteins in molecular mechanism of lung cancer, and propose a“molecular group”hypothesis for lung carcinogenesis.
     Finally, in order to validate the results of bioinformatics, the 6 genes were screened form co-expression genes, then using Semi-Quantitative RT-PCR technology to validate these genes expression in squamous carcinoma cell strain and adenocarcinoma cell strain. The results show that 5 genes were expressed in two type lung cancer cell strains, and indicate the expression of these genes more likely“correlative”in cancer strains. Moreover, the SOX4 was high expressed and indicate this gene may associate with lung carcinogenesis. Then, SOX4 mutations were detected in partial tissues of 90 cases NSCLC tissue samples using PCR-SSCP method and DNA sequencing technology. Combine the MATLAB and SwissPdbViewer program, modeling the SOX4 tertiary structure were predicted. The results indicated that the mutation lead to the side-chain conformation of SOX4 was changed, and may effects the interaction function for other molecular. It also suggesting that SOX4 mutation may be a potential factor with lung carcinogenesis.
     In summary, single or several genes/proteins could not determine the molecular mechanism of lung carcinogenesis, and it may likely associated with a complex regulation system that formed by many“molecular group”which related to carcinogenesis.
     The main innovation of this dissertation:
     1. Combined MATLAB program and BRB-Array Tools to mine the differentially expressed genes data of NSCLCs, provided a new method for the data mining study of microarray data, and discuss the possible molecular mechanism of lung cancer form gene expression level.
     2. The properties of any two continuous amino acids as a descriptor, design a PPI predicted method based on support vector machine (SVM). This method can furthest ensure the integrality of amino acids information of protein pairs. Using MATLAB as experimental platform, and furthest decrease the difficulty of algorithm realized.
     3. The protein data were obtained which highly related to lung caner based on the data mining results of gene expression. Integrate the PPI information of database, the PPI network of lung cancer were constructed. Then, based on the hub proteins of PPI network, propose a“molecular group”hypothesis for carcinogenesis, and provided a new research clue for the mechanism study of lung carcinogenesis.
     4. Reported the SOX4 mutation in non-small cell lung cancer (NSCLC) tissues. Combined MATLAB and SwissPdbViewer program to model and predicting the SOX4 protein tertiary structure, and provided a new method for homology modeling study of protein.
引文
[1] L.A. D, Counting the dead in China:measuring tobaccos impact in the developing world, J Bri Med, 1998, 317, 1399-1400.
    [2] P.D. M, P. P, F. J, Global cancer statistics, CA Cancer J Clin, 1999, 49, 33-64.
    [3] P.D. M, B. F, F. J, Global cancer statistics, CA Cancer J Clin, 2005, 55, 74-78.
    [4]李永勤,王胜军,李志杰, et al.,预测蛋白质相互作用位点的计算方法研究(一),中国医学物理学杂志, 2006, 23, 345-350.
    [5] J. Shen, J. Zhang, X. Luo, et al., Predicting protein–protein interactions based only on sequences information, PNAS, 2007, 104, 4337-4341.
    [6]孙景春,徐晋麟,曹建平, et al.,钩端螺旋体蛋白质相互作用网络预测与系统分析,科学通报, 2006, 51, 1049-1057.
    [7] J.L. Klepeis, C.A. Floudas, Ab initio tertiary structure prediction of proteins, Journal of Global Optimization, 2003, 25, 113-140.
    [8] J. Lee, S.Y. Kim, K. Joo, et al., Prediction of protein tertiary structure using PROFESY, a novel method based on fragment assembly and conformational space annealing, Proteins-Structure Function and Bioinformatics, 2004, 56, 704-714.
    [9]杨季云,张思仲,郭红, et al.,肿瘤坏死因子α通过激活NF-κB信号通路加快肝细胞周期进程,生物化学与生物物理进展, 2007, 34, 604-610.
    [10] G.A. Shaughnessy J J, Qi Y ,et al, cyclin D3 at6p21 is dysregulated by rocui-i~tlt chnxn0somal transloca 0rIs to imn~noglobulin loci in multiple myeloma, Blood, 2001, 98, 217-221.
    [11] C. RJ, A. A, C. A, et al., Cyclin D1 and non-small cell lung cancer - A role of CCND1 polymorphism in NSCLC carcinogenesis, Annals of Oncology, 2007, 18, 49-50.
    [12] D. A, S. P, H. PW, Cyclins and cdks in development and cancer: a perspective, Oncogene, 2005, 24, 2909-2915.
    [13] H. JW, D. DC, The Rb/E2F pathway: expandingroles and emerging paradigms, Genes Dev, 2000, 14, 2393-2409.
    [14] O. Gautschi, B. Hugli, A. Ziegler, et al., Cyclin D1 (CCND1) A870G gene polymorphism modulates smoking-induced lung cancer risk and response to platinum-based chemotherapy in non-small cell lung cancer (NSCLC) patients, Lung Cancer, 2006, 51, 303-311.
    [15] C. O, Linking cyclins to transcriptional control, Genes Dev, 2002, 299, 35-55.
    [16] K.A. Adel, A. Aaron, Prognostic significance of cyclin D1 expression in resected stage I, II non-small cell lung cancer in Arabs, Interact Cardiovasc Thorac Surg, 2006, 5, 47-51.
    [17] O. Gautschi, D. Ratschiller, M. Gugger, et al., Cyclin D1 in non-small cell lung cancer: A key driver of malignant transformation, Lung Cancer, 2007, 55, 1-14.
    [18] I. E, M. M, S.N. E, Expression patterns of cyclins D1, E and cyclin-dependent kinase inhibitors p21(Waf1/Cip1) and p27 (Kip1) in urothelial carcinoma: correlation with other cell-cycle-related proteins (Rb, p53, Ki-67 and PCNA) and clinicopathological features, Urol Int, 2004, 73, 65-73.
    [19]陈长恒, Cdc2基因与细胞周期调控,中国实用医药杂志, 2007, 2, 105-107.
    [20]翟德忠,黄强,细胞周期蛋白依赖性激酶CDC2与恶性胶质瘤发生发展的研究,肿瘤, 2006, 26, 489-491.
    [21] S.M. Hollander MC , Yu K,et al., Activation of Gadd34 by diverse apoptotic signals and suppression of its growth inhibitory effects by apoptotic inhibitors, Int J Cancer, 2001, 96, 22-31.
    [22] B.H. Korabiowska M , Kellners, et al., Differential expressing of growth arrest, DNA damage genes and tumor suppressor gene p53 in naevi and alignant melanomas, Anticancer Ras, 1997, 17,3697-3703.
    [23] D. A, S. V, M. A, Explaining the oligomerization properties of the spindle assembly checkpoint protein Mad2, Phil. Trans. R. Soc. B, 2005, 29, 637-648.
    [24]姚健晖,郑宇鹏,姚雪彪,纺锤体检查点的功能与染色体不稳定性,科学通报, 2002, 47, 81-87.
    [25] Y.K. Shichiri M , Hisatomi H ,et al, Genetic and epigenetic inactivation of mitotic checkpoint genes hBUB1 and hBUBR1 and t heir relationship to survival Cancer Res, 2002, 62, 13 - 17.
    [26] Y.D. S, W.R. P, Z. W, Variable levels of chromosomal instability and mitotic spindle checkpoint defect s in breast cancer, Am J Pathol, 2002, 161, 391-397.
    [27]张传海,许戈良,葛勇胜,亚砷酸对肝癌细胞增殖及PCNA, cMyc蛋白表达的影响,第四军医大学学报, 2005, 26, 1303-1307.
    [28] M. G, H. U, Proliferating cell nuclear antigen ( PCNA): a danger with many partners, J Cell Sci, 2003, 116, 3051-3060.
    [29]翁密霞,吴翠环,杨秀萍, E-cadherin、CD44v6和PCNA在非小细胞肺癌组织中的表达及意义,癌症, 2008, 27, 191-195.
    [30]罗志刚,王一,宝建中, p63和p53及PCNA在肺癌中的表达及意义,中国肿瘤临床与康, 2008, 15, 25-29,32.
    [31]郑晨宏,梁后杰,周琪,黏附分子在肿瘤多细胞耐药中的研究进展,肿瘤, 2008, 28, 626-629.
    [32] C. G., New signals from the invasive front, Nature, 2006, 441, 444-450.
    [33]牛晓敏,张杰,陆舜,细胞粘附分子在肿瘤骨转移中的作用,中国癌症杂志, 2008, 18, 393-398.
    [34] J. H, A. A, E. M, Soluble syndecan-1 and serum basic fibroblast growt h factor are new prognostic factors in lung cancer, Cancer Res, 2002, 62, 5210-5217.
    [35]李林,朱荃,陆茵,粘附分子与肿瘤转移,中国药理学通报, 2007, 23, 568-571.
    [36] S. K, M. Y, A. D, et al., The B cell-specific major raft protein, Raftlin, is necessary for the integrity of lipid raft and BCR signal transduction, EMBO J, 2003, 22, 3015-3026.
    [37] W. W, W.A. M, Human chorionic gonadotrop in beta (HCG-beta) down-regulates E-cadherin and promotes human p rostate carcinoma cellmigration and invasion, Cancer Res, 2006, 106, 68 - 78.
    [38] L. C, G. B, B. C, Angiogenesis in breast cancer: the transforming growth factor beta and CD105, Microsc Res Tech, 2001, 52, 437-449.
    [39] S. K, K. M, S. Y, Preferential induction of peripheral lymphnode addressin on high endothelial venule-like vessels in the active phase of ulcerative colitis, Gastroenterology, 2007, 102, 1499-1509.
    [40] D. B, L. U, Reijneveld, Constitutive integrin activation on tumor cells contributes to progression of lep tomengealmetastasis, Neuro Onco, 2006, 16, 127-134.
    [41] S. H, O. Y, F. H, Interleukin-1 alpha enhances the aggressive behavior of pancreatic cancer cells by regulating the alpha6beta1-integrin and urokinase plasminogen activator recep tor exp ression, Cell Biol, 2006, 20, 177-185.
    [42] BertottiA, C. PM, T. L, Beta4 integrin is a transforming molecule that unleashes Met tyrosine kinase tumorigenesis, Cancer Res, 2005, 65, 10674 -10679.
    [43] W. M, G. Y, T. M, Selectively desulfated heparin inhibits P-selectin-mediated adhesion of human melanoma cells, Cancer Lett, 2005, 299, 123 -126.
    [44] L. H, S.J. L, V. A, L-selectin facilitation of metastasis involves temporal induction of Fut7-dependent ligands at sites of tumor cell arrest, Cancer Res, 2006, 66, 1536 -1542.
    [45] E.M. H, d.R. TM, K. S, Serum levels of soluble E-selectin are associated with the clinical course ofmetastatic disease in patientswith livermetastases from breast cancer, Oncol Res, 2004, 14 603 - 610.
    [46] H.W. D, B.M. M, K. K, CD44 on LS174T colon carcinoma cells possesses E-selectin ligand activity, Cancer Res, 2005, 65, 5812 -5817.
    [47] P.A. K, B. M, T. K, Cellular signalling mechanisms of neural cell adhesion molecules, Front Biosci, 2003, 8, 900-911.
    [48] M. T, A. CM, F. A, Induction of syndecan-1 expression in stromal fibroblasts promotes proliferation of human breast cancer cells, Cancer Res, 2004 64, 612-621.
    [49]戚洪涛,朴大勋,姜涛, MMP-9、Syndecan-1和E-cadherin在大肠癌中的表达及临床意义,中国伤残医学, 2008, 16, 10-12.
    [50]陈玲,于桂兰,细胞间粘附分子在恶性血液病中的研究进展,医学与哲学, 2008, 29, 51-52.
    [51] B. SB, H. G, DNA hypermethylation in tumorigenesis: epigenetics joins genetics, Trends Genet, 2000, 16, 168-174.
    [52] J. S, A. EP, C. CV, Global dna hypermethylation in breast carcinoma, Cancer, 1999, 85, 112-118.
    [53] Z.-m. S, M. JD, G. AF, Aberrant DNA methylation in lung cancer : biological and clinical implications Oncologist, 2002, 7, 451-457.
    [54] Lamya, S. R, B. J, et al., Aberrant methylation of the CDKN2a/p16INK4a gene promoter region in preinvasive bronchial lesions, Int J Cancer, 2002, 100, 189-193.
    [55] B. J, U. H, D. KD, Adenomatous polyposis coli gene promoter hypermethylation in non-small cell lung cancer is associated with survival, Oncogene, 2001, 20, 3528-3532.
    [56] K. S, Y. D, F. T, Promoter methylation of DAL-1/4. 1B predicts poor prognosis in non-small cell lung cancer, Clin Cancer Res, 2005, 11, 2954-2961.
    [57] T. KO, T. S, V. AK, Loss of expression and aberrant methylation of the CDH13 (H-cadherin) gene in breast and lung carcinomas, Cancer Res, 2001, 61, 4556-4560.
    [58] C. SC, L. CY, C. YH, Aberrant promoter methylation of EDNRB in lung cancer in Taiwan, Oncol Rep, 2006, 15, 167-172.
    [59] C. H, S. M, N. Y, Aberrant methylation of FBN2 in human non-small cell lung cancer, Lung Cancer, 2005, 50, 43-49.
    [60] C. Y, H. D, K. T, Downregulation of connexin 26 in human lung cancer is related to promoter methylation, Int J Cancer, 2005, 113, 14-21.
    [61] B. KJ, K. MI, G. A, Vascular endothelial growth factor , platelet derived endothelial cell growth factor and angiogenesis in non-small cell cancer, Br J Cancer, 2000, 82, 1427 -1432.
    [62] Y. A, Y. CJ, K. SH, Vascular endothelial growth factor 189 mRNA isoform expression specifically correlates with tumor angiogenesis , patient survival , and postoperative relapse in non-small-cell lung cancer, J Clin Oncol, 2001, 19, 432 - 441.
    [63] S. M, W. M, S. B, Estrogen regulation of vascular endothelial growth factor gene expression in ZR-75 breast cancer cells through interaction of estrogen receptorαand SP proteins, Oncogene, 2004, 23, 1052 - 1063.
    [64] B. E, P. G, K. O, MAPK and JNK transduction pathways can phosphorylate Sp1 to activate the uPA minimal promoter element and endogenous gene transcription Blood, 2004, 104, 256 - 262.
    [65] M.-M. J, P. J, P. G, Identification of two Sp1 phosphorylation sites for p42/ p44 mitogen-activated protein kinases : their implication in vascular endothelial growth factor gene transcription, J Biol Chem, 2002, 277, 20631-20639.
    [66] T. M, M. T, B. H, Vascular endothelial growth factor: its prognostic, predictive, and therapeutic implications, Lancet Oncol, 2001, 2, 667 - 673.
    [67] S. H, A. M, D. H, Prognostic value of vascular endothelial growth factor expression in primary lung carcinoma, Acta Med Okayama, 2000, 54, 119 -126.
    [68]梁璇,丁新民,霍艳英, et al., ERK1/ 2 - Sp1信号通路对肺癌细胞VEGF的调控作用,畸变癌变突变, 2008, 19, 280-284.
    [69] E. M, W. Z, New functions for the matrix metalloproteinases in cancer progression, Nat Rev Cancer, 2002, 2, 161-174.
    [70] L. H, L. F, C. C, Ad TIMP-2 inhibits tumor growth ,angiogenesis ,and metastasis ,and prolongs survival in mice, Hum GeneTher, 2001, 12, 515-526.
    [71] A. A, K-ras as a target for lung cancer therapy, Journal of Thoracic Oncology, 2008, 3, S160-163.
    [72] H. Linardou, I.J. Dahabreh, D. Kanaloupiti, et al., Assessment of somatic k-RAS mutations as a mechanism associated with resistance to EGFR-targeted agents: a systematic review and meta-analysis of studies in advanced non-small-cell lung cancer and metastatic colorectal cancer, Lancet Oncology, 2008, 9, 962-972.
    [73] S. Regina, J. Rollin, C. Blechet, et al., Tissue factor expression in non-small cell lung cancer: Relationship with vascular endothelial growth factor expression, microvascular density, and K-ras mutation, Journal of Thoracic Oncology, 2008, 3, 689-697.
    [74] N.J. Laping, J.I. Everitt, K.S. Frazier, et al., Tumor-specific efficacy of transforming growth factor-beta RI inhibition in Eker rats, Clinical Cancer Research, 2007, 13, 3087-3099.
    [75] R.S. Friedman, C.S. Bangur, E.J. Zasloff, et al., Molecular and immunological evaluation of the transcription factor SOX-4 as a lung tumor vaccine antigen, J Immunology, 2004, 172, 3319-3327.
    [76] S.A. MA, G. M, N. H, et al., Expression and mutation analysis of epidermal growth factor receptor in head and neck squamous cell carcinoma, Cancer Sci, 2008, 99, 1589-1594.
    [77] A. MJ, P. BB, A. JS, et al., Are there any ethnic differences in molecular predictors of erlotinib efficacy in advanced non-small cell lung cancer?, Clin Cancer Res, 2008 14, 3860-3866.
    [78] C. A, B. D, A. E, et al., EGFR mutations in non-small cell lung cancer--clinical implications, In Vivo, 2008, 22, 529-536.
    [79] F.W. W, S.D. L, M. R, Diversity of cytokeratins: differentation specific expression of cytokeratin polypeptides in epithelial cells and tissues, J Mol Biol, 1981, 153, 933-959.
    [80] L. CP, G. A, W. A, et al., AKR1B10 in usual interstitial pneumonia: expression in squamous metaplasia in association with smoking and lung cancer, Pathol Res Pract, 2008, 204, 295-304.
    [81] D. Chowdhury, X. Xu, X. Zhong, et al., A PP4-Phosphatase Complex Dephosphorylates -H2AX Generated during DNA Replication, Molecular Cell, 2008, 31, 31-46.
    [82] S. Wachi, K. Yoneda, R. Wu, Interactome-transcriptome analysis reveals the high centrality of genes differentially expressed in lung cancer tissues, Bioinformatics, 2005, 21, 4205-4208.
    [83] H.-j. Zhou, Y.-k. Liu, Z. Li, et al., Analysing protein–protein interaction networks of human liver cancer cell lines with diverse metastasis potential, J Cancer Res Clin Oncol 2007, 133, 663-672.
    [84] N. K, F. N, Practical Approaches to Analyzing Results of Microarray Experiments, Am. J. Respir. Cell Mol. Biol, 2002, 27, 125-132.
    [85] B. J, G. MC, H. AW, et al., Proteomic screening of a cell line model of esophageal carcinogenesis identifies cathepsin D and aldo-keto reductase 1C2 and 1B10 dysregulation in Barrett's esophagus and esophageal adenocarcinoma, J Proteome Res, 2008, 7, 1953-1962.
    [86] Y. R, Z. X, M. J, et al., Aldo-keto reductase family 1 B10 gene silencing results in growthinhibition of colorectal cancer cells: Implication for cancer intervention, Int J Cancer, 2007, 121, 2301-2306.
    [87] Y. H, T. M, I. H, et al., Aldo-keto reductase family 1, member B10 in uterine carcinomas: a potential risk factor of recurrence after surgical therapy in cervical cancer, Int J Gynecol Cancer, 2007, 17, 1300-1306.
    [88] T. WC, T. ST, J. YT, Cyclooxygenase-2 Is Involved in S100A2-Mediated Tumor Suppression in Squamous Cell Carcinoma, Mol Cancer Res, 2006, 4, 539-547.
    [89] G. CA, R. EA, A. RA, et al., Expression of Ki-67, p53 and p63 proteins in keratocyst odontogenic tumours: an immunohistochemical study, Mol Histol, 2008, 39, 311-316.
    [90] K. KE, P. RM, A. C, et al., The p53 homologue DeltaNp63alpha interacts with the nuclear factor-kappaB pathway to modulate epithelial cell growth, Cancer Res, 2008 68, 5122-5131.
    [91] S. AP, W. H, S. MG, Lack of plakophilin 1 increases keratinocyte migration and reduces desmosome stability, J Cell Sci, 2003, l16, 3303-3314.
    [92] H. M, H. C, S. K, The function of plakophilin 1 in desmosome assembly and actin filament organization, J Cell Biol, 2000, 149, 209-222.
    [93] M. C, D. G, C. P, Inhibition of volume-regulated anion channels in cultured endothelial cells by the anti-oestrogens clomiphene and nafoxidine Br J Pharmacol, 2001, 132, 135-142.
    [94] C. L, W. L, Z. L, Cell cycle-dependent expression of volume-activated chloride currents in nasopharyngeal carcinoma cells, Am J Phy Cell, 2002, 283, 1313-1323.
    [95]曹惠芳,满晓波,蒋虹, et al., spp1基因在肺癌组织中表达的定量检测及其意义,中国肿瘤生物治疗杂志, 2003, 10, 119-121.
    [96] R. ND, T. DP, B. AJ, Evolutionary families of peptidase inhibitors, Biochem J, 2004, 378, 705-716.
    [97] S. HY, Z. W, L. R, Modeling human breast cancer metastasis in mice: masp in as a paradigm, Histol Histopathol, 2003, 18, 201-206.
    [98] L. K, F. L, C.M. F, et al., New insight s into the molecular basis of desmoplakin and desmin-related cardiomyopathies J Cell Sci, 2006, 119 4974-4985.
    [99] Y. Z, B.N. E, S.S. E, et al., Desmosomal dysfunction due to mutations in desmoplakin causes arrhythmogenic right vent ricular dysplasia/cardiomyopathy, Circ Res 2006, 99, 646-655.
