用户名: 密码: 验证码:
生物有机肥对土传马铃薯青枯病的防控技术及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
马铃薯青枯病是由茄科劳尔氏菌(Ralstonia solanacearum)引起的一种毁灭性的细菌性土传病害,是世界范围内马铃薯上的第二大病害,其重要性仅次于晚疫病。目前马铃薯青枯病的防控方法已成为马铃薯生产的研究热点,以生物防控为主导的综合防控是防控该病害的有效方法。本研究从黑龙江、南京、山东和海南等地采集健康植株根际土壤,从中分离出对青枯菌有拮抗作用的根际细菌,并通过进一步室内试验和温室试验筛选出两株能显著抑制马铃薯青枯菌的根际细菌解淀粉芽孢杆菌LH23和枯草芽孢杆菌LH36。另外通过一系列的室内分析、温室盆栽和田间试验,研究了拮抗菌LH23和LH36及其制成的生物有机肥(BI023和BI036)对土传马铃薯青枯病的生防效果及其机理,主要结果如下:
     1、从番茄、茄子、马铃薯、烟草和香蕉等作物根际土壤中通过喷雾法初筛获得对马铃薯青枯菌有抑菌作用的140多株根际菌株,分离纯化后多次筛选得到两株生长速度快、抗生素抗性强、产芽孢、抗菌谱广泛的高效拮抗菌株LH23和LH36
     2、根据16S rRNA基因序列分析和生理生化特性,菌株LH23被鉴定为解淀粉芽孢杆菌(Bacillus amyloliquefaciens),菌株LH36被鉴定为枯草芽孢杆菌(Bacillus subtilis)。同时,研究了拮抗菌LH23和LH36生长的最适发酵条件以及不同生长条件对生防菌LH23和LH36产的拮抗物质抑菌活性的影响。进一步的实验室结果表明:生防菌LH23和LH36具有产吲哚乙酸(IAA)、铁载体、蛋白酶、β-1,3-葡聚糖酶、蛋白类拮抗物质和脂肽类拮抗物质的能力,同时还具有解磷能力。生防菌LH23和LH36的无菌发酵液加入青枯菌培养基,测得的胞外多糖含量减少。
     3、灌根法接种与蘸根法接种相比,灌根法接种拮抗菌能更好的在土壤中定殖,促进马铃薯植株生长。温室和田间试验结果表明,生物有机肥(BI023和BI036)能显著促进马铃薯生长和提高马铃薯块茎产量。温室盆栽试验结果表明,生物有机肥(BI023和BI036)处理,马铃薯植株株高、干重、鲜重、根冠比、根总长、根总表面积、根总体积和根平均直径显著高于CK和OF处理(OF即氨基酸肥料和猪粪堆肥1:1混匀制成的普通有机肥);生物有机肥(BI023和BI036)促进马铃薯植株根际土壤细菌和放线菌数量增加,真菌数量减少。田间试验结果表明,生物有机肥BI023和B1036处理与OF处理相比,产量分别增加17.7%和10.8%,其差异达显著水平。
     4、不同土壤验证防控效果试验结果显示:生物有机肥能有效防控马铃薯青枯病的发生,促进马铃薯植株生长,提高马铃薯产量。连作带病土温室盆栽试验中,CK发病率为39.7%,BI023和BI036处理对马铃薯青枯病的防病率皆为100%;健康土添加青枯菌温室盆栽试验中,cK发病率为57.7%,BI023和BI036处理对马铃薯青枯病的防病率分别为84.6%和80.8%。在两块青枯病感染程度不同的两块马铃薯田块(田块1感染程度较轻,青枯病发病率为8.3%;田块2感染程度较重,青枯病发病率为18.3%),进行马铃薯青枯病生防试验,结果表明:在田块1中,BI023和BI036处理的防病率分别为92.0%和84.0%,与OF处理相比产量分别提高42.3%和28.8%;在田块2中,BI023和BI036处理的防病率分别为65.6%和57.7%,与OF处理相比产量分别提高56.8%和45.1%。生物有机肥能有效防控马铃薯青枯病,并显著提高马铃薯产量。
     5、施用生物有机肥可以改善马铃薯植株根际土壤微生物区系。不同土壤盆栽试验结果表明,对不同时期马铃薯植株根际土壤微生物计数结果显示,与CK相比,施用生物有机肥(BI023和BI036)显著促进马铃薯植株根际土壤细菌、放线菌的数量增加,真菌的数量减少。同时,与单一施用生防菌菌悬液处理(LH23和LH36)相比,生物有机肥(BI023和BI036)处理马铃薯植株根际土壤拮抗菌数量显著增加,马铃薯植株根际土壤青枯菌数量显著降低,防病率显著提高。田间试验中的根际土壤微生物区系变化与盆栽结果一致。同时生物有机肥显著提高马铃薯植株叶片过氧化物酶(POD)、过氧化氢酶(CAT)、超氧化物歧化酶(SOD)和多酚氧化酶(PPO)活性,降低丙二醛(MDA)含量,减轻发病情况,提高马铃薯植物的系统抗性。
     综上所述,拮抗菌株与有机肥结合制成的生物有机肥(BI023和BI036)能有效防控马铃薯青枯病的发生,并促进马铃薯植株的生长、提高产量和改善品质。施用生物有机肥能促进拮抗菌在土壤和根际中的定殖和生存,有效降低青枯菌的数量,同时改善马铃薯植株根际微生物区系,提高植株系统抗性。本文的研究结果有助于研发马铃薯土传病害防控技术,为马铃薯青枯病的有效防控提供理论基础。
Potato bacterial wilt(Ralstonia solanacearum) is a soil-borne disease that seriously suppressed the potato plant(Solanum tuberosum) growth worldwide and causes serious economic losses. A lot of methods have been used to prevent the disease, among which biocontrol has been proved to be the most promising one. Biological control is one of the important measures for overcoming soil-borne diseases, because of its effectiveness and environment-friendly use. Screening antagonists against pathogens is the vital work for the biocontrol of plant diseases.
