用户名: 密码: 验证码:
玉米黑粉菌CYP51的克隆表达及同杀菌剂分子结合光谱分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甾醇14α-去甲基化酶(也称P450 14-DM, CYP51)是唯一的广泛存在于细菌、真菌、植物和动物中的细胞色素P450家族成员。它被视为最古老的细胞色素P450家族成员。它催化甾醇的14α-去甲基化反应。甾醇14α-去甲基化酶是真菌麦角甾醇合成过程的关键酶。抑制真菌甾醇14α-去甲基化酶将会阻碍真菌麦角甾醇的合成。麦角甾醇的缺失会损害细胞膜结构和功能,最终导致真菌死亡。目前农业上14α-去甲基化酶抑制剂(14α-demethylation inhibitors, DMIs)类杀菌剂即是通过抑制真菌甾醇14α-去甲基化酶而发挥杀菌抑菌的作用。
     本研究首先从玉米黑粉菌中克隆CYP51基因,并构建了重组表达质粒pET-YH、pGEXKG-YH,采用不同的IPTG诱导浓度,不同的诱导温度,不同的表达宿主菌表达,经SDS-PAGE分析玉米黑粉菌CYP51基因均没有得到有效的表达。通过对其氨基酸序列进行跨膜结构预测,结合SYBYL7.0同源模建分析结果,从而重新克隆了2个玉米黑粉菌CYP51基因,即N端截短了的突变体(分别截短20和35个氨基酸),并构建了重组表达质粒(pETYH-20, pETYH-35, pGEXKGYH-20, pGEXKGYH-35),最终pETYH-35重组表达质粒在E.coli BL21(DE3)中得到了大量表达,但是N端截短了20个氨基酸的突变体仍未能有效表达。
     将得到的重组玉米黑粉菌CYP51蛋白初步纯化后测定蛋白质含量,并根据P450-CO差光谱的方法测定其活性及P450含量,得到其蛋白质含量2.92mg/mL,P450含量为3.763pmol/mg。重组玉米黑粉菌CYP51蛋白同四种标准杀菌剂和十种人工合成的三唑类XF系列新型小分子杀菌剂进行了结合光谱测定研究,根据重组CYP51和杀菌剂之间的结合光谱分型并采用米氏方程Hanes-Woolf作图法计算结合常数,得到初步结论:标准杀菌剂和XF系列杀菌剂相比,结合常数均较小,标准杀菌剂中三唑醇的结合常数最小,结合常数为0.057;XF系列杀菌剂中XF-113结合常数最小,结合常数为0.307。通过重组玉米黑粉菌CYP51蛋白和杀菌剂之间的结合常数,参考生物活性测定结果对杀菌剂杀菌效果进行初步的评估,并由此推断真菌CYP51同三唑类杀菌剂的分子构型之间的联系。通过生物信息学的手段对得到的结果进行统计分析以便为设计开发新型的具有更强结合作用和更高选择性DMIs类杀菌剂提供了理论依据和实验指导。本研究同时构建了重组真核酵母表达质粒pAUR123-YH,采用醋酸锂转化后筛选阳性转化子进行真核表达。植物病原真菌玉米黑粉菌CYP51的克隆和表达对研究CYP51结构和功能从而为研究植物病原真菌对现存DMIs类杀菌剂产生的抗性机制奠定了良好的基础,同时也为设计开发新型的杀菌剂提供了理论基础。
Sterol 14α-demethylase (other names: P450 14DM; CYP51) is the only member of the cytochrome P450 superfamily present in animals, plants, fungi ,bacteria and considered to be the most ancient member of the superfamily. In all cases it catalyzes a three-step reaction of sterol 14α-demethylation. In fungi, the complex sterol 14α-demethylation reaction presents one of the key steps in sterol biosynthesis, an essential metabolic pathway producing ergosterol. The action mode of 14α-demethylase inhibitors (DMIs) involves selective inhibition of the fungal sterol 14α-demethylase over the plant enzyme activity during treatment. Inhibition of sterol 14α-demethylation by DMI fungicides result in the depletion of ergosterol, accumulation of abnormal sterol intermediates. Consequently the growth of fungi was arrested.
     This study reported that the Ustilago maydis CYP51 DNA were cloned and expressed in E. coli. The recombinant expression vectors (pETYH and pGEXKGYH) were constructed and the optimal expression conditions and different expression host which added the rare tRNAs were tried, but they could not express. Transmembrane structures of the Ustilago maydis CYP51 were analyzed by online software. Homology models of the CYP51 and the mutants were constructed to analyze the structures of among the N-terminal cleavage CYP51 protein by SYBYL7.0 software which was useful for further site-directed mutagenesis experiment. According to the analytics results, we constructed the recombinant expression vectors(pETYH-20、pGEXKGYH-20、pETYH-35、pGEXKGYH-35) and got the CYP51 mutants protein expressed in the pETYH-35, but other mutants could not express in E. coli.
     U.maydis CYP51 protein was purified and determined its biological activity based on P450-CO spectrometry which used to determining the cytochrome P450 characteristic absorption peak. U.maydis CYP51 protein concentration was 2.92mg/mL, the P450 concentration was 3.763pmol/mg. Spectrometry experiments were taken out to compute the inhibition constants according to Michaelis-Menten equation Hanes-Woolf method. In the research, there were four standard antiseptics and ten artifical triazoles antiseptics named XF series. The results were that all the combine constants of standard antiseptics were smaller than the artifical antiseptics'. Triadimenol got the score 0.057 and it was the smallest in the standard antiseptics while XF-113 got the score 0.307 and it was the smallest in the artifical antiseptics. The combination of new synthetic small molecules fungicide bioassay results on microbicides for the initial assessment. Analying the cloning and expression of and U.maydis CYP51 with bioinformatics method will facilitate the further research on the structure and function of fungi CYP51, so as to design more specific DMI fungicides against fungi CYP51. Eukaryotic expression vector pAUR123-YH of Saccharomyces cerevisiae was constructed by the conventional lithium acetate method and colony PCR was used to identificating the positive clones. This study provides an important tool for detailed enzymological and mechanistic studies so as to develop stronger affinitive and more specific DMI fungicides and for studying the resistance mechanisms of phytopathogenic fungi to certain DMI fungicides.
引文
[1] 冷欣夫,邱星辉,细胞色素P450酶系的结构、功能与应用前景.北京:科学出版社,2001.
    [2] Omura, T. and R. Sato, A New Cytochrome in Liver Microsomes. Journal of Biological Chemistry, 1962. 237(4): p. 1375-1376.
    [3] Nelson, D.R., et al., P450 superfamily: update on new sequences, gene mapping, accession numbers and nomenclature. Pharmacogenetics, 1996. 6(1): p. 1-42.
    [4] Omura, T., Forty years of cytochrome P450. Biochem Biophys Res Commun, 1999. 266(3): p. 690-8.
    [5] Nebert, D.W. and F.J. Gonzalez, P450 genes: structure, evolution, and regulation. Annu Rev Biochem, 1987.56: p. 945-93.
    [6] Shimozawa, O., et al., Core glycosylation of cytochrome P-450(arom). Evidence for localization of N terminus of microsomal cytochrome P-450 in the lumen. J Biol Chem, 1993.268(28): p. 21399-402.
    [7] Lepesheva, G.I. and M.R. Waterman, CYPS1—the omnipotent P450. Mol Cell Endocrinol, 2004. 215(1-2): p. 165-70.
    [8] Snyder, M.J., E.L. Hsu, and R. Feyereisen, Induction of cytochrome P-450 activities by nicotine in the tobacco hornworm, Manduca sexta. Journal of Chemical Ecology, 1993.19(12): p. 2903-2916.
    [9] 邱星辉,冷欣夫,细胞色素P450与癌症基因治疗.生命的化学,2000.20(005):p.238-239.
    [10] 陆宝麟等,家蝇抗性相关P450基因的初步研究.寄生虫与医学昆虫学报,2000(02).
    [11] Omura T, et al., Cytochrome P450,2nd edition. 1993.
    [12] Appleby, A.C., A soluble haemoprotein P 450 from nitrogen-fixing Rhizobium bacteroids. Biochim Biophys Acta, 1967. 147(2): p. 399-402.
