用户名: 密码: 验证码:
母体高盐饮食对子代高血压程序化的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景与目的高血压病为临床常见病与高发病,其发病机理仍未完全阐明。肾素血管紧张素系统参与了机体水钠代谢。心脏、肾脏及大脑是高血压危害的重要靶器官。目前认为母体子宫内的环境因素与其成年子代的高血压发生有重要关系。妊娠期高盐因素可能影响胚胎肾素血管紧张素系统的发育进而造成高血压相关的靶器官的发育问题。鉴于上述问题,本课题研究母体高盐饮食对成年子代高血压的影响。主要研究:1、妊娠期母鼠给于8%氯化钠饮食,观察子宫内胎鼠的血管紧张素系统发育。2、血管紧张素系统对水钠代谢的调节。3、母体高盐饮食对子宫内胎鼠的高血压相关的靶器官(心,脑,肾)的发育的影响。4、ATtb受体基因的表观遗传学机制参与的母体高盐饮食对胎鼠心脏的作用。
     方法
     1.检测:每天称量母鼠体重,摄食量,饮水量,排尿量;检测血压,尿钠离子浓度,检测母鼠和胎鼠的血浆渗透压和血液钠离子的浓度。
     2.用放射免疫法检测母鼠和胎鼠血液中血管紧张素Ⅱ和醛固酮的浓度以及胎鼠心脏和肾脏组织中血管紧张素Ⅱ浓度。
     3.用透射电镜方法观察胎鼠的心脏及肾脏组织在母体高盐因素的影响下超微结构的变化。
     4.用western blot和荧光定量PCR的方法检测胎鼠肾脏、心脏及脑内AT_1和AT_2受体的蛋白和mRNA的表达,检测胎鼠肝脏及脑内血管紧张素原mRNA的表达。
     5.体外原代细胞培养胎鼠心肌细胞及肾脏系膜细胞,流式细胞仪分析心肌细胞及肾脏系膜细胞的细胞周期,并研究AngⅡ对培养细胞的影响。
     6.用焦磷酸测序法分析胎鼠心脏AT_(1b)受体基因的甲基化模式。
     结果
     1.高盐饮食组的母鼠的饮水量、24小时尿量和尿中钠离子浓度增多,但摄食量及体重没有改变;母鼠在高盐饮食的第二周开始有血压增高的趋势,但没有显著的统计学差异。GD21高盐饮食组母鼠和胎鼠血浆渗透压和血液钠离子浓度没有变化。
     2.高盐饮食组母鼠和胎鼠血浆AngⅡ和醛固酮浓度降低,胎鼠心脏和肾脏组织AngⅡ浓度升高。
     3.高盐饮食组胎鼠心脏超微结构的变化:心肌细胞线粒体嵴减少、空泡化,心肌纤维排列紊乱,部分心肌纤维原消失;肾脏超微结构的变化:肾脏足突减少,足突融合,基底膜裸露,部分基底膜消失。
     4.胎鼠心脏组织AT_(1a),AT_(1b) mRNA表达增多,AT_1受体蛋白表达增多,AT_2受体mRNA和蛋白表达没有改变;胎鼠肾脏组织AT_(1b) mRNA表达增多,AT_1受体蛋白表达增多,AT_(1a) mRNA表达无变化,AT_2受体的mRNN和蛋白的表达没有改变;胎鼠脑组织AT_(1a),AT_(1b),AT_2受体mRNA表达增多,血管紧张素原mRNA表达降低,AT_1,AT_2受体蛋白表达增多;胎鼠肝脏血管紧张素原mRNA表达增高。
     5.体外原代细胞培养发现:高盐饮食组胎鼠心肌细胞和肾脏系膜细胞增殖能力增强。AngⅡ刺激心肌细胞和肾脏系膜细胞增殖,AT_1受体阻断剂(losartan)能部分翻转AngⅡ对细胞生长的刺激作用。AT_2受体阻断剂(PD123319)不能抑制AngⅡ对细胞生长的刺激作用。
     6.高盐饮食组胎鼠心脏AT_(1b)受体启动子区域-1499,-1511,-1517,-1522,-1566序列甲基化程度下调。
     结论:
     1.妊娠期间母体高盐饮食使母鼠的饮水及肾脏排水排钠增多以保证母鼠和胎鼠的水钠代谢平衡。在摄入高盐的条件下,母鼠的血压有逐渐升高趋势。
     2.妊娠期间母体高盐饮食抑制了母鼠和胎鼠外周血管紧张素系统。
     3.妊娠期间母体高盐饮食影响了胎鼠心脏和肾脏的发育。
     4.妊娠期间母体高盐饮食可影响胎鼠心脏、肾脏、脑和肝脏血管紧张素系统发育。
     5.胎鼠心脏和肾脏局部高浓度AngⅡ可刺激心肌细胞和肾脏系膜细胞增殖。AT_1受体介导了AngⅡ对心肌细胞和肾脏系膜细胞生长的刺激作用。
     6.AT_(1b)受体DNA甲基化的改变可部分解释母体高盐饮食对子宫内胎鼠的心脏作用.
Background:Hypertension is a common cardiovascular disease.The origin and biological mechanisms of fetal programming has attracted attention.The 'foetal origins of adult disease' hypothesis is important to preventative medicine.Epidemiological studies have indicated that susceptibility of hypertension and cardiovascular diseases may result from high salt diet.The mechanisms underlying programming are likely to be multifactorial.However,further studies have shown that programming of hypertension may occur in fetal origins and related to changes of the renin angiotensin system
     Purpose:The present study was proposed:1.To explore the development of the fetal RAS following metemal high salt diet.2.To determine the relationship between the fetal RAS and body fluid balance.3.To identify changes in the fetal heart,kidney, and brain induced by meternal high salt diet.4.To determine the effect of intrauterine high salt on the fetal heart and DNA methylation.
     Method:1.Pregnant rats were randomized to a normal-salt(1%) or high-salt(8%) diet from gestational day(GD) 3 to GD21,there were 8 rats in each group.Rats were placed in metabolic cages,food and water intake,urine volume,and urinary sodium, and maternal and fetal plasma osmolarity,and sodium concentration were measured.2. Transmission electron microscope was used for analysis of the fetal heart and kidney.3. Plasma and tissue AngⅡ,and aldosterone were measured by radioimmunoassay.4.The component of RAS in the fetal heart,kidney,brain and liver were measured by real time PCR and western blot.5.Cell cycle was estimated for the proliferation of the fetal heart and mesangial cells.6.Pyrosequencing analysis for the DNA methylation of the AT_(1b) promoter in the fetal heart.
     Results:1.Water intake,urine volume and urine sodium excretion were increased by high salt diet in pregnant rats.There was no significantly difference in plasma Na~+ and osmolarity in maternal and fetal rats between normal diet and high salt diet.2. Maternal salt loading elicited ultrastructural changes in the fetal heart and kidney.3. High salt diet caused plasma AngⅡand aldosterone concentrations decreased in both mothers and fetuses.AngⅡconcentration was increased in the fetal myocardium and kidney in high salt diet.4.AT_1 receptor protein was increased in the fetal heat and kidney induced by high salt diet,AT_1,and AT_2 receptor protein were increased in the fetal brain by high salt diet;high salt diet caused the changes in the fetal RAS as following:AT_(1a) and AT_(1b) mRNA were increased in the heart,AT_(1b) mRNA was increased in the kidney,AT_(1a),AT_(1b),and AT_2 mRNA were increased the brain,angiotensinogen mRNA was increased in the liver and dereased in the brain.5.AngⅡstimulated the fetal heart and mesangial cell proliferation;the effect of AngⅡon cellular growth is primarily mediated by the AT_1 receptor.6.DNA hypomethylation of AT_(1b) promoter resultd from maternal high salt diet.
     Conclusion 1.Maternal high salt diet had adverse effects on the development of the fetal heart and kidney.2.The local RAS activation induced by maternal high salt diet contributed to the change of the heart and kidney.3.Epigenetic mechanisms contributed to the prenatal programming of hypertension by maternal high salt diet.
引文
1.R.Ariel Gomez.Role of Angiotensin in Fetal Kidney Development.American Journal of Hypertension,Volume Supplement 1.1996;9:190.
    2.D.J.P.Barker.Fetal origins of coronary heart disease.BMJ 1995;311:171-174.
    3.Langley-Evans and A.Jackson.Rats with hypertension induced by in utero exposure to maternal low-protein diets fail to increase blood pressure in response to a high salt intake,Ann Nutr Metab.1996;40:1-9.
    4.D.J.W.Phillips.Insulin resistance as a programmed response to fetal undemutrition.Diabetologia 1996;39:1119-1122.
    5.D.J.P.Barker.In utero programming of cardiovascular disease.Theriogenology 2000;53:555-574.
    6.C.Osmond and D.J.P.Barker,Fetal,infant,and childhood growth are predictors of coronary heart disease,diabetes,and hypertension in adult men and women.Environ Health Perspect 2000;108:545-553.
    7.D.J.Barker,A.W.Shiell,M.E.Barker and C.M.Law.Growth in utero and blood pressure levels in the next generation, J Hypertens 2000; 18:843-846.
    