    [100]曲东明,韩梅,温进坤,肌动蛋白结合蛋白,细胞生物学杂志, 2007, 29, 219-224.
    [101] S. M, S. T, S. T, A carbohydrate-binding protein, Galectin-1, promotes proliferation of adult neural stem cells, PNAS, 2006, 103, 7112-7115.
    [102] T. I, S.-K. O, B. I, Lectin histochemistry of metastatic adenocarcinomas of the lung, Lung Cancer, 2007, 56, 391-397.
    [103] N. S, S. JP, S. A, TRIM family protein: retroviral restriction and antiviral defence, Nat Rev Microbiol, 2005, 3, 799-785.
    [104] F. G, D. D, H. V, In vivo modification of the UDP-glucuronosylt ransferase functional state in rat liver following hypophysectomy and partial or complete hormonanl restoration, J Biochem, 2003 134, 641.
    [105] T. M, M. C, O. K, et al., Gene expression profiles in human gastric cancer: expression of masp in correlates with lymphnode metastasis, Brit J Cancer, 2005, 92 1130 -1136.
    [106]雷科锋,刘炳亚,陈雪华, et al., SerpinB5能促进胃癌细胞株的恶性倾向,上海交通大学学报(医学版), 2007, 27, 508-511.
    [107] P. C, K. P, K. D, et al., Cdt1 and Geminin in cancer: markers or triggers of malignanttransformation?, Front Biosci, 2008, 13, 4485-4494.
    [108] T. AT, M. C, A. HR, et al., Endothelial monocyte activating polypeptide-II induced gene expression changes in endothelial cells., Cytokine, 2005, 30, 347-358.
    [109] C. D, W. S, R. KM, DRAM links autophagy to p53 and programmed cell death, Autophagy, 2007, 3, 72-74.
    [110] T. WK, C. CH, F. S, et al., Oncogenic properties of a novel gene JK-1 located in chromosome 5p and its overexpression in human esophageal squamous cell carcinoma, Int J Mol Med, 2007, 19, 915-923.
    [111] Y. K, K. MS, P. HL, et al., HOP/OB1/NECC1 promoter DNA is frequently hypermethylated and involved in tumorigenic ability in esophageal squamous cell carcinoma, Mol Cancer Res, 2008, 6, 31-34.
    [112] V.F. LLeonart ME, Gallardo D, Diaz-Fuertes M, Rojo F, Cuatrecasas M, López-Vicente L, Kondoh H, Blanco C, Carnero A, Ramón y Cajal S., New p53 related genes in human tumors: significant downregulation in colon and lung carcinomas., Oncol Rep, 2006, 16, 603-608.
    [113] A. M, M. Y, K. F, et al., Retrovirally introduced prostaglandin D2 synthase suppresses lung injury induced by bleomycin, Am J Respir Cell Mol Biol, 2003, 28, 582-591.
    [114] P. ES, C. S, M. KN, et al., Response gene to complement 32 expression is induced by the luteinizing hormone (LH) surge and regulated by LH-induced mediators in the rodent ovary., Endocrinology, 2008, 149, 3025-3036.
    [115] F. M, C. C, N. F, et al., Overexpression of RGC-32 in colon cancer and other tumors., Exp Mol Pathol, 2005, 78, 116-122.
    [116] I.I. Saigusa K, Tanikawa C, Aoyagi M, Ohno K, Nakamura Y, Inazawa J., RGC32, a novel p53-inducible gene, is located on centrosomes during mitosis and results in G2/M arrest., Oncogene, 2007, 26, 1110-1121.
    [117] L. J, L. D, C. B, et al., Expression and localization of SWAP-70 in human fetomaternal interface and placenta during tubal pregnancy and normal placentation., J Histochem Cytochem, 2007 55, 701-708.
    [118] F. AE, W. NW, C. A, et al., Free fatty acids promote hepatic lipotoxicity by stimulating TNF-alpha expression via a lysosomal pathway, Hepatology, 2004, 40, 185-194.
    [119]段德民,熊凌霜,吴军,膜外核苷酸焦磷酸酯酶/磷酸二酯酶家族的研究进展,生物技术通讯, 2007, 18, 277-280.
    [120]卞丽娟(综述),李智(审校),巨噬细胞移动抑制因子与肿瘤,国际肿瘤学杂志, 2006, 33, 661-664.
    [121]洪绍彩,赵水平,刘琼,普罗布考对高脂血症兔肝功能及胆汁酸受体表达的影响,中国心血管杂志, 2006, 4, 241-244.
    [122] D. B, M. L, W. W, Transcriptional regulation of metabolism, Physiol Rev, 2006, 86, 465-514.
    [123] N. JO, M. JP, P. I, et al., Selective PPAR agonists for the treatment of type 2 diabetes, Ann N Y Acad Sci, 2006, 1067, 448-453.
    [124] Z. F, M. S, E. P, et al., The G0/G1 switch gene is a novel PPAR target gene., Biochem J 2005, 392, 313-324.
    [125] Y.J. Koh WP, Van Den Berg D, Ingles SA, Yu MC, Peroxisome proliferator-activated receptor (PPAR) gamma gene polymorphisms and colorectal cancer risk among Chinese in Singapore, Carcinogenesis, 2006, 27, 1797-1802.
    [126] T. Yoshida, S. Tanaka, A. Mogi, et al., The clinical significance of Cyclin B1 and Wee1expression in non-small-cell lung cancer Annals of Oncology, 2004, 15, 252-256.
    [127] S. D, B. I, S. J, Usefulness of CDK5RAP3, CCNB2, and RAGE genes for the diagnosis of lung adenocarcinoma, Int J Biol Markers, 2007, 22, 108-113.
    [128] D. Gong, J. Pomerening, J. Myers, et al., Cyclin A2 regulates nuclear-envelope breakdown and the nuclear accumulation of cyclin b1, Curr Biol 2007, 17, 85-91.
    [129] L. SS, E. VA, K. BA, et al., Cyclin D3 Expression in Melanoma Cells Is Regulated by Adhesion-dependent Phosphatidylinositol 3-Kinase Signaling and Contributes to G1-S Progression, J Biol Chem, 2006, 281, 25644-25651.
    [130] M. AR, H. JD, W. ZB, et al., Cyclin D3 activates Caspase 2, connecting cell proliferation with cell death, PNAS, 2002, 99, 6871-6876.
    [131] L. S, M.S. R, M. R, Lower Cyclin H and Cyclin-dependent Kinase-activating Kinase Activity in Cell Cycle Arrest Induced by Lack of Adhesion to Substratum, Cancer Research, 2000, 60, 7114-7118.
    [132] M. KA, L. S, Z. C, et al., Distinct activation pathways confer cyclin-binding specificity on Cdk1 and Cdk2 in human cells, Mol Cell, 2008, 32, 662-672.
    [133] L. SA, K. PR, M. JF, Cyclin-dependent kinase 1/cyclin B1 phosphorylates varicella-zoster virus IE62 and is incorporated into virions, J Virol, 2008, 82, 12116-12125.
    [134] M. D, L. M, M. M, MCM Proteins and DNA Replication Current Opinion in Cell Biology, 2006, 18, 130-136.