     In this study, two bacterial strains LH23(Bacillus amyloliquefaciens) and LH36(Bacillus subtilis) with antagonistic activity against R. solanacearum, were selected from the rhizosphere soil of healthy potato plant grown in the field strongly diseased by bacterial wilt. Pot and field experiments were conducted to evaluate the LH23(Bacillus amyloliquefaciens) and LH36(Bacillus subtilis) strains and their derived bio-organic fertilizers (BIO23and BIO36) as potential biocontrol agents against potato bacterial wilt and the related mechanisms were also investigated. The main results obtained are listed as follows:
     (1) In this study, more than140bacterial strains (bacterial antagonists against R.solanacearum) were isolated from rhizosphere soil of potato, tomato, eggplant and banana. Cell-free filtrate of six antagonistic strains had much stronger antagonistic activity against four R. solanacearum strains with inhibitory zones over20mm. Based on antagonistic activity against four R. solanacearum strains and ten soil-borne fungal pathogens as well as biocontrol efficacy in the greenhouse, two bacterial strains LH23and LH36were selected out of many candidates as potential biocontrol agents.
     (2) Based on the results of morphologic characteristics, physiological and biochemical properties and phylogenetic analysis of16S rRNA, the strains LH23and LH36, were identified as Bacillus amyloliquefaciens and Bacillus subtilis, respectively. Measurement from laboratory tests showed that the LH23and LH36were able to produce growth-promoting substances indole acetic acid (IAA), siderophore, prolease, amylase, glucanase, antagonism of extracellular protein and dissolve P in medium. And the LH23and LH36could decrease the content of extracellular Polysaeeharides produced by R. solanacearum, suggesting that LH23and LH36were effective antagonists against the pathogen of potato bacterial wilt.
     (3) In order to find a suitable antagonist inoculation method, we compared the methods of root-dipping with soil-drenching in the aspects including rhizocompetence, and effect of promoting plant growth under greenhouse conditions. The drenching treatment resulted in a higher rhizocompetence and plant-yield increase, and this method was also easier to operate in the field on a large scale. Pot and field experiments were performed to investigate the promoting effects of LH23(Bacillus amyloliquefaciens) and LH36(Bacillus subtilis) strains and their derived bio-organic fertilizers (BIO23and BIO36) in potato growth. In greenhouse experiment, BIO23and BIO36significantly promoted potato plant growth, especially the root growth. The root fresh weight of BIO23and BIO36treatments were1.8and2.1times higher than those of control, respectively. The root lengths, root SurfArea, root AvgDiam and RootVolume of the plants treated with BIO23and BIO36were significantly higher than those of control. The potato yield increments on85days after the application of BIO23and BIO36were17.7%and10.8%, respectively as compared with OF (organic fertilizer) treatment in the field experiments.
     (4) Application of BIO23and BIO36decreased the incidence of bacterial wilt disease and increased potato yields. In one greenhouse experiment, the biocontrol efficiency of BIO23and BIO36applied were100%and100%, which were the mostly successful treatment while the application of the strains LH23and LH36alone resulted in a biocontrol efficiency of85.1%and81.1%, respectively. In another greenhouse experiment, the biocontrol efficiency of BIO23was84.6%, which was the most successful treatment and BIO36was the second in terms of the biocontrol efficiency (80.8%); the increased percentages of potato yields when compared with the control (chemical fertilizer) were63.5%(BIO23),64.7%(BIO36)34.8%(LH23),33.6%(LH36) and20.7%(OF). In field experiments, the biocontrol efficacies of BIO23and BIO36treatments were92.0%and84.0%, and the yield increases of BIO23and BIO36treatments were42.3%and28.8%, respectively, when compared with the OF treatment.
     (5) Bio-organic fertilizers (BIO23and BIO36) could alter the microbial community structure and improved plant health. The counts of bacteria and actinomyces in the rhizosphere soils were significantly increased in BIO23and BIO36treatments, whereas the fungi in the soil in the both treatments were decreased; the counts of antagonists, bacteria and actinobacteria in the rhizosphere soil were significantly increased in BIO23and BIO36treatments, whereas the counts of R. solanacearum and fungi in the soil in the both treatments were decreased in the greenhouse experiments. In addition, the changