用户名: 密码: 验证码:
宫颈癌中DNMT1的功能与作用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     研究宫颈癌中DNMT1基因与肿瘤恶性表型以及肿瘤相关基因异常甲基化、基因表达之间的关系,进一步探讨DNMT1在宫颈癌发生发展中的功能,以及肿瘤相关基因表达调控的机制。
     方法:
     脂质体法将DNMT1-siRNA转染进入Hela、Siha细胞中,应用RT-PCR、荧光定量PCR, Western blot检测DNMT1的mRNA和蛋白质的表达变化,评价基因干扰效果。MTT、Annexin V-FITC/PI双染法流式细胞术检测细胞的增殖、周期与凋亡变化。MeDIP-qPCR, qPCR分别检测沉默DNMT1的Hela细胞中7个肿瘤相关基因CCNA、CHFR、PAX1、SFRP4、TSLC1、PTEN、FHIT的去甲基化情况与mRNA重表达水平。
     结果:
     转染DNMT1-siRNA72h后,Hela、Siha细胞DNMT1基因的mRNA表达抑制率分别为52.54%、41.58%;Hela、Siha细胞中转染组DNMT1蛋白表达的抑制率分别为为50.31%、99.76%。MTT实验表明,转染组转染24、48、72、96h时Siha细胞存活率分别为90.45%、84.16%、71.09%、60.47%,Hela细胞存活率分别为91.47%、86.74%、78.92%、48.98%。转染48h后,Siha, Hela细胞的凋亡率达(19.4±2.90)%、(25.7±3.92)%;Siha细胞S期细胞比例由空白组(21.81±1.39)%降低到转染组的(17.54±1.84)%,Hela细胞相应的从(29.34±1.14)%降低到(17.67±1.29)%,均具有显著性差异(P<0.01)。在Hela细胞中(未经任何处理),各基因具有不同程度的甲基化,PAX1、SFRP4、TSLC1甲基化程度较高,FHIT、PTEN甲基化程度较低;各基因相对表达量亦有差异,PTEN、FHIT表达量较高,CCNA1、CHFR表达量较低。沉默DNMT1后,5个甲基化基因CCNA1、CHFR、PAX1、SFRP4、TSLC1启动子区域甲基化程度明显降低,mRNA表达量显著增加,而对PTEN、FHIT却没有影响。甲基化酶抑制剂5-aza-dC处理Hela:细胞后结果与沉默DNMT1相一致。
     结论:
     1.沉默DNMT1基因可逆转宫颈癌细胞Siha、Hela的恶性表型。
     2. Hela细胞中,沉默DNMT1基因能促使7个基因中的5个(CCNA1、CHFR、PAX1、SFRP4、TSLC1)启动子区域甲基化程度明显降低,基因表达量显著增加,而对PTE、FHIT却没有影响。
     3. CCNA1、CHFR, PAX1、SFRP4、TSLC1是通过启动子区域高甲基化实现低表达的,DNMT1是其甲基化的关键因素;而FHIT、PTEN基因通过低甲基化实现高表达的,与DNMT1没有显著关联。
     4. DNMT1是治疗宫颈癌的一个有效靶点。
Objective:
     To investigate the relationship between DNMT1 and abnormal methylation of tumor-related genes, malignant phenotype in cervical cancer, and further explore the function of DNMT1 in development of cervical carcinoma, as well as the specific regulatory mechanisms of tumor suppressor genes expression.
     Methods:
     DNMT1-siRNA was transfected into Hela, Siha cells with Lipofection method, RT-PCR, quantitative PCR(qPCR), Western blot were applied to detect DNMT1 mRNA and protein expression, evaluating gene interference effect. Cell proliferation and cell cycle, apoptosis were analyzed by MTT, Annexin V-FITC/PI double staining flow cytometry. MeDIP-qPCR, qPCR were used to measure de-methylation and mRNA re-expression of 7 tumor-related genes (CCNA, CHFR, PAX1, SFRP4, TSLC1, PTEN, FHIT) in Hela cells silenced DNMT1.
     Results:
     Relative to control, the inhibitory rates of DNMT1 mRNA levels in Hela, Siha cells were 52.54%,41.58% respectively after DNMT1-siRNA transfection 72h. The inhibitory rates of DNMT1 protein levels Hela, Siha cells were 50.31%,99.76% respectively.MTT results show that, after DNMT1-siRNA effect 24、48、72、96h, Siha cells survival rates decreased to 90.45%、84.16%、71.09%、60.47%respectively, and those of Hela cells 91.47%、86.74%、78.92%、48.98% respectively. After transfection 48h, Siha, Hela cells apoptosis rates were (19.4±2.90)%, (25.7±3.92)% respectively.The proportion of cells in S phase decreased from the control group (21.81±1.39)% to transfected group (17.54±1.84)% in Siha cells, and that of in Hela cells from the control group (29.34±1.14)% to transfected group (17.67± 1.29)%, there were significant differences (P<0.01)betweeii two groups. In Hela cells (without any treatment), all genes methylated with different degrees, enrichment of methylation of PAX1, SFRP4, TSLClwere higher than that of PTEN, FHIT. Concerning gene expression, PTEN mRNA level was higher than that of any others. After depletion DNMT1, percentage of promoter methylation decreased in five methylated genes (CCNA1, CHFR, PAX1, SFRP4, TSLC1), mRNA expression increased significantly, whereas there was no significant effect of DNMT1-siRNA on PTEN, FHIT gene. Transfection group and 5-aza-dC treatment showed the similar effect on gene demethylation and re-expression.
     Conclusions:
     1. Siha, Hela cells could reverse their malignant phenotype for DNMT1 gene depletion.
     2. In Hela cells, DNMT1-targeted inhibition induced the re-expression and reversed DNA methylation of five (CCNA1, CHFR, PAX1, SFRP4, TSLC1) out of seven tumor-related genes examined.
     3. In Hela cells, CCNA1, CHFR, PAX1, SFRP4, TSLC1 genes presented low-expression by promoter region hypermethylation, and their methylation mainly depend on DNMT1. FHIT, PTEN genes might be present high-expression by promoter hypomethylation. There was probably no relationship between DNA methylation and DNMT1 in FHIT, PTEN gene.
     4. DNMT1 is an effective target for treatment of cervical cancer.
引文
1. Bender, J., DNA methylation and epigenetics. Annu Rev Plant Biol,2004.55: p.41-68.
    2. Szyf, M., Epigenetics, DNA methylation, and chromatin modifying drugs. Annu Rev Pharmacol Toxicol,2009.49:p.243-63.
    3. Laird, P.W. and R. Jaenisch, The role of DNA methylation in cancer genetic and epigenetics. Annu Rev Genet,1996.30:p.441-64.
    4. Cruz-Hernandez, E., et al., The effects of DNA methylation and histone deacetylase inhibitors on human papillomavirus early gene expression in cervical cancer, an in vitro and clinical study. Virol J,2007.4:p.18.
    5. Gokul, G., et al., DNA methylation profile at the DNMT3L promoter:a potential biomarker for cervical cancer. Epigenetics,2007.2(2):p.80-5.
    6. Lai, H.C., et al., Identification of novel DNA methylation markers in cervical cancer. Int J Cancer,2008.123(1):p.161-7.
    7. Ongenaert, M., et al., Discovery of DNA methylation markers in cervical cancer using relaxation ranking. BMC Med Genomics,2008.1:p.57.
    8. Zhang, Z., et al., Retinoic acid receptor beta2 is epigenetically silenced either by DNA methylation or repressive histone modifications at the promoter in cervical cancer cells. Cancer Lett,2007.247(2):p.318-27.
    9. Virmani, A.K., et al., Aberrant methylation during cervical carcinogenesis. Clin Cancer Res,2001.7(3):p.584-9.
    10. Ivanova, T., et al., Methylation and silencing of the retinoic acid receptor-beta 2 gene in cervical cancer. BMC Cancer,2002.2:p.4.
    11. Xiang, Y.N. and W.Y. Zhang, The clinical significance of p16 protein non-expression and p16 gene inactivation by deletions and hypermethylation in nasopharyngeal carcinoma. Zhonghua Bing Li Xue Za Zhi,2005.34(6):p. 358-61.
    12. Lin, Z., et al., The hypermethylation and protein expression of p16 INK4A and DNA repair gene O6-methylguanine-DNA methyltransferase in various uterine cervical lesions. J Cancer Res Clin Oncol,2005.131(6):p.364-70.
    13. Chung, M.T., et al., Promoter methylation of SFRPs gene family in cervical cancer. Gynecol Oncol,2009.112(2):p.301-6.
    14. Wentzensen, N., et al., Utility of methylation markers in cervical cancer early detection:appraisal of the state-of-the-science. Gynecol Oncol,2009.112(2): p.293-9.