    8. S.C. Langley and A.A. Jackson. Increased systolic blood pressure in adult rats induced by fetal exposure to maternal low protein diets. Clin Sci 1994; 86: GD217-222.
    
    9. Arguelles, P. Lopez-Sela, J.I. Brime, M. Costales and M. Vijande. Changes of blood pressure responsiveness in rats exposed in utero and perinatally to a high-salt environment, Regul Pept 1996; 66:113-115.
    
    10. Tufro-McReddie, A., Romano, L. M., Harris, J. M., Ferder, L. & Gomez, R. A.Angiotensin II regulates nephrogenesis and renal vascular development. American Journal of Physiology 1995;269:110-115
    
    11. Mackenzie, H. A. & Brenner, B. M. Fewer nephrons at birth: a missing link in the etiology of essential hypertension? American Journal of Kidney Disease 1995; 26:91-98.
    
    12. Niimura, F., Labosky, P. A., Kakuchi, J., Okubo, S., Yoshida, H., Oikawa, T.,Ichiki, T., Naftilan, A. J., Fogo, A., Inagami, T., Hogan, B. L. & Ichikawa, L. Gene targeting in mice reveals a requirement for angiotensin in the development and maintenance of kidney morphology and growth factor regulation. Journal of Clinical Investigation 1995; 96: 2947-2954.
    
    13. Hilgers, K. F., Reddi, V., Krege, J. H., Smithies, O. & Gomez, R. A. Aberrant renal vascular morphology and renin expression in mutant mice lacking angiotensin-converting enzyme. Hypertension 1997;29: 216-221
    
    14. Lumbers, E. R. Development of renal function in the fetus: A review.Reproduction, Fertility and Development 1995; 7: 415-426.
    
    15. Shimada, K., Hosokawa, S. & Tohda, A. Histological study of the fetal kidneys.Development of the nephrons according to gestational weeks. Japanese Journal of Urology 1993; 84: 2091-2096.
    
    16. Friberg, P., B. Sundelin, S.-O. Bohman, A. Bobik, H. Nilsson, A. Wickman, H.Gustafsson, J. Petersen, and M. A. Adams. Renin-angiotensin system in neonatal rats:induction of a renal abnormality in response to ACE inhibition or angiotensin II antagonism. Kidney Int. 1994; 45: 484-492.
    