    [13] Poulos, T.L., et al., The 2.6-A crystal structure of Pseudomonas putida cytochrome P-450. Journal of Biological Chemistry, 1985. 260(30): p. 16122-16130.
    [14] Porter, T.D. and M.J. Coon, Cytochrome P-450. Multiplicity of isoforms, substrates, and catalytic and regulatory mechanisms. 1991, ASBMB.
    [15] Backes, W.L., et al., Relationship between hydrocarbon structure and induction of P450: effects on protein levels and enzyme activities. Xenobiotica, 1993.23(12): p. 1353-66.
    [16] 张山,李平,刘德立,细胞色素P450酶系与除草剂代谢.中国生物工程杂志,2004.24(010):p.18-21.
    [17] Delye, C., L. Bousset, and M.E Corio-Costet, PCR cloning and detection of point mutations in the eburicol 14a-demethylase (CYP51) gene from Erysiphe graminis f. sp. hordei, a" recalcitrant" fungus. Current Genetics, 1998.34(5): p. 399-403.
    [18] Nakahara, K., et al., Cytochrome P-450 55A1 (P-450dNIR) acts as nitric oxide reductase employing NADH as the direct electron donor. Journal of Biological Chemistry, 1993. 268(11): p. 8350-8355.
    [19] Usuda, K., et al., Denitrification by the fungus Cylindrocarpon tonkinense: anaerobic cell growth and two isozyme forms of cytochrome P-450nor. Appl Environ Microbiol, 1995.61(3): p. 883-9.
    [20] 周建刚等,状病毒Bac-to-Bac系统在Sf9细胞中表达真菌细胞色素P450nor.微生物学报,2004.44(002):p.177-181.
    [21] Yoshida, Y. and Y. Aoyama, Yeast cytochrome P-450 catalyzing lanosterol 14 α-demethylation. I. Purification and spectral properties. Journal of Biological Chemistry, 1984. 259(3): p. 1655-1660.
    [22] Aoyama, Y., et al., Metabolism of 32-hydroxy-24, 25-dihydrolanosterol by purified cytochrome P-45014DM from yeast. Evidence for contribution of the cytochrome to whole process of lanosterol 14 α-demethylation. Journal of Biological Chemistry, 1987. 262(3): p. 1239-1243.
    [23] Yoshida, Y., et al., Sterol 14-α-demethylase P450 (CYP51) provides a breakthrough for the discussion on the evolution of cytochrome P450 gene superfamily. Biochem Biophys Res Commun, 2000. 273(3): p. 799-804.
    [24] Marichal, P., et al., Contribution of mutations in the cytochrome P450 14α-demethylase (Erg11p, Cyp51p) to azole resistance in Candida albicans. Microbiology, 1999. 145 (Pt 10): p. 2701-13.
    [25] Rozman, D., M. Stromstedt, and M.R. Waterman, The three human cytochrome P450 lanosterol 14 α-demethylase (CYP51) genes reside on chromosomes 3, 7, and 13: structure of the two retrotransposed pseudogenes, association with a line-1 element, and evolution of the human CYP51 family. Arch Biochem Biophys, 1996. 333(2): p. 466-74.
    [26] Stromstedt, M., D. Rozman, and M.R. Waterman, The ubiquitously expressed human CYP51 encodes lanosterol 14 α-demethylase, a cytochrome P450 whose expression is regulated by oxysterols. Arch Biochem Biophys, 1996. 329(1): p. 73-81.
    [27] Ness, G.C., K.R. Gertz, and R.C. Holland, Regulation of hepatic lanosterol 14α-demethylase gene expression by dietary cholesterol and cholesterol-lowering agents. Arch Biochem Biophys, 2001.395(2): p. 233-8.
    