    15. Song, Y. and C. Zhang, Hydralazine inhibits human cervical cancer cell growth in vitro in association with APC demethylation and re-expression. Cancer Chemother Pharmacol,2009.63(4):p.605-13.
    16. Bestor, T.H., The DNA methyltransferases of mammals. Hum Mol Genet,
    2000.9(16):p.2395-402.
    17. Rhee, I., et al., DNMT1 and DNMT3b cooperate to silence genes in human cancer cells. Nature,2002.416(6880):p.552-6.
    18. Ahluwalia, A., et al., DNA methylation in ovarian cancer. Ⅱ. Expression of DNA methyltransferases in ovarian cancer cell lines and normal ovarian epithelial cells. Gynecol Oncol,2001.82(2):p.299-304.
    19. Robertson, K.D., DNA methylation, methyltransferases, and cancer. Oncogene, 2001.20(24):p.3139-55.
    20. Wu, Y., etal., Aberrant expression of deoxyribonucleic acid methyltransferases DNMT1, DNMT3A, and DNMT3B in women with endometriosis. Fertil Steril, 2007.87(1):p.24-32.
    21. Sawada, M., et al., Increased expression of DNA methyltransferase 1 (DNMT1) protein in uterine cervix squamous cell carcinoma and its precursor lesion. Cancer Lett,2007.251(2):p.211-9.
    22.石小燕,DNA甲基转移酶1在子宫颈癌组织和细胞中的表达及意义.解放军医学杂志,2008.42(12):p.834-9.
    23.赵先兰,宫颈癌组织中DNA甲基转移酶1mRNA的表达.郑州大学学报(医学版),2009.251(2):p.211-9.
    24. Szyf, M., The role of DNA methyltransferase 1 in growth control. Front Biosci, 2001.6:p.D599-609.
    25. Patra, S.K., A. Patra, and R. Dahiya, Histone deacetylase and DNA methyltransferase in human prostate cancer. Biochem Biophys Res Commun, 2001.287(3):p.705-13.
    26. Patra, S.K., et al., DNA methyltransferase and demethylase in human prostate cancer. Mol Carcinog,2002.33(3):p.163-71.
    27. Li, S., et al., DNA hypomethylation and imbalanced expression of DNA methyltransferases (DNMT1,3A, and 3B) in human uterine leiomyoma. Gynecol Oncol,2003.90(1):p.123-30.
    28. Xiong, Y., et al., Opposite alterations of DNA methyltransferase gene expression in endometrioid and serous endometrial cancers. Gynecol Oncol, 2005.96(3):p.601-9.
    29. Suzuki, M., et al., RNA interference-mediated knockdown of DNA methyltransferase 1 leads to promoter demethylation and gene re-expression in human lung and breast cancer cells. Cancer Res,2004.64(9):p.3137-43.
    30. Ting, A.H., et al., CpG island hypermethylation is maintained in human colorectal cancer cells after RNAi-mediated depletion of DNMT1. Nat Genet, 2004.36(6):p.582-4.
    31. Ting, A.H., et al., Differential requirement for DNA methyltransferase 1 in maintaining human cancer cell gene promoter hypermethylation. Cancer Res, 2006.66(2):p.729-35.
    32. Leu, Y.W., et al., Double RNA interference of DNMT3b and DNMT1 enhances DNA demethylation and gene reactivation. Cancer Res,2003.63(19): p.6110-5.
    33. Robert, M.F., et al., DNMT1 is required to maintain CpG methylation and
    aberrant gene silencing in human cancer cells. Nat Genet,2003.33(1):p.61-5.
    34. Beaulieu, N., et al., An essential role for DNA methyltransferase DNMT3B in cancer cell survival. J Biol Chem,2002.277(31):p.28176-81.
    35. Chen, C.L., et al., E-cadherin expression is silenced by DNA methylation in cervical cancer cell lines and tumours. Eur J Cancer,2003.39(4):p.517-23.
    36. Ying, J., et al., The stress-responsive gene GADD45G is a functional tumor suppressor, with its response to environmental stresses frequently disrupted epigenetically in multiple tumors. Clin Cancer Res,2005.11(18):p.6442-9.
    37. Peng, D.F., et al., DNA methylation of multiple tumor-related genes in association with overexpression of DNA methyltransferase 1 (DNMT1) during multistage carcinogenesis of the pancreas. Carcinogenesis,2006.27(6):p. 1160-8.
    38. Ko, C.Y., et al., Epigenetic silencing of CCAAT/enhancer-binding protein delta activity by YY1/polycomb group/DNA methyltransferase complex. J Biol Chem,2008.283(45):p.30919-32.
    39.赵先兰,乔玉环,DAPK和DNMT1在宫颈癌中的相关性研究.免疫学杂志.2009.25(1):p.211-9.
    40. You, J.S., et al., Histone deacetylase inhibitor apicidin downregulates DNA methyltransferase 1 expression and induces repressive histone modifications via recruitment of corepressor complex to promoter region in human cervix cancer cells. Oncogene,2008.27(10):p.1376-86.
    41. Yu, J.Y., S.L. DeRuiter, and D.L. Turner, RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells. Proc Natl Acad Sci USA,2002.99(9):p.6047-52.
    42. Kimura, H., et al., Transcription of mouse DNA methyltransferase 1 (Dnmtl) is regulated by both E2F-Rb-HDAC-dependent and-independent pathways. Nucleic Acids Res,2003.31(12):p.3101-13.
    43. Jung, Y., et al., Potential advantages of DNA methyltransferase 1 (DNMT1)-targeted inhibition for cancer therapy. J Mol Med,2007.85(10):p. 1137-48.
    44.张士龙,shRNA沉默基因DNMT1的表达对膀胱癌T24细胞增殖与凋亡的影响.华中科技大学学报(医学版),2009.96(3):p.601-9.
    45.赵先兰,沉默DNMT1基因对宫颈癌细胞增殖及凋亡的影响.中华妇产科杂志,2009.44(7):p.533-537.
    46. Tessema, M., et al., Aberrant methylation and impaired expression of the p15(INK4b) cell cycle regulatory gene in chronic myelomonocytic leukemia (CMML). Leukemia,2003.17(5):p.910-8.
    47. Xu, X.L., et al., Methylation profile of the promoter CpG islands of 31 genes that may contribute to colorectal carcinogenesis. World J Gastroenterol,2004. 10(23):p.3441-54.
    48. Fiaschi-Taesch, N., et al., Mutant parathyroid hormone-related protein, devoid of the nuclear localization signal, markedly inhibits arterial smooth muscle cell cycle and neointima formation by coordinate up-regulation of pl5Ink4b and p27kip1. Endocrinology,2009.150(3):p.1429-39.
    49. Vijayachandra, K., et al., Induction of p16ink4a and p19ARF by TGFbetal contributes to growth arrest and senescence response in mouse keratinocytes. Mol Carcinog,2009.48(3):p.181-6.
    50. Sowinska, A. and P.P. Jagodzinski, RNA interference-mediated knockdown of DNMT1 and DNMT3B induces CXCL12 expression in MCF-7 breast cancer and AsPCl pancreatic carcinoma cell lines. Cancer Lett,2007.255(1):p. 153-9.
    51. Robert, S.M., Normand Beaulieu, France Gauthier, DNMT1 is required to maintain CpG methylation and aberrant gene silencing in human cancer cells. Nature Genetics 2002.33(9):p.61-65
    52. Sato, M., et al., The expression of DNA methyltransferases and methyl-CpG-binding proteins is not associated with the methylation status of p14(ARF), p16(INK4a) and RASSF1A in human lung cancer cell lines. Oncogene,2002.21(31):p.4822-9.
    53. Eads, C.A., et al., CpG island hypermethylation in human colorectal tumors is not associated with DNA methyltransferase overexpression. Cancer Res,1999. 59(10):p.2302-6.
    54. Ye, C., et al., Promoter methylation status of the MGMT, hMLH1, and CDKN2A/p16 genes in non-neoplastic mucosa of patients with and without colorectal adenomas. Oncol Rep,2006.16(2):p.429-35.
    55. Duenas-Gonzalez, A., et al., Epigenetics of cervical cancer. An overview and therapeutic perspectives. Mol Cancer,2005.4:p.38.
    56. Denko, N., et al., Epigenetic regulation of gene expression in cervical cancer cells by the tumor microenvironment. Clin Cancer Res,2000.6(2):p.480-7.
    57. Szalmas, A. and J. Konya, Epigenetic alterations in cervical carcinogenesis. Semin Cancer Biol,2009.19(3):p.144-52.
    58. Tian, B., T. Takasu, and C. Henke, Functional role of cyclin A on induction of fibroblast apoptosis due to ligation of CD44 matrix receptor by anti-CD44 antibody. Exp Cell Res,2000.257(1):p.135-44.
    59. Kitkumthorn, N., et al., Cyclin Al promoter hypermethylation in human papillomavirus-associated cervical cancer. BMC Cancer,2006.6:p.55.
    60. Suzuki, H., et al., Epigenetic inactivation of SFRP genes allows constitutive WNT signaling in colorectal cancer. Nat Genet,2004.36(4):p.417-22.
    61. He, B., et al., Secreted frizzled-related protein 4 is silenced by hypermethylation and induces apoptosis in beta-catenin-deficient human mesothelioma cells. Cancer Res,2005.65(3):p.743-8.
    62. Lin, Y.W., et al., Methylation analysis of SFRP genes family in cervical adenocarcinoma. J Cancer Res Clin Oncol,2009.135(12):p.1665-74.
    63. Pletcher, M.T., et al., Identification of tumor suppressor candidate genes by physical and sequence mapping of the TSLC1 region of human chromosome 11q23. Gene,2001.273(2):p.181-9.
    64. Ando, K., et al., Expression of TSLC1, a candidate tumor suppressor gene mapped to chromosome 11q23, is downregulated in unfavorable neuroblastoma without promoter hypermethylation. Int J Cancer,2008.123(9):
    p.2087-94.
    65. Fukami, T., et al., Promoter methylation of the TSLC1 gene in advanced lung tumors and various cancer cell lines. Int J Cancer,2003.107(1):p.53-9.
    66. Tamura, G., Promoter methylation status of tumor suppressor and tumor-related genes in neoplastic and non-neoplastic gastric epithelia. Histol Histopathol,2004.19(1):p.221-8.
    67. Steenbergen, R.D., et al., TSLC1 gene silencing in cervical cancer cell lines and cervical neoplasia. J Natl Cancer Inst,2004.96(4):p.294-305.
    68. Hammet, A., et al., FHA domains as phospho-threonine binding modules in cell signaling. IUBMB Life,2003.55(1):p.23-7.
    69. Swenson, K.I., K.E. Winkler, and A.R. Means, A new identity for MLK3 as an NIMA-related, cell cycle-regulated kinase that is localized near centrosomes and influences microtubule organization. Mol Biol Cell,2003.14(1):p. 156-72.
    70. Cheung, H.W., et al., Epigenetic inactivation of CHFR in nasopharyngeal carcinoma through promoter methylation. Mol Carcinog,2005.43(4):p. 237-45.
    71. Banno, K., et al., Epigenetic inactivation of the CHFR gene in cervical cancer contributes to sensitivity to taxanes. Int J Oncol,2007.31(4):p.713-20.
    72. Robson, E.J., S.J. He, and M.R. Eccles, A PANorama of PAX genes in cancer and development. Nat Rev Cancer,2006.6(1):p.52-62.
    73.徐军,人宫颈癌组织CDH1和PAX1基因甲基化研究.肿瘤,2009.88(37):p.2597-602.
    74. Qi, M., et al., Indole-3-carbinol prevents PTEN loss in cervical cancer in vivo. Mol Med,2005.11(1-12):p.59-63.
    75. Hsieh, S.M., et al., PTEN and NDUFB8 aberrations in cervical cancer tissue. Adv Exp Med Biol,2007.599:p.31-6.
    76. Cheung, T.H., et al., Epigenetic and genetic alternation of PTEN in cervical neoplasm. Gynecol Oncol,2004.93(3):p.621-7.
    77. Kang, S., et al., Polymorphism in folate-and methionine-metabolizing enzyme and aberrant CpG island hypermethylation in uterine cervical cancer. Gynecol Oncol,2005.96(1):p.173-80.
    78. Roz, L., et al., Restoration of fragile histidine triad (FHIT) expression induces apoptosis and suppresses tumorigenicity in lung and cervical cancer cell lines. Proc Natl Acad Sci USA,2002.99(6):p.3615-20.
    79. Sevignani, C., et al., Restoration of fragile histidine triad (FHIT) expression induces apoptosis and suppresses tumorigenicity in breast cancer cell lines. Cancer Res,2003.63(6):p.1183-7.
    80. Wu, Y., et al., Regulation of DNA methylation on the expression of the FHIT gene contributes to cervical carcinoma cell tumorigenesis. Oncol Rep,2006. 16(3):p.625-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700