    17. Bird A P. CpG-rich islands and the function of DNA methyla-tion. Nature.1986;321:209-212.
    1.Tommasino C,Picozzi V.Volume and electrolyte management.Best Pract Res Clin Anaesthesiol.2007;21:497-516.
    2.Linksde Wardener H.Natraemia,natriuresis,inhibitors of sodium transport and high blood pressure.Nephrol Ther.2007;3:433-6.
    3.LinksGeerling JC,Loewy AD.Central regulation of sodium appetite.Exp Physiol. 2008; 93: 177-209.
    
    4. LinksLogvinenko NS. Aldosterone: the mechanisms of molecular aclion.Ross Fiziol Zh Im I M Sechenova. 2007 Jul; 93: 746-61.
    
    5. LinksLe Mo(?)llic C, Ouvrard-Pascaud A, Capurro C, Cluzeaud F, Fay M, Jaisser F,Farman N, Blot-Chabaud M.Early nongenomic events in aldosterone action in renal collecting duct cells: PKCalpha activation, mineralocorticoid receptor phosphorylation, and cross-talk with the genomic response.J Am Soc Nephrol.2004;15:1145-60.
    
    6. LinksFuller PJ.Aldosterone and its mechanism of action: more questions than answers.Aust N Z J Med. 1995; 25: 800-7.
    
    7. LinksGr(?)nder S, Rossier BC.A reappraisal of aldosterone effects on the kidney:new insights provided by epithelial sodium channel cloning.Curr Opin Nephrol Hypertens. 1997; 6: 35-9.
    
    8. Giry J, Delost P Placental transfer of aldosterone in the gninea-pig during late pregnancy. J Steroid Biochem 1979; 10:541 -547
    
    9. Bayard F, Ances IG, Tapper AJ, Weldon VV, Kowarski A, MigeonCJ Transplacental passage and fetal secretion of aldosterone.J Clin Invest 1970;49:1389-1393
    
    10. Alexander DP, Britton HG, James VHT, Nixon DA, Parker RA, Wintour EM,Wright RD. Steroid secretion by the adrenalgland of foetal and neonatal sheep. J Endocrinol 1968;40:1-13
    
    11. Wintour EM, Brown EH, Denton DA, Hardy KJ, McDougall JG, Robinson PM,Rowe EJ, Whipp GT. In vitro and in vivo adrenal cortical steroid prodnction byfetal sheep: effect of angiotensinll, sodium deficiency and ACTH. In: Vermeulen A,Jungblut P, Klopper A, Lerner L, Sciarra F (eds) Research on steroids,vol VII.Transaction of the Seventh Meeting of the International Study Group for Steroid Hormones, Elsevier, New York, 1977; pp: 475.
    
    12. Itakura A, Mizutani S.Involvement of placental peptidases associated with renin-angiotensin systems in preeclampsia.Biochim Biophys Acta.2005; 1751:68-72.
    
    13. Mao C, Lv J, Zhu H, Zhou Y, Chen R, Feng X, Cui Y, Wang C, Hui P, Xu F, Xu Z Fetal functional capabilities in response to maternal hypertonicity associated with altered central and peripheral angiotensinogen mRNA in rats. Peptides. 2007;28:1178-84.
    
    14. Michael H.Alderman Salt, Blood Pressure, and Human Health. Hypertension 2000;36:890
    
    15. Hatron DC, Mcmron DA. Dietary salt and hypertension. Nephroloy and hypertension. 1996; 5:166.
    
    16. Beaus(?)jour A, Houde V, Bibeau K, Gaudet R, St-Louis J, Brochu M.Renal and cardiac oxidative/nitrosative stress in salt-loaded pregnant rat.Am J Physiol Regul Integr Comp Physiol. 2007; 293: 1657-65.
    
    17. Robillard JE, Nakamura KT. Hormonal regulation of renal function during development.Biol Neonate.1988:53:201-211.
    
    18. Spitzer A The developing kidney and the process of growth.In: Seldin DW,Giebisch G (eds) The kidney: physiology and pathophysiology.Raven, New York,1985; 1979-2015
    
    19. Porter JP, King SH, Honeycutt AD. Prenatal high-salt diet in the Sprague-Dawley rat programs blood pressure and heart rate hyperresponsiveness to stress in adult female offspring. Am J Physiol Regul Integr Comp Physiol. 2007; 293: 334-42.
    1. Kagiyama S, Matsumura K, Fukuhara M, Sakagami K, Fujii K, Iida M.Aldosterone-and-salt-induced cardiac fibrosis is independent from angiotensin II type la receptor signaling in mice.Hypertens Res. 2007;30:979-89.
    
    2. Radhika G, Sathya RM, Sudha V, Ganesan A, Mohan V.Dietary salt intake and hypertension in an urban south Indian population.J Assoc Physicians India. 2007;55:405-11.
    
    3. Ott C, Titze SI, Schwarz TK, Kreutz R, Hilgers KF, Schmidt BM, Schlaich MP,Schmieder RE.High sodium intake modulates left ventricular mass in patients with G expression of+1675 G/A angiotensin II receptor type 2 gene.J Hypertens. 2007;25: 1627-32.
    
    4. Bernardi P, Rasola A.Calcium and cell death: the mitochondrial connection.Subcell Biochem. 2007; 45: 481-506.
    
    5. Momiyama Y.; Furutani M.; Suzuki Y.; Ohmori R.; Imamura S.-i.; Mokubo A.;Asahina T.; Murata C.; Kato K.; Anazawa S.; Hosokawa K.; Atsumi Y.; Matsuoka K.; Kimura M.; Kasanuki H.; Ohsuzu F.; Matsuoka R.I A mitochondrial DNA variant associated with left ventricular hypertrophy in diabetes.Biochemical and Biophysical Research Communications, 2003; 312:. 858-864
    
    6. J. Marin-Garcial and M. J. Goldenthall .Mitochondrial cardiomyopathy. Pediatric cardiology 1995; 16: 28-30
    
    7. Holycross, B. J., M. J. Peach, and G. K. Owens. Angiotensin II stimulates increased protein synthesis, not increased DNA synthesis, in intact rat aortic segments, in vitro. J. Vasc. Res. 30: 80-86, 1993
    
    8. Gray MO, Long CS, Kallnyak JE, et al. Angiotensin II stimulates cardiac myocyte hypertrophy via paracrine release of TGF-β1 and edothelin-1 from fibroblasts.Cardiovasc Res 1998; 40:352-363.
    
    9. Natarajan, R., N. Gonzales, P. J. Hornsby, and J. Nadler. Mechanism of angiotensin II-induced proliferation in bovine adrenocortical cells. Endocrinology 131:1174-1180.
    
    10. Annarosa YL, Baosheng L, Wang X. Angiotensin II stimulation in vitro induces hypertrophy of normaland postinfarcted ventricular myocytes. Circ Res 1998;82:1145-59.
    
    11. Kudoh S, Komuro I, Mizuno T, et al. Angiotensin II stimulates c-Jun NH2-terminal kinase in cultured cardiac myocytes of neonatal rats. Circ Res 1997;80:139-146
    
    12. Okubo, S, F. Niimura, H. Nishimura, F. Takemoto, A. Fogo, T. Matsusaka, and I.Ichikawa. Angiotensin-independent mechanism for aldosterone synthesis during chronic extracellular fluid volume depletion. J. Clin. Invest. 1997; 99: 855-860.
    
    13. Michael D. Godeny and Peter R Sayeski ANG II-induced cell proliferation is dually mediated by c-Src/Yes/Fyn-regulated ERK1/2 activation in the cytoplasm and PKC-controlled ERK1/2 activity within the nucleus Am J Physiol Cell Physiol 2006; 291: 1297-1307.
    
    14. Line E, Pau. McEwan1, Gavin P. Vinson2, and Christopher J. Kenyonl Control of adrenal cell proliferation by AT_1 receptors in response to angiotensin II and low-sodium diet Am J Physiol Endocrinol Metab .1999; 276: 303-9.
    
    15. Agarwal, R., Siva, S., Dunn, S.R. and Sharma, K. Add-on angiotensin II receptor blockade lowers urinary transforming growth factor-beta levels. American Journal of Kidney Diseases.2002; 39: 486-492.
    
    16. Yao Sun and Karl T. Weber. RAS and connective tissue in the heart International Journal of Biochemistry & Cell Biology. 2003; 35:919-931.
    
    17. Schmieder et al Angiotensin II related to sodium excretion modulates left ventricular structure in human essential hypertension. Circulation. 1996; 94: 1304-09.
    
    18. Stoll, M., Steckelings, U.M., Paul, M., Bottari, S.P., Metzger, R. and Unger, T., The angiotensin AT_2 receptor mediates inhibition of cell proliferation in coronary endothelial cells. Journal of Clinical Investigation .1995; 95: 651-57
    
    19. A. W. Cowley Jr, M. M. Skelton and D. C. Merrill Osmoregulation during high salt intake: relative importance of drinking and vasopressin secretion.Am J Physiol Regul Integr Comp Physiol .1986; 251: 878-86.
    
    20. Sanderford, MG, and Bishop VS. Angio tensin II acutely attenuates range of arterial baroreflex control of renal sympathetic nerve activity.Am J Physiol Heart Circ Physiol. 2000; 279: 1804-12.
    21. Funder, J. W.Aldosterone action. Annu. Rev. Physiol. 1993; 55:115-130.
    
    22. Bassett MH, White PC, Rainey WE. The regulation of aldosterone synthase expression. Mol Cell Endocrinol.2004; 31: 67-74.
    
    23. McFarlane SI, Sowers JR. Cardiovascular endocrinology 1: aldosterone functions in diabetes mellitus: effects on cardiovascular and renal disease. J Clin Endocrinol Metab.2003; 88: 516-523.
    
    24. Ye P, Kenyon CJ, MacKenzie SM, Seckl JR, Fraser R, Connell JM, Davies E.Regulation of aldosterone synthase gene expression in the rat adrenal gland and central nervous system by sodium and angiotensin II. Endocrinology. 2003; 144:3321-28
    1.Haraldsson B,Nystr(o|¨)m J,Deen WM.Properties of the glomerular barrier and mechanisms of proteinuria.Physiol Rev.2008;88:451-87.
    2.Woods LL.Fetal origins of adult hypertension:a renal mechanism? Curr Opin Nephrol Hypertens.2000;9:419-25.
    3.Woods LL,Rasch R.Perinatal ANG Ⅱ programs adult blood pressure,glomerular number,and renal function in rats.Am J Physiol.1998;275:1593-9.
    4.Mackenzie,H.A.& Brenner,B.M.Fewer nephrons at birth:a missing link in the etiology of essential hypertension? American Journal of Kidney Disease 1995;26:91-98.
    5.Tufro-McReddie A,Romano LM,Harris JM,Ferder L,and Gomez RA.Angiotensin Ⅱ regulates nephrogenesis and renal vascular development.Am J Physiol Renal Fluid Electrolyte Physiol.1995;269:110-115.
    6.Niimura F,Labosky PA,Kakuchi J,Okubo S,Yoshida H,Oikawa T,Ichiki T,Naftilan A J,Fogo A,Inagami T,et al.Gene targeting in mice reveals a requirement for angiotensin in the development and maintenance of kidney morphology and growth factor regulation.J Clin Invest.1995;96 2947-54.
    7.Hilgers KF,Norwood VF,Gomez RA.Angiotensin' s role in renal development.Semin Nephrol.1997;17:492-501.
    8.Gomez RA,Lynch KR,Chevalier RL,Everett AD,Jolms DW,Wilfong N,Peach MJ,Carey RM.Renin and angiotensinogen gene expression and intrarenal renin distribution during ACE inhibition.Am J Physiol. 1988;254:900-6.
    
    9. Ohishi M, Takagi T, Ito N, Tatar a Y, Hayashi N, Shiota A, Iwamoto Y, Katsuya T,Rakugi H, Ogihara T.Renal protective effect in hypertensive patients: the high doses of angiotensin II receptor blocker (HARB) study.Hypertens Res. 2007;30:1187-92。
    
    10. Carey RM, Siragy HM.The intrarenal renin-angiotensin system and diabetic nephropathy.Trends Endocrinol Metab. 2003; 14: 274-81.
    
    11. Sahajpal V and Ashton N. Renal function and angiotensin AT_1 receptor expression in young rats following intrauterine exposure to a maternal low-protein diet. Clin Sci (Lond).2003; 104: 607-614.
    
    12. Sahajpal V and Ashton N. Increased glomerular angiotensin II binding in rats exposed to a maternal low protein diet in utero. J Physiol .2005; 563: 193-201.
    
    13. Tufro-McReddie A, Romano LM, Harris JM, Ferder L, and Gomez RA. Angiotensin II regulates nephrogenesis and renal vascular development. Am J Physiol Renal Fluid Electrolyte Physiol .1995; 269: 110-115.
    
    14. Raizada V, Skipper B, Luo W. Intracardiac and intrarenal renin-angiotensin systems:mechanisms of cardiovascular and renal effects. J Investig Med. 2007; 55:341-59.
    
    15. Kobori H, Nangaku M, Navar LG, Nishiyama A.The intrarenal renin-angiotensin system: from physiology to the pathobiology of hypertension and kidney disease.Pharmacol Rev. 2007; 59: 251-87.
    
    16. Wyrwoll CS, Mark PJ, Waddell BJ.Developmental programming of renal glucocorticoid sensitivity and the renin-angiotensin system.Hypertension. 2007; 50:579-84.
    
    17. R. Ariel Gomez .Role of Angiotensin in Fetal Kidney Development. American Journal of Hypertension, Volume Supplement 1.1996; 9: 190.
    
    18. Brenner BM, Garcia DL, Anderson S. Glomeruli and blood pressure. Less of one,more the other? Am J Hypertens .1988; 1:335 - 347.
    
    19. G Wolf, U Haberstroh and EG Neilson.Angiotensin II stimulates the proliferation and biosynthesis of type I collagen in cultured murine mesangial cells American Journal of Pathology. 1992; 140: 95-107.
    1.Links Wright JW,Harding JW.The brain angiotensin system and extracellular matrix molecules in neural plasticity,learning,and memory.Prog Neurobiol.2004;72:263-93.
    2.Tsutsumi K,Viswanathan M,Str(o|¨)mberg C,Saavedra JM.Type-1 and type-2angiotensin Ⅱ receptors in fetal rat brain.Eur J Pharmacol.1991 30;198:89-92.
    3.Shi L,Yao J,Stewart L,Xu Z.Brain C-FOS expression and pressor responses after I.V.or I.C.V.angiotensin in the near-term ovine fetus.Neuroscience.2004;126:979-87.
    4.El-Haddad MA,Chao CR,Ross MG.N-methyl-D-aspartate glutamate receptor mediates spontaneous and angiotensin Ⅱ-stimulated ovine fetal swallowing.J Soc Gynecol Investig.2005;12:504-9.
    5.ANDERSSON,B.Regulation of water intake.Physiol.Rev.1978;58:582-603.
    6.Mosimann R,Imboden H,Felix D.The neuronal role of angiotensin Ⅱ in thirst,sodium appetite,cognition and memory.Bid Rev Camb Philos Soc.1996;71:545-59.
    7.Xu Z,Glenda C,Day L,Yao J,Ross MG.Osmotic threshold and sensitivity for vasopressin release and fos expression by hypertonic NaCl in ovine fetus.Am J Physiol Endocrinol Metab.2000;279:1207-15.
    8.Ross MG,Kullama LK,Ogundipe A,Chan K,Ervin MG.Ovine fetal swallowing response to intracerebroventricular hypertonic saline.J Appl Physiol.1995;78:2267-71.
    9.Xu Z,Nijland MJ,Ross MG.Plasma osmolality dipsogenic thresholds and c-fos expression in the near-term ovine fetus.Pediatr Res. 2001; 49:678-85.
    
    10. Timmermans PB, Benfield P, Chiu AT, Herblin WF, Wong PC, Smith RD.Angiotensin II receptors and functional correlates.Am J Hypertens. 1992;5:2GD21S-235S.
    
    11. Related Articles, LinksGomez RA.Molecular biology of components of the renin-angiotensin system during development.Pediatr Nephrol. 1990; 4:4GD21-3.
    1.Bird A P.CpG-rich islands and the function of DNA methyla-tion.Nature,1986,321:209-212
    2.Mathers JC.Early nutrition:impact on epigenetics.Forum Nutr.2007;60:42-8.
    3.Meyer K,Lubo Zhang.Fetal programming of cardiac function and disease.Reprod Sci.2007;14:209-16.
    4.Jansson T,Powell TL.Role of the placenta in fetal programming:underlying mechanisms and potential interventional apprcaches.Clin Sci(Lond).2007;113(1):1-13.
    5.Burdge GC,Hanson MA,Slater-Jefferies JL,Lillycrop KA.Epigenetic regulation of transcription:a mechanism for inducing variations in phenotype(fetal programming) by differences in nutrition during early life?Br J Nutr.2007;97:1036-46.
    6.Gardner DS,Bell RC,Symonds ME.Fetal mechanisms that lead to later hypertension.Curr Drug Targets.2007;8:894-905.
    7.McArdle HJ,Andersen HS,Jones H,Gambling L.Fetal programming:causes and consequences as revealed by studies of dietary manipulation in rats.Placenta.2006;27:56-60.
    8.Zhang X,Sliwowska JH,Weinberg J.Prenatal alcohol exposure and fetal programming:effects on neuroendocrine and immune function.Exp Biol Med (Maywood).2005;230:376-88.
    9.Zhang H,Darwanto A,Linkhart TA,Sowers LC,Zhang L.Maternal cocaine administration causes an epigenetic modification of protein kinase Cepsilon gene expression in fetal rat heart.Mol Pharmacol.2007;71:1319-28.
    10.Irina Bogdarina,Simon Welham,Peter J.King,Shamus P.Burns,Adrian J.L.Epigenetic Modification of the Renin-Angiotensin System in the Fetal Programming of Hypertension.ClarkCirculation Research.2007;100:520-526
    1. Levy BI. How to explain the differences between renin angiotensin system modulators. Am J Hypertens. 2005; 18:134-141.
    
    2. Ardaillou R.Angiotensin II receptors. J Am Soc Nephrol. 1999; 10:30-39.
    
    3. Shotan A, Wide, rhorn J, and Hurst A,Elkaya .Risks of angiotensin-converting enzyme inhibition during pregnancy: experimental and clinical evidence, potential mechanisms, and recommendations for use. Am J Med. 1994; 96:451-456.
    
    4. Schutz S, Le Moullec JM, Corvol P, Gasc JM. Early expression of all the components of the renin-angiotensin-system in human development. Am J Pathol. 1996;149: 2067-2079.
    5. Kalinyak JE, Hoffman AR, Perlman AJ. Ontogeny of angiotensinogen mRNA and angiotensin II receptors in rat brain and liver. J Endocrinol Invest. 1991; 14:647-653.
    
    6. KF, Norwood VF, Gomez RA. Angiotensin's role in renal development.Hilgers Semin Nephrol. 1997; 17: 492-501.
    
    7. Walther T, Faber R, Maul B, Schultheiss HP, Siems WE, Stepan H. Fetal,neonatal cord, and maternal plasma concentrations of angiotensin-converting enzyme (ACE). Prenat Diagn. 2002; 22: 111-113.
    
    8. Gomez RA.Molecular biology of components of the renin-angiotensin system during development. Pediatr Nephrol. 1990; 4: 421-423.
    
    9. Wolf G. Angiotensin II and tubular development. Nephrol Dial Transplant.2002; 17 Suppl 9:48-51.
    
    10. Chen Y, Lasaitiene D, Friberg P. The renin-angiotensin system in kidney development. Acta Physiol Scand. 2004; 181:5 29-535.
    
    11. Robillard JE, Nakamura KT. Neurohormonal regulation of renal function during development. Am J Physiol. 1988; 254: 771-779.
    
    12. Tang SS, Jung F, Diamant D, Brown D, Bachinsky D, Hellman P, Ingelfinger JR. Temperature-sensitive SV40 immortalized rat proximal tubule cell line has functional renin-angiotensin system. Am J Physiol. 1995; 268:435-446.
    
    13. Kon Y.Comparative study of renin-containing cells. Histological approaches. J Vet Med Sci. 1999; 61:1075-1086.
    
    14. Ayan S, Roth JA, Freeman MR, Bride SH, Peters CA. Partial ureteral obstruction dysregulates the renal renin-angiotensin system in the fetal sheep kidney.Urology. 2001; 58:301-306.
    
    15. Gobet R, Park JM, Nguyen HT, Chang B, Cisek LJ, Peters CA. Renal renin-angiotensin system dysregulation caused by partial bladder outlet obstruction in fetal sheep. Kidney Int. 1999; 56: 1654-1661.
    
    16. Zhang SL, Moini B, Ingelfinger JR. Angiotensin II increases Pax-2 expression in fetal kidney cells via the AT_2 receptor. J Am Soc Nephrol. 2004; 15:1452-1465.
    17. Woods LL, Ingelfinger JR, Nyengaard JR, Rasch R. Maternal protein restriction suppresses the newborn renin-angiotensin system and programs adult hypertension in rats. Pediatr Res. 2001; 49:460-7.
    
    18. Gomez RA.Molecular biology of components of the renin-angiotensin system during development. Pediatr Nephrol. 1990; 4:421-423.
    
    19. Lumbers ER. Functions of the renin-angiotensin system during development.Clin Exp Pharmacol Physiol. 1995; 22:499-505.
    
    20. Stevenson KM, Gibson KJ, and Lumbers ER.Effects of losartan on the cardiovascular system, renal haemodynamic and function and lung liquid flow in fetal sheep. Clin Exp Pharmacol Physiol. 1996; 23:125-133.
    
    21. Forhead AJ, Whybrew K, Hughes P, Broughton Pipkin F, Sutherland M, and Fowden AL. Comparison ofAT_1 blockade and angiotensin-converting enzyme inhibition in pregnant sheep during late gestation. Br J Pharmacol. 1996; 119:393-401.
    
    22. Lumbers ER, Kingsford NM, Menzies RI, Stevens AD.Acute effects of captopril, an angiotensin-converting enzyme inhibitor, on the pregnant ewe and fetus.Am J Physiol. 1992; 262:754-760.
    
    23. Moritz KM, Campbell DJ, Wintour EM.Angiotensin-(1--7) in the ovine fetus. Am J Physiol Regul Integr Comp Physiol. 2001; 280:404-409.
    
    24. Forhead AJ, Fowden AL. Role of angiotensin II in the pressor response to cortisol in fetal sheep during late gestation. Exp Physiol. 2004; 89:323-329.
    
    25. Reini SA, Wood CE, Jensen E, Keller-Wood M. Increased maternal cortisol in late gestation ewes decreases fetal cardiac expression of 11 {beta}-HSD2 mRNA and the ratio of AT_1 to AT_2 receptor mRNA. Am J Physiol Regul Integr Comp Physiol. 2006; 10 [Epub ahead of print].
    
    26. Forhead AJ, Broughton Pipkin F, Sutherland MF, Fowden AL.Changes in the maternal and fetal renin-angiotensin systems in response to angiotensin II type 1 receptor blockade and angiotensin-converting enzyme inhibition in pregnant sheep during late gestation. Exp Physiol. 1997; 82:761-776.
    27. Forhead AJ, Fowden AL, Silver M, Hughes P, Broughton-Pipkin F, Sutherland MF. Haemodynamic responses to an angiotensin II receptor antagonist (GR 117289) in maternal and fetal sheep. Exp Physiol. 1995;80:285-298
    
    28. Stevenson KM, Lumbers ER.Effects of angiotensin II in fetal sheep and modification of its actions by indomethacin. J Physiol. 1995; 487:147-158.
    
    29. Forhead AJ, Broughton Pipkin F, Fowden AL.Effect of cortisol on blood pressure and the renin-angiotensin system in fetal sheep during late gestation. J Physiol.2000 Jul 1;526 Pt 1:167-176.
    
    30. Forhead AJ, Fowden AL.Role of angiotensin II in the pressor response to cortisol in fetal sheep during late gestation. Exp Physiol. 2004; 89:323-329.
    
    31. Chen K, Carey LC, Liu J, Valego NK, Tatter SB, and Rose JC.The effect of hypothalamo-pituitary disconnection on the renin-angiotensin system in the late-gestation fetal sheep.Am J Physiol Regul Integr Comp Physiol. 2005;288:1279-1287.
    
    32. Zheng J, Bird IM, Chen DB, Magness RR. Angiotensin II regulation of ovine fetoplacental artery endothelial functions: interactions with nitric oxide. J Physiol. 2005;565:59-69.
    
    33. Chen K, Carey LC, Valego NK, Liu J, Rose JC. Thyroid hormone modulates renin and ANG II receptor expression in fetal sheep.Am J Physiol Regul Integr Comp Physiol. 2005; 289:1006-1014.
    
    34. Green LR, McGarrigle HH, Bennet L, Hanson MA Angiotensin II and cardiovascular chemoreflex responses to acute hypoxia in late gestation fetal sheep. J Physiol. 1998; 507:857-867.
    
    35. Lumbers ER, Bernasconi C, Burrell JH.Effects of inhibition of the maternal renin-angiotensin system on maternal and fetal responses to drainage of fetal fluids. Can J Physiol Pharmacol. 1996; 74:973-982.
    
    36. Marsh AC, Gibson KJ, Wu J, Owens PC, Owens JA, Lumbers ER Insulin-like growth factor I alters renal function and stimulates renin secretion in late gestation fetal sheep.J Physiol. 2001;530:253-262.
    37. Yu ZY, Lumbers ER, Simonetta G.The cardiovascular and renal effects of acute and chronic inhibition of nitric oxide production in fetal sheep. Exp Physiol. 2002;87:343-351.
    
    38. Lenkei Z, Palkovits M, Corvol P, Liorens-Cortes C. Expression of angiotensin type-1 (AT_1) and type-2 (AT_2) receptor mRNAs in the adult rat brain: a functional neuroanatomical review. Front Neuroendocrinol. 1997; 18:383-439.
    
    39. Tsutsumi K, Seltzer A, Saavedra JM. Angiotensin II receptor subtypes and angiotensin-converting enzyme in the fetal rat brain. Brain Res. 1993 24; 631: 212-220.
    
    40. Strittmatter SM, Lynch DR, Snyder SH. Differential ontogeny of rat brain peptidases: prenatal expression of enkephalin convertase and postnatal development of angiotensin-converting enzyme. Brain Res. 1986; 394:207-215.
    
    41. Nuyt AM, Lenkei Z, Corvol P, Palkovits M, and Liorens-Cortes C.Ontogeny of angiotensin II type 1 receptor mRNAs in fetal and neonatal rat brain. J Comp Neurol.2001; 440:192-203.
    
    42. Lenkei Z, Nuyt AM, Grouselle D, Corvol P, Liorens-Cortes C. Identification of endocrine cell populations expressing the AT_(1b) subtype of angiotensin II receptors in the anterior pituitary. Endocrinology. 1999; 140:472-477.
    
    43. Nuyt AM, Lenkei Z, Palkovits M, Corvol P, and Liorens-Cortes C.Ontogeny of angiotensin II type 2 receptor mRNA expressions in fetal and neonatal rat brain. J Comp Neurol. 1999; 407:193-206.
    
    44. Hu F, Morrissey P, Yao J, Xu Z. Development of AT(1) and AT(2) receptors in the ovine fetal brain. Brain Res Dev Brain Res. 2004; 150:51-61.
    
    45. Xu Z, Shi L, Yao J. Central angiotensin II-induced pressor responses and neural activity in utero and hypothalamic angiotensin receptors in preterm ovine fetus.Am J Physiol Heart Circ Physiol. 2004; 286:1507-1514.
    