    [28] Rozman, D., et al., Structure and mapping of the human lanosterol 14α-demethylase gene (CYP51) encoding the cytochrome P450 involved in cholesterol biosynthesis; comparison of exon/intron organization with other mammalian and fungal CYP genes. Genomics, 1996.38(3): p. 371-81.
    
    [29] Horton, J.D., J.L. Goldstein, and M.S. Brown, SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. 2002, Am Soc Clin Investig.
    
    [30] Haider, S.K., et al., A cAMP-Responsive Element Binding Site Is Essential for Sterol Regulation of the Human Lanosterol 14a-Demethylase Gene (CYP51). Molecular Endocrinology, 2002.16(8): p. 1853-1863.
    
    [31] Majdic, G, et al., Lanosterol 14α-demethylase (CYP51), NADPH-cytochrome P450 reductase and squalene synthase in spermatogenesis: late spermatids of the rat express proteins needed to synthesize follicular fluid meiosis activating sterol. Journal of Endocrinology, 2000.166(2): p. 463-474.
    
    [32] Rozman, D., et al., Cyclic adenosine 3',5'-monophosphate(cAMP)/cAMP-responsive element modulator (CREM)-dependent regulation of cholesterogenic lanosterol 14α-demethylase (CYP51) in spermatids. Mol Endocrinol, 1999.13(11): p. 1951-62.
    
    [33] Stromstedt, M., et al., Elevated expression of lanosterol 14α-demethylase (CYP51) and the synthesis of oocyte meiosis-activating sterols in postmeiotic germ cells of male rats. Endocrinology, 1998.139(5): p. 2314-21.
    
    [34] Cotman, M., et al., A functional cytochrome P450 lanosterol 14 a-demethylase CYP51 enzyme in the acrosome: transport through the Golgi and synthesis of meiosis-activating sterols. Endocrinology, 2004.145(3): p. 1419-26.
    
    [35] Grondahl, C, et al., Meiosis-activating sterol promotes resumption of meiosis in mouse oocytes cultured in vitro in contrast to related oxysterols []In Process Citation] Biology of Reproduction, 1998.58(5): p. 1297-1302.
    
    [36] Byskov, A.G., et al., Chemical structure of sterols that activate oocyte meiosis. Nature, 1995. 374(6522): p. 559-562.
    
    [37] Kahn, R.A., et al., Isolation and reconstitution of the heme-thiolate protein obtusifoliol 14a-demethylase from Sorghum bicolor (L.) Moench. J Biol Chem, 1996.271(51): p. 32944-50.
    
    [38] Lepesheva, G.I., et al., CYP51 from Trypanosoma brucei is obtusifoliol-specific. Biochemistry, 2004.43(33): p. 10789-99.
    [39] Cole, S.T., R. Brosch, and J. Parkhill, Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature, 1998. 393: p. 537-544.
    [40] Bellamine, A., et al., Characterization and catalytic properties of the sterol 14α-demethylase from Mycobacterium tuberculosis. Proc Natl Acad Sci U S A, 1999. 96(16): p. 8937-42.
    [41] Jackson, C.J., et al., A novel sterol 14α-demethylase/ferredoxin fusion protein (MCCYP51FX) from Methylococcus capsulatus represents a new class of the cytochrome P450 superfamily. J Biol Chem, 2002. 277(49): p. 46959-65.
    [42] Shen, A.L., K.A. O'Leary, and C.B. Kasper, Association of Multiple Developmental Defects and Embryonic Lethality with Loss of Microsomal NADPH-Cytochrome P450 Oxidoreductase. Journal of Biological Chemistry, 2002. 277(8): p. 6536-6541.
    [43] Raoult, D., et al., The 1.2-Megabase Genome Sequence of Mimivirus. Science, 2004. 306(5700): p. 1344-1350.
    [44] Poulos, T.L. and A.J. Howard, Crystal structures of metyrapone-and phenylimidazole-inhibited complexes of cytochrome P-450cam. Biochemistry, 1987. 26(25): p. 8165-8174.
    [45] Williams, P.A., et al., The crystallographic structure of a mammalian microsomal cytochrome P450 monooxygenase: structural adaptations for membrane binding and functional diversity,. Mol. Cell 2000.5(209-219).
    [46] Podust, L.M., T.L. Poulos, and M.R. Waterman, Crystal structure of cytochrome P450 14α-sterol demethylase (CYP51) from Mycobacterium tuberculosis in complex with azole inhibitors. Proc Natl Acad Sci U S A, 2001. 98(6): p. 3068-73.
    [47] Lepesheva, G.I., C. Virus, and M.R. Waterman, Conservation in the CYP51 family. Role of the B' helix/BC loop and helices F and G in enzymatic function. Biochemistry, 2003.42(30): p. 9091-101.
    [48] Podust, L.M., et al., Estriol bound and ligand-free structures of sterol 14α-demethylase. Structure, 2004. 12(11): p. 1937-45.
    [49] 杨光富,杨华铮,麦角甾醇生物合成抑制剂分子设计的研究进展.农药译丛,1996.18(001):p.21-29.
    [50] Lamb, D.C., et al., The R467K amino acid substitution in Candida albicans sterol 14α-demethylase causes drug resistance through reduced affinity. Antimicrob Agents Chemother, 2000.44(1): p. 63-7.
    [51] Tuck, S.F., et al., Lanosterol 14 α-demethylase (P450 14DM): effects of P450 14DM inhibitors on sterol biosynthesis downstream of lanosterol. J Lipid Res, 1991.32(6): p. 893-902.
    [52] 朱金文等,丝状真菌对甾醇生物合成抑制剂的抗性分子机制.菌物系统,2002(02).
    [53] 李红叶等,丝状真菌对甾醇生物合成抑制剂的抗性分子机制.菌物系统,2002(02).
    [54] Hitchcock, C.A., et al., Fluconazole resistance in Candida glabrata. Antimicrob Agents Chemother, 1993.37(9): p. 1962-5.
    [55] 袁善奎,周明国,植物病原菌抗药性遗传研究.植物病理学报,2004.34(004):p.289-295.
    [56] Dyer, P.S., G.L. Bateman, and H.M. Wood, Development of apothecia of the eyespot pathogen Tapesia on cereal crop stubble residue in England. Plant Pathology, 2001.50(3): p. 356-362.
    [57] Karaoglanidis, G.S., P.M. Ioannidis, and C.C. Thanassoulopoulos, Reduced sensitivity of Cercospora beticola isolates to sterol-demethylation-inhibiting fungicides. Plant Pathology, 2000. 49(5): p. 567-572.
    [58] Karaoglanidis, G.S. and C.C. Thanassoulopoulos, Cross-Resistance Patterns Among Sterol Biosynthesis Inhibiting Fungicides (SBIs) in Cercospora beticola. European Journal of Plant Pathology, 2003.109(9): p. 929-934.
    [59] Carelli, A., et al., Interaction of tetraconazole and its enantiomers with cytochrome P 450 from Ustilago maydis. Pesticide Science, 1992. 35(2): p. 167-170.
    [60] Delye, C., F. Laigret, and M.E Corio-Costet, A mutation in the 14 α-demethylase gene of Uncinula necator that correlates with resistance to a sterol biosynthesis inhibitor. Applied and Environmental Microbiology, 1997. 63(8): p. 2966-2970.
    [61] Vanden Bossche, H., et al., Antifungal drug resistance in pathogenic fungi. Med Mycol, 1998.36(1): p. 119-28.
    [62] Giner, J.L., et al., Sterol Composition of Pneumocystis jirovecii with Blocked 14a-Demethylase Activity. The Journal of Eukaryotic Microbiology. 51(6): p. 634-643.
    [63] Katiyar, S.K., Identification and expression of multidrug resistancerelated ABC transporter genes in Candida krusei. Medical Mycology, 2001.39(1): p. 109-116.
    [64] Gisi, U., et al., Recent developments in elucidating modes of resistance to phenylamide, DMI and strobilurin fungicides. Crop Protection, 2000. 19(8): p. 863-872.
    [65] Wood, H.M., et al., Cloning of the CYP51 gene from the eyespot pathogen Tapesia yallundae indicates that resistance to the DMI fungicide prochloraz is not related to sequence changes in the gene encoding the target site enzyme. FEMS Microbiology Letters, 2001.196(2).
    [66] Hamamoto, H., et al., Tandem Repeat of a Transcriptional Enhancer Upstream of the Sterol 14a-Demethylase Gene (CYP51) in Penicillium digitatum. Applied and Environmental Microbiology, 2000. 66(8): p. 3421-3426.
    [67] Schnabel, G and A.L. Jones, The 14a-demethylase (CYP51A1) gene is overexpressed in Venturia inaequalis strains resistant to myclobutanil. Phytopathology, 2001. 91: p. 102-110.
    [68] White, T.C., K.A. Marr, and R.A. Bowden, Clinical, Cellular, and Molecular Factors That Contribute to Antifungal Drug Resistance. Clinical Microbiology Reviews, 1998.11(2): p. 382-402.
    [69] van den Brink, H.J., et al., Increased resistance to 14 α-demethylase inhibitors (DMIs) in Aspergillus niger by coexpression of the Penicillium italicum eburicol 14 α-demethylase (cyp51) and the A. niger cytochrome P450 reductase (cprA) genes. J Biotechnol, 1996.49(1-3): p. 13-8.
    [70] Kontoyiannis, D.P., N. Sagar, and K.D. Hirschi, Overexpression of Ergllp by the Regulatable GAL1 Promoter Confers Fluconazole Resistance in Saccharomyces cerevisiae. 1999, Am Soc Microbiol.
    [71] Delye, C., F. Laigret, and M.F. Corio-Costet, Cloning and sequence analysis of the eburicol 14a-demethylase gene of the obligate biotrophic grape powdery mildew fungus. Gene, 1997.195(1): p. 29-33.
    [72] Del Sal, G, G. Manfioletti, and C. Schneider, The CTAB-DNA precipitation method: a common mini-scale preparation of template DNA from phagemids, phages or plasmids suitable for sequencing. Biotechniques, 1989. 7(5): p. 514-20.
    
    [73] 萨姆布鲁克等,分子克隆实验指南(第二版).1992,北京.
    
    [74] Gasteiger, E., et al., Protein identification and analysis tools on the ExPASy server. The Proteomics Protocols Handbook, 2005: p. 571?07.
    [75] Krogh, A., et al., Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol, 2001. 305(3): p. 567-580.
    [76] Kall, L., A. Krogh, and E.L. Sonnhammer, A Combined Transmembrane Topology and Signal Peptide Prediction Method. Journal of Molecular Biology, 2004.338(5): p. 1027-1036.
    [77] Podust, L.M., T.L. Poulos, and M.R. Waterman, Crystal structure of cytochrome P450 14α-sterol demethylase (CYP51) from Mycobacterium tuberculosis in complex with azole inhibitors. Proceedings of the National Academy of Sciences, 2001.98(6): p. 3068.
    [78] McLean, K.J., et al., Azole antifungals are potent inhibitors of cytochrome P450 mono-oxygenases and bacterial growth in mycobacteria and streptomycetes. 2002, Soc General Microbiol.
    [79] 李惠敏等,超声波提取沙田柚花粉管可溶性蛋白的初步研究.广西师范大学学报:自然科学版,2004.22(001):p.82-86.
    [80] Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem, 1976. 72(248): p. 54.
    [81] Omura, T. and R. Sato, The Carbon Monoxide-binding Pigment of Liver Microsomes Ⅰ. EVIDENCE FOR ITS HEMOPROTEIN NATURE. Journal of Biological Chemistry, 1964. 239(7): p. 2370-2378.
    [82] 许华夏等,真菌细胞色素P450与多环芳烃浓度及降解率的相互关系.农业环境科学学报,2004.23(005):p.972-976.
    [83] Guardiola-Diaz, H.M., et al., Azole-antifungal binding to a novel cytochrome P450 from Mycobacterium tuberculosis: implications for treatment of tuberculosis. Biochem Pharmacol, 2001.61(12): p. 1463-70.
    [84] Fukuda, H. and Y. Kizaki, A new transformation system of Saccharomyces cerevisiae with blasticidin S deaminase gene. Biotechnology Letters, 1999. 21(11): p. 969-971.
    [85] Kane, J.F., Effects of rare codon clusters on high-level expression of heterologous proteins in Escherichia coli. Current Opinion in Biotechnology, 1995. 6(5): p. 494-500.
    [86] Wu, G., et al., SGDB: a database of synthetic genes re-designed for optimizing protein over-expression. Nucleic Acids Research, 2007. 35(Database issue): p. D76.
    [87] 张锐等,真核基因在pET系统中表达出现的问题与拟解决的方案.生物技术,2004.14(002):p.62-63.
    [88] 顾万君,马建民,不同结构的蛋白编码基因的密码子偏性研究.生物物理学报,2002.18(001):p.81-86.
    [89] Stewart, R.S., B. Drisaldi, and D.A. Harris, A transmembrane form of the prion protein contains an uncleaved signal pepfide and is retained in the endoplasmic reticulum. Mol Biol Cell, 2001.12(4): p. 881-889.
    [90] Rehm, A., et al., Signal peptide cleavage of a type Ⅰ membrane protein, HCMV US11, is dependent on its membrane anchor. The EMBO Journal, 2001.20: p. 1573-1582.
    [91] Matsuura, K., et al., Structural Diversities of Active Site in Clinical Azole-bound Forms between Sterol 14α-Demethylases (CYP51s) from Human and Mycobacterium tuberculosis. Journal of Biological Chemistry, 2005. 280(10): p. 9088.
    [92] Shi, J., T.L. Blundell, and K. Mizuguchi, FUGUE: sequence-structure homology recognition using environment-specific substitution tables and structure-dependent gap penalties. J. Mol. Biol, 2001.310(1): p. 243-257.
    [93] Hillisch, A., L.F. Pineda, and R. Hilgenfeld, Utility of homology models in the drug discovery process. Drug Discov Today, 2004. 9(15): p. 659-69.
    [94] 王传忠,文欣,锌卟啉对氨基酸甲酯手性分子识别的理论研究.高等学校化学学报,2001.22(002):p.262-264.
    [95] Smith, D., et al., Assembly of Cytochrome-c Oxidase in the Absence of Assembly Protein Surflp Leads to Loss of the Active Site Heme. Journal of Biological Chemistry, 2005.280(18): p. 17652-17656.
    [96] Furukawa, T., et al., Process for improving the quality of whey protein. 1984, Google Patents.
    [97] Souter, A., et al., The genome sequence of Mycobacterium. Journal of Chemical Technology and Biotechnology, 2000.75: p. 933-941.
    [98] Lamb, D.C., et al., Expression, purification, reconstitution and inhibition of Ustilago maydis sterol 14 α-demethylase (CYP51; P450(14DM)). FEMS Microbiol Lett, 1998. 169(2): p. 369-73.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700