    [135] D.V.M. Meraldi P , Sorger P K., Timing and checkpoint s in t he regulation of mitotic progression, Dev Cell, 2004, 7, 45-60.
    [136] P. G, K. Y, M. N, Specific association of estrogen receptor beta with the cell cycle spindle assembly checkpoint protein MAD2, PNAS, 2000, 97, 2836-2839.
    [137] W.J. M, M. J, S. C, The dimeric versus monomeric status of 14-3-3 is controlled by phosphorylation of Ser58 at the dimer interface, J Biol Chem, 2003, 27, 36323-36327.
    [138]赵晶,王玮,马雅婷, et al.,人类ZAKβ与YWHAZ蛋白相互作用的初步研究,医学分子生物学杂志, 2008, 5, 1-6.
    [139] Z. X, H.G. A, P.T. R, Structure, expression, and function of human pituitary tumor transforming gene (PTTG), Mol Endocrinol 1999, 13, 156-166.
    [140] P. L, Identification of c-myc as a down-stream target for pituitary tumor transforming gene, J Biol Chem, 2001, 276, 8484-8491.
    [141] K.J.S. McCabe C J , Boelaert K, et al., Expression of pituitary tumour transforming gene ( PTTG) and fibroblast growth factor22 ( FGF22 ) in human pituitary adenomas : relationships to clinical tumour behaviour Clin Endocrinol 2003, 58 141-150.
    [142]钱春荣,刘昕,刘丽莎, et al., PTTG1基因上调表达对A549细胞增殖和凋亡的影响,第三军医大学学报, 2006, 28, 961-963.
    [143] V. M, A. N, B. AG, Characterization of MyD118, Gadd45, and PCNA interacting domains: PCNA impedes MyDPGadd mediated negative growth control, J Biol Chem, 2000, 275, 16810-16819.
    [144] L.K. Kim KO , Kim YH , et al., Anti-apoptotic role of phospholipase D isozymes in the glutamate-induced cell death, Exp Mol Med, 2003, 35, 38-45.
    [145] L.S. Kim JH , Park JB , et al., Hydrogen peroxide induces association between glyceraldehydes 3-phosphate dehydrogenase and phospholipase D2 to facilitate phospholipase D2 activation in PC12 cells, Neuro Chem, 2003, 85, 1228-1236.
    [146] K.O. Yoshiko B , Naoki M , et al. , Implication of Phospholipase D2 in Oxidant-inducedPhosphoinositide 3-Kinase Signaling via Pyk2 Activation in PC12 Cells, J Biol. Chem, 2005, 280, 16319-16324.
    [147]高媛,高建忠,孙启鸿,血小板内皮细胞黏附分子1(PECAM-1)的研究,细胞与分子免疫学杂志, 2005, 21 40-42.
    [148] G. JM, Platelet adhesion signalling and the regulation of thrombus formation, Journal of Cell Science, 2004, 117, 3415-3425.
    [149]满晓,崔元孝,朱海英, et al.,急性脑梗死患者血小板表达PECAM-1的动态变化及意义,山东医药, 2008, 48, 9-10.
    [150] K.Y. J, B. L, V.N. M, P- selectin deficiency attenuates tumor growth and metastasis, PNAS, 1998, 95, 9325- 9330.
    [151] H. M, B. A, M. AP, The world according to hedgehog, Trends Genet 1997, 13.
    [152] D. HR, L. P, B. M, Sonic hedgehog regulates growth and morphogenesis of the tooth, Development 2000, 127, 4775-4785.
    [153] C. Bai, Gli2, but not Gli1, is required for initial Shh signaling and ectopic activation of the Shh pathway, Development, 2002, 129, 4753-4761.
    [154] A. Kenney, D. Rowitch, Sonic hedgehog promotes G(1) cyclin expression and sustained cell cycle progression in mammalian neuronal precursors, Mol. Cell. Biol, 2000, 20, 9055-9067.
    [155] B. EA, K. M, O. V, et al., Patched1 interacts with cyclin B1 to regulate cell cycle progression, EMBO J, 2001, 20, 2214-2223
    [156] W. C, G. S, J. MB, Mitogen-activated p rotein kinase: conservation of a three-kinasemodule from yeast to human, Physiol Rev, 1999, 79, 143-180.
    [157]闫恩志,金英,范莹, et al.,阿魏酸钠对淀粉样β蛋白片段1~40引起的大鼠海马MAP激酶信号传导通路及凋亡蛋白表达的影响,中国药理学与毒理学杂志, 2007, 21, 385-392.
    [158] M.P. Fogarty, E.J. Downer, V. Campbell, A role for c-Jun N-terminal kinase 1 (JNK1), but not JNK2, in the beta-amyloid-mediated stabilization of protein p53 and induction of the apoptotic cascade in cultured cortical neurons, Biochem J, 2003, 371, 789-798.
    [159] L. Y, L. L, B. SW, et al., Interleukin-1 mediates pathological effects of microglia on tau phosphorylation and on synaptophysin synthesis in cortical neurons through a p38-MAPK pathway, J Neurosci, 2003, 23, 1605 - 1611.
    [160] G. MG, S. C, P. C, et al., Beta-amyloid-induced inflammation and cholinergic hypofunction in the rat brain in vivo: involvement of the p38MAPK pathway, Neurobiol Dis, 2002, 11, 257-274.
    [161] R. WL, P. NC, T. RM, et al., The epidemiology of bronchioloalveolar carcinoma over the past two decades: analysis of the SEER database, Lung Cancer, 2004, 45, 137-142.
    [162] R.S. Stearman, L. Dwyer-Nield, L. Zerbe, et al., Analysis of Orthologous Gene Expression between Human Pulmonary Adenocarcinoma and a Carcinogen-Induced Murine Model, American Journal of Pathology, 2005, 167, 1763-1775.
    [163] A. J.Griffith, S.S. Gebarski, N.T. Shepard, et al., Audiovestibular Phenotype Associated With a COL11A1 Mutation in Marshall Syndrome Arch Otolaryngol Head Neck Surg, 2000, 126, 891-894.
    [164] G. MT, T. RJ, P. ZY, Calcitonin receptors ,bone sialoprotein and osteopontin are expressed in primary breast cancers, Int J Cancer, 1997, 73, 812-815.
    [165] K.J. H, S. SJ, U. T, Osteopontin as a potential diagnostic biomarker for ovarian cancer JAMA, 2002, 287, 1671-1679.
    [166] P. RH, B. MM, B. AP, SPINK1/PSTI polymorphisms act as disease modifiers in familial andidiopathic chronic pancreatitis, Gastroenterology, 2000, 119, 615-623.
    [167] V.N. Kalinin, J.T. Kaifi, H. Schwarzenbach, et al., Association of rare SPINK1 gene mutation with another base substitution in chronic pancreatitis patients, World J Gastroenterol, 2006, 12, 5352-5356.
    [168] B.G. J, P.C. G, Regulation of peptide-chain elongation in mammalian cells Eur J Biochem, 2002, 269, 5360 - 5368.
    [169] R.L. B, M.t. R, W. E, Peptide elongation factor eEF1A-2/S1 expression in cultured differentiated myotubes and its protective effect against caspase-3-mediated apoptosis, J Biol Chem, 2002, 277, 5418-5425.
    [170]杨向东,刘俊文,唐蔚青, et al.,氧化型低密度脂蛋白诱导U937细胞凋亡时泛素缀合酶和p53的表达,中国动脉硬化杂志, 2003, 11, 287-290.
    [171] L.P. P, H. A, W. C, Molecular pathogenesis of the chromosome 16 inversion in the M4Eo subtype of acute myeloid leukemia, Blood, 1995, 85, 2289-2302.
    [172]钱超,余建华,汤巧, et al.,急性粒细胞白血病M4 Eo免疫分型及CBFβ2MYH11融合基因检测的初步研究,临床检验杂志, 2006, 24.
    [173] S. C, L. S, E. B, The E-cadherin beta-catenin comp lex and its imp lication in lung cancer p rogression and prognosis, Fut Oncol, 2005, 1, 649 -660.
    [174] R. C, M. E, M. P, et al., Assessing tumor angiogenesis: increased circulating VE-cadherin RNA in patients with cancer indicates viability of circulating endothelial cells, Cancer Res, 2004, 64, 4373-4377.
    [175] E. JA, H. J, Integrins in cancer treatment, Curr Cancer Drug Targets, 2006, 6, 89-105.
    [176] T. S, F. M, The structure and function of claudins, cell adhesion molecules at tight junctions, Ann N Y Acad Sci, 2000, 915 129-135.
    [177] S. Y, Expression of claudins 1, 2, 3, 4, 5 and 7 in various types of tumours, Histopathology, 2005, 46, 551-560.
    [178]牛多山,葛霞, claudin-1、claudin-4在子宫内膜癌的表达及其意义,蚌埠医学院学报, 2008, 33, 515-518.
    [179]毕罡,靳风烁,吴刚, et al., Claudin-3在前列腺癌中的表达及其意义探讨,中国男科学杂志, 2008, 22, 14-17.
    [180]雷晓斐,董卫国,李晶晶, Claudin24 mRNA在胃癌组织中的表达及其临床意义,临床内科杂志, 2008, 25, 345-347.
    [181] N. AB, B. R, W. RW, Thiol-mediated regulation of ICAM-1 expression in endotoxin-induced acute lung injury, J Immunol, 1998, 160, 2959-2966.
    [182] J. GL, L. R, Mitogen - activated protein kinase pathways mediated by ERK, JN K, and p38 protein kinases, Science, 2002, 298, 1911-1912.
    [183] A. K, R. M, P. U, Gelatinases A and B (MMP2 and MMP9) in endo- metrial cancer-MMP9 correlates to the grade and the stage Gynecol Oncol, 2004, 94, 699-704.
    [184] D. TN, P. L, L. A, Requirement of matrix metalloproteinase-9 for the transformation of human mammary epithelial cells by Stat3-C, Proc Natl Acad Sci USA, 2004, 101, 10602-10607.
    [185] B. M, H. P, K. E, Peptide inhibition of catalytic and noncatalytic activities of matrix metalloproteinase-9 blocks tumor cell migration and invasion, J Biol Chem, 2004, 279, 29589-295897.
    [186] A. HR, C. Q, X. J, THY1 exp ression is associated w ith tumo r supp ression of human ovariancancer, Cancer Genet Cytogenet, 2003, 143, 125-132.
    [187]曾俐琴,彭芝兰,罗喜平, TH Y 1基因影响上皮性卵巢癌SKOV 3细胞株生长的体内和体外实验研究,中华妇幼临床医学杂志, 2008, 4 39-42.
    [188] K. N, N. K, M. E, et al., Vinculin: its possible use as a marker of normal collecting ducts and renal neoplasms with collecting duct system phenotype, Mod Pathol, 2000, 13, 1109-1114.
    [189]张春宏,耿敬姝, paxillin、vinculin在胃癌及癌前病变中的表达及对胃癌预后的影响,诊断病理学杂志, 2007 14, 377-380.
    [190] J.I. Greenberg, D.J. Shields, S.G. Barillas, et al., A role for VEGF as a negative regulator of pericyte function and vessel maturation, Nature, 2008, 456, 809-813.
    [191] R. J, M.s. Y, S. C, Oncogenes and tumor angiogenesis: differential modes of vascular endothelial growth factor up-regulation in rast-ransformed epithelial cells and fibroblasts, Cancer Res, 2000, 60, 490-498.
    [192] C. LC, The phosphoinositide 32kinase pat hway, Science, 2002, 296, 1655-1657.
    [193] J. BH, Z.J. Z, A. M, Phosphatidylinositol 3-kinase signaling mediates angiogenesis and expression of vascular endothelial growt h factor in endot helial cells, PNAS, 2000, 97, 1749-1753.
    [194] D. S, Z. AM, Akt takes center stage in angiogenesis signaling, Circ Res, 2000, 86, 4-5.
    [195] M. KA, B. J, Coordinate regulation of translation by the PI 3-kinase and mTOR pathways, Adv Cancer Res, 2002, 86, 1-39.
    [196] R.-V. B, H. M, Targeting mTOR for cancer treatment, Adv Exp Med Biol, 2006, 587, 309-327.
    [197] S. F, R. L, v.D. S, et al., Cell hydration and mTOR-dependent signalling, Acta Physiol (Oxf), 2006, 187, 223-229.
    [198] B. P, C. S, G. E, et al., mTOR pathway and mTOR inhibitors as agents for cancer therapy, Curr Cancer Drug Targets, 2008, 8, 647-665.
    [199] R.-R.M. E, G.M. D, R.J. D, P-selectin Activates Integrin2mediated Colon Carcinoma Cell Adhesion to Fibronectin, Exp Cell Res, 2006, 312, 4056-4069.
    [200] R. Marhaba, M. Z?ller, CD44 in Cancer Progression: Adhesion, Migration and Growth Regulation J Mol His 2004, 35, 211-231.
    [201] L.M. LOOI, P.L. CHEAH, W. ZHAO, et al., CD44 expression and axillary lymph node metastasis in infiltrating ductal carcinoma of the breast, Malaysian J Pathol, 2006, 28 83-86.
    [202] S. G, H. J, B. EJ, Requirement for matrix matalloproteinase-9 (galatinase (3) ) expression in metastasis by murine prostatecarcinoma, Am J Pathol 1998, 152, 591-596.
    [203]宋晓玉,李力,张莉, et al.,胃癌患者基质蛋白酶-9的临床意义,四川医学, 2008, 29, 1076-1077.
    [204]周静,苏玉文,基质金属蛋白酶(MMPs)基因异常甲基化与肿瘤,实用预防医学, 2008 15 609-611.
    [205] O.C. G, K. J, S. F, et al., Prostaglandin E2 stimulates Fas ligand expression via the EP1 receptor in colon cancer cells, Br J Cancer, 2008, 99, 502-512.
    [206] M. CS, P. V, F. G, et al., signaling in thyroid carcinomas is diverted from apoptosis to proliferation, Clin Cancer Res, 2006, 12, 3705-3712.
    [207] R.-M. T, B. NE, S. EV, et al., FAPalpha, a surface peptidase expressed during wound healing, is a tumor suppressor, Oncogene, 2004, 23, 5435-5446.
    [208] D.R. Williams, K.-J. Lee, J. Shi, et al., Cryo-EM Structure of the DNA-Dependent Protein Kinase Catalytic Subunit at Subnanometer Resolution Reveals Helices and Insight into DNA Binding, Structure, 2008, 16, 468-477.
    [209] S. SD, J. ZM, C. J, et al., PAK1-mediated activation of ERK1/2 regulates lamellipodial dynamics, J Cell Sci, 2008, 121, 3729-3736.
    [210] H. D, Y. CZ, Y. L, et al., Activation and overexpression of PARP-1 in circulating mononuclear cells promote TNF-alpha and IL-6 expression in patients with unstable angina, Arch Med Res, 2008, 39, 775-784.
    [211] T. MY, W. S, H. JM, et al., A mitotic lamin B matrix induced by RanGTP required for spindle assembly, Science, 2006, 311, 1887-1893.
    [212] H. Zhu, M. Bilgin, R. Bangham, et al., Global Analysis of Protein Activities Using Proteome Chips Science 2001, 293, 2101-2105.
    [213] T. AH, D. B, N. G, et al., A combined experimental and computational strategy to define protein interaction networks for peptide recognition modules, Science, 2002, 295, 321-324.
    [214] J.-D.J. Han, D. Dupuy, N. Bertin, et al., Effect of sampling on topology predictions of protein-protein interaction networks, Nature Biotechnology, 2005, 23, 839-844.
    [215] X.-W. Chen, M. Liu, Prediction of protein-protein interactions using random decision forest framework, Bioinformatics 2005 21, 4394-4400.
    [216] A. King, N. Prulj, I. Jurisica, Protein complex prediction via cost-based clustering Bioinformatics, 2004 20, 3013-3020.
    [217]张学工统计学习理论的本质,清华大学出版社,北京, 1999.
    [218]李瑶基因芯片数据分析与处理,化学工业出版社,北京, 2006.
    [219]许建华,张学工译统计学习理论,电子工业出版社,北京, 2004.
    [220] J. Shen, J. Zhang, X. Luo, et al., Predicting protein-protein interactions based only on sequences information, PNAS, 2007, 104, 4337-4341.
    [221]李哲谦,刘书朋,严壮志, et al.,基于支持向量机的蛋白质相互作用预测,电子测量技术, 2008, 31, 4-8.
    [222] A. R, A. L, B.A. L, Statistical mechanics of complex networks, Review of Modern Physics, 2002, 74, 47-97.
    [223] N.M.E. J, The structure and function of complex networks, SIAM Review, 2003, 45, 167-256.
    [224] C. R, E. K, A. D, Breakdown of the internet under intentional attack, Physics Review Letters, 2001, 86, 3682-3685.
    [225] C. R, E. K, A. D, Resilience of the internet to random breakdowns, Physics Review Letters, 2000, 85, 4626-4628.
    [226] J. H, M. SP, B.A. L, Lethality and cent rality in protein networks, Nature, 2002, 411, 41-42.
    [227] H. MR, A. N, K. SF, et al., S-nitrosylated GAPDH initiates apop totic cell death by nuclear translocation following Siahl binding, Nat Cell Biol, 2005, 7, 665 - 674.
    [228]张萍,覃文新, CDC20在细胞分裂周期中的作用,生命的化学, 2006, 26, 297-299.
    [229] U. N, N. T, M. H, Association of a g99 - t missense mutation in the plasma platelet-activating factor acetylhydrolase gene with risk of abdominal aortic aneurysm in Japanese, Ann Surg, 2002, 235, 297-302.
    [230] K.A. C, N. N, C.A. M, R-Ras3 /M-Ras induces neuronal differentiation of PC12 cells through cell-type-specific activation of the mitogen-activated p rotein kinase cascade, Mol Cell Biol, 2002, 22, 5946-5961.
    [231] L. H, M. P, R. HH, Molecular cloning and expression of the transformed sensitive epithelial marker stratifin. A member of a protein family that has been involved in the protein kinase C signaling pathway, J Mol Biol, 1993, 231, 982-998.
    [232] H. H, L. C, P. K, 14-3-3σis a p53 regulated inhibitor of G2/M progression, Mol Cell Biol, 1997, 1, 3-11.
    [233] W. EW, G. RA, A. SC, et al., A structural basis for 14-3-3sigma functional specificity, J Biol Chem, 2005, 280, 18891-18898.
    [234] S. J, W. WJ, D. NA, et al., Phosphorylation of profilin by ROCK1 regulates polyglutamine aggregation, Mol Cell Biol, 2008 28, 5196-5208.
    [235] X. J, S. S, M. N, et al., Identification of Rgl3 as a potential binding partner for Rap-family small G-proteins and profilin II, Cell Signal, 2007, 19, 1575-1582.
    [236] M.-N. R, T. S, A. S, et al., Phosphorylated heat shock protein 27 represses growth of hepatocellular carcinoma via inhibition of extracellular signal-regulated kinase, J Biol Chem, 2008, 283, 18852-18860.
    [237] J. PA, R. J, T. K, Asymmetrical late onset motor neuropathy associated with a novel mutation in the small heat shock protein HSPB1 (HSP27), J Neurol Neurosurg Psychiatry, 2008 79, 461-463.
    [238] C. DH, C. M, Y. A, et al., Inhibition of Cdc7/Dbf4 kinase activity affects specific phosphorylation sites on MCM2 in cancer cells, J Cell Biochem, 2008 104, 1075-1086.
    [239] B. AS, S. B, S. Y, Minichromosome maintenance protein expression in benign nevi, dysplastic nevi, melanoma, and cutaneous melanoma metastases, J Am Acad Dermatol, 2008, 58, 750-754.
    [240] A. K, S. T, M. H, et al., Loss of gamma-Catenin expression in squamous differentiation in endometrial carcinomas, Int J Gynecol Pathol, 2002 21, 246-254.
    [241] P. H, G. F, P. P, et al., Aberrant activation of gamma-catenin promotes genomic instability and oncogenic effects during tumor progression, Cancer Biol Ther, 2007, 6, 1638-1643.
    [242] I. R, S. K, H. A, Evidence that glyceraldehyde-3-phosphate dehydrogenase is involved in age-induced apop tosis in mature cerebellar neurons in culture, J Neurochem, 1996, 66 928-935.
    [243] H.M. R, A. N, K.S. F, et al., S-nitrosylated GAPDH initiates apop totic cell death by nuclear translocation following Siah1 binding, Nat Cell Biol, 2005, 7, 665 - 674.
    [244] B.V. M, K.E. Y, K.N. F, A novel CRM1-mediated nuclear export signal governs nuclear accumulation of glyceraldehydes-3-phosphate dehydrogenase following genotoxic stress, J Biol Chem, 2004, 279, 5984-5992.
    [245] W. J, S. C, S. P, Promyelocytic leukemia bodies associate with transcrip tionally active genomic regions, J Cell Biol, 2004, 164, 515-526.
    [246] G. X, Y. W, w. J, Proteomic characterization of early-stage differentiation of mouse embryomc stem cells into neural cells induced by all-trans retinoic acid in vitro, Electmphoresis, 2001, 22, 3067-3075.
    [247] J.M. Smith, P.A. Koopman, The ins and outs of transcriptional control: nucleocytoplasmic shuttling in development and disease, Trends Genet, 2004, 20, 4-8.
    [248] N.K. Grujicic, M. Mojsin, A. Krstic, et al., Functional characterization of the human SOX3 promoter: identification of transcription factors implicated in basal promoter activity, Gene, 2004, 344, 287-297.
    [249] N.B. Phillips, A. Jancso-Radek, V. Ittah, et al., SRY and human sex determination: The basic tail of the HMG box functions as a kinetic clamp to augment DNA bending, J Molecular Biology, 2006, 358, 172-192.
    [250] J. Fantes, N.K. Ragge, S.A. Lynch, et al., Mutations in SOX2 cause anophthalmia, Nature Genetics, 2003, 33, 461-463.
    [251] A. Argentaro, H. Sim, S. Kelly, et al., A SOX9 defect of calmodulin-dependent nuclear import incampomelic dysplasia/autosomal sex reversal, J Biological Chem, 2003, 278, 33839-33847.
    [252] R. Mollaaghababa, W.J. Pavan, The importance of having your SOX on: role of SOX10 in the development of neural crest-derived melanocytes and glia, Oncogene, 2003, 22, 3024-3034.
    [253] F. Laumonnier, N. Ronce, B.C.J. Hamel, et al., Transcription factor SOX3 is involved in X-linked mental retardation with growth hormone deficiency, Amer J Human Genetics, 2002, 71, 1450-1455.
    [254] M. Garcia-Ramirez, J. Martinez-Gonzalez, J.O. Juan-Babot, et al., Transcription factor SOX18 is expressed in human coronary atherosclerotic lesions and regulates DNA synthesis and vascular cell growth, Art Throm Vasc Biology, 2005, 25, 2398-2403.
    [255] A. Irrthum, K. Devriendt, D. Chitayat, et al., Mutations in the transcription factor gene SOX18 underlie recessive and dominant forms of hypotrichosis-lymphedema-telangiectasia, Amer J Human Genetics, 2003, 72, 1470-1478.
    [256] H.F. Frierson, A.K. Ei-Naggar, J.B. Welsh, et al., Large scale molecular analysis identifies genes with altered expression in salivary adenoid cystic carcinoma, Amer J Pathology, 2002, 161, 1315-1323.
    [257] C.J. Lee, V.J. Appleby, A.T. Orme, et al., Differential expression of SOX4 and SOX11 in medulloblastoma, J Neuro-Oncology, 2002, 57, 201-214.
    [258] E.H. Hur, W. Hur, J.Y. Choi, et al., Functional identification of the pro-apoptotic effector domain in human Sox4, Biochemical Biophysical Res, 2004, 325, 59-67.
    [259] A. Okada, K. Kushima, Y. Aoki, et al., Identification of early-responsive genes correlated to valproic acid-induced neural tube defects in mice, Birth Defects Research A, 2005, 73, 229-238.
    [260] Jiang B, Zhang YL, Z. DY, Popular Experiment Methods in Molecular [M], People’s Military Medical Press, 1996, 65-67
    [261] T. Schwede, J.r. Kopp, N. Guex, et al., SWISS-MODEL: an automated protein homology-modeling server, Nucleic Acids Research, 2003, 31 3381-3385.
    [262] X. Pan, H.Y. Li, P.J. Zhang, et al., Ubc9 interacts with SOX4 and represses its transcriptional activity, Biochemical Biophysical Res 2006, 344, 727-734.
    [263] S. Reppe, E. Rian, R. Jemtland, et al., Sox-4 messenger RNA is expressed in the embryonic growth plate and regulated via the parathyroid hormone/parathyroid hormone-related protein receptor in osteoblast-like cells, J Bone Mineral Res 2000, 15, 2402-2412.
    [264] M.W. Schilham, P. Moerer, A. Cumano, et al., Sox-4 facilitates thymocyte differentiation, Euro J Immunology, 1997, 27, 1292-1295.
    [265] J. Ya, M.W. Schilham, P.A.J. de Boer, et al., Sox4-deficiency syndrome in mice is an animal model for common trunk, Circulation Res, 1998, 83, 986-994.
    [266] A.H. Lund, G. Turner, A. Trubetskoy, et al., Genome-wide retroviral insertional tagging of genes involved in cancer in Cdkn2a-deficient mice, Nature Genetics, 2002, 32, 160-165.
    [267] T. Suzuki, H.F. Shen, K. Akagi, et al., New genes involved in cancer identified by retroviral tagging, Nature Genetics, 2002, 32, 166-174.
    [268] S.G. Ahn, G.H. Cho, S.Y. Jeong, et al., Identification of cDNAs for Sox-4, an HMG-Box protein, and a novel human homolog of yeast splicing factor SSF-1 differentially regulated during apoptosis induced by prostaglandin A(2)/Delta(12)-PGJ(2) in Hep3B cells, Biochemical Biophysical Res 1999, 260, 216-221.
    [269] S.G. Ahn, H.S. Kim, S.W. Jeong, et al., Sox-4 is a positive regulator of Hep3B and HepG2 cells' apoptosis induced by prostaglandin (PG)A(2) and Delta(12)-PGJ(2), Experimental Molecular Med,2002, 34, 243-249.
    [270] B.E. Kim, J.H. Lee, H.S. Kim, et al., Involvement of Sox-4 in the cytochrome c-dependent AIF-independent apoptotic pathway in HeLa cells induced by Delta(12)-prostaglandin J(2), Experimental and Molecular Medicine, 2004, 36, 444-453.
    [271] S. McCracken, C.S. Kim, Y. Xu, et al., An alternative pathway for expression of p56(lck) from type I promoter transcripts in colon carcinoma, Oncogene, 1997, 15, 2929-2937.
    [272] T. Reichling, K.H. Goss, D.J. Carson, et al., Transcriptional profiles of intestinal tumors in Apc(Min) mice are unique from those of embryonic intestine and identify novel gene targets dysregulated in human colorectal tumors, Cancer Research, 2005, 65, 166-176.
    [273] J.D. Graham, S.M.N. Hunt, N. Tran, et al., Regulation of the expression and activity by progestins of a member of the SOX gene family of transcriptional modulators, J Molecular Endocrinology, 1999, 22, 295-304.
    [274] S.M.N. Hunt, C.L. Clarke, Expression and hormonal regulation of the Sox4 gene in mouse female reproductive tissues, Biology Reproduction, 1999, 61, 476-481.
    [275] Leo P. A. van Houte, Vasily P. Chuprina, Marc van der Wetering, et al., Solution structure of the sequence-specific HMG box of the lymphocyte transcriptional activator Sox-4, J Biological Chem, 1995, 270, 30516-30524.
    [276] N. Geijsen, I.J. Uings, C. Pals, et al., Cytokine-specific transcriptional regulation through an IL-5R alpha interacting protein, Science, 2001, 293, 1136-1138.
    [277] Y.Y. Mo, Y.N. Yu, E. Theodosiou, et al., A role for Ubc9 in tumorigenesis, Oncogene, 2005, 24, 2677-2683.
    [278] Mads Aaboe, Karin Birkenkamp-Demtroder, Carsten Wiuf, et al., SOX4 Expression in Bladder Carcinoma: Clinical Aspects and In vitro Functional Characterization, Cancer Research, 2006, 66, 3434-3442.
    [279] M. Wilson, P. Koopman, Matching SOX: partner proteins and co-factors of the SOX family of transcriptional regulators, Current Opinion Gen Dev 2002, 12, 441-446.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700