    46. Xu Z, Shi L, Hu F, White R, Stewart L, Yao J. In utero development of central ANG-stimulated pressor response and hypothalamic fos expression. Brain Res Dev Brain Res. 2003; 145:169-176.
    47. El-Haddad MA, Chao CR, Ma S, and Ross MG. Nitric oxide modulates angiotensin II-induced drinking behavior in the near-term ovine fetus.Am J Obstet Gynecol.2000; 182:713-719.
    
    48. El-Haddad MA, Chao CR, Sayed AA, El-Haddad H, Ross MGEffects of central angiotensin II receptor antagonism on fetal swallowing and cardiovascular activity.Am J Obstet Gynecol. 2001 ; 185:828-833
    
    49. Ross MG, Kullama LK, Ogundipe A, Chan K, Ervin MG. Central angiotensin II stimulation of ovine fetal swallowing. J Appl Physiol. 1994; 76:1340-1345.
    
    50. El-Haddad MA, Ismail Y, Gayle D, Ross MG. Central angiotensin II AT_1 receptors mediate fetal swallowing and pressor responses in the near-term ovine fetus. Am J Physiol Regul Integr Comp Physiol. 2005; 288: 1014-1020.
    
    51. Xu Z, Glenda C, Day L, Yao J, Ross MG Central angiotensin induction of fetal brain c-fos expression and swallowing activity. Am J Physiol Regul Integr Comp Physiol.2001 ;280:1837-843
    
    52. El-Haddad MA, Chao CR, Ma SX, Ross MG. Neuronal NO modulates spontaneous and Ang II -stimulated fetal swallowing behavior in the near-term ovine fetus. Am J Physiol Regul Integr Comp Physiol. 2002; 282:1521-1527.
    
    53. El-Haddad MA, Chao CR, Ross MG. N-methyl-D-aspartate glutamate receptor mediates spontaneous and angiotensin ii-stimulated ovine fetal swallowing. J Soc Gynecol Investig. 2005 ; 12:504-509
    
    54. Xu Z, Hu F, Shi L, Sun W, Wu J, Morrissey P, Yao J.Angiotensin-induced vasopressin release and activation of hypothalamic neuron in pre-term fetuses.Peptides. 2005; 26:307-314.
    
    55. Shi L, Hu F, Morrissey P, Yao J, Xu Z. Intravenous angiotensin induces brain c-fos expression and vasopressin release in the near-term ovine fetus. Am J Physiol Endocrinol Metab. 2003; 285:1216-22.
    
    56. Ross MG, Kullama LK, Ogundipe A, Chan K, Ervin MGOvine fetal swallowing response to intracerebroventricular hypertonic saline. J Appl Physiol. 1995;78:2267-2271.
    57. Wright JW, Harding JW. Regulatory role of brain angiotensins in the control of physiological and behavioral responses. Rain Res Brain. 17:227-262.1992.
    
    58. Lenkei Z, Corvol P, Llorens-cortes C .The angiotensin receptor subtype AT_(1a) predominates in rat forebrainareas involved in blood pressure, body fluid homeostasis and neuroendocrine control. Mol Brain Res 1995.30: 53-60.
    
    59. Shi L, Mao C, Wu J, Morrissey P, Lee J, Xu Z. effects of i.c.v. losartan on the angiotensin II-mediated vasopressin release and hypothalamic fos expression in near-term ovine fetuses. Peptides. 2006; 27:2230-2238.
    
    60. Head GA, Mayorov DN 2001 Central angiotensin and baroreceptor control of circulation. Ann N YAcad Sci 940:361-379
    
    61. Matsumura K, Averill DB, Ferrario CM 1998 Angiotensin II acts at AT1 receptors in the nucleus of the solitary tract to attenuate the baroreceptor reflex. Am J Physiol 275:1611-1619
    
    62. Diaz-torga GS, Becu-villalobos D, Libertun C 1994. Ontogeny of angiotensin II induced prolactin release in vivo and in vitro in female and male rats.Neuroendocrinology 59:57-62.
    
    63. Pladys P, Lahaie I, Cambonie G, Thibault G, Le NL, Abran D, Nuyt AM. Role of brain and peripheral angiotensin II in hypertension and altered arterial baroreflex programmed during fetal life in rat. Pediatr Res. 2004; 55:1042-1049.
    
    64. Langley-Evans SC, Sherman RC, Welham SJ, Nwagwu MO, Gardner DS, Jackson AA. Intrauterine programming of hypertension: the role of the renin-angiotensin system.Biochem Soc Trans. 1999; 27:88-93.
    
    65. Grady EF, Sechila LA, Griffin CA, Schambelan M, Kalinyak JE. Expression of AT_2 receptors in the developing rat fetus. J Clin Invest 1991.88: 921-933.
    
    66. Ito M, Oliverio MI, Mannon PL, Best CF, Maeda N, Smithies O, Coffman TM .Regulation of blood pressure by the type 1A angiotensin II receptor gene. Proc NatlAcad Sci USA 1991; 92: 3521-3525.
    
    67. Kakar SS, Sekkers JC, Devor DC, Musgrove LC, Neill JD, Angiotensin II type-1 receptor subtype cDNAs: differential tissue expression and hormonal regulation.Biochem Biophys Res Commun 1992; 183: 1090-1096.
    68. Lee HU, Campbell DL, and Habenner JF.Developmental expression of the angiotensinogen gene in rat embryos.Endocrinology 1987; 121: 1335-1342.
    
    69. Millan MA, Carvllo P, Izumi SI, Zemel S, Catt KL, Aguilera GNovel sites of expression of functional angiotensin II receptors in the late gestation fetus.Sciencel989; 244: 1340-1342.
    
    70. Millanma MA, Jacobowitz DM, Aguilera G, Catt KJ. Differential distribution of AT_1 and AT_2 angiotensin II receptor subtypes in the rat brain during development. Proc NatlAcad Sci USA 1991; 88: 11440-11444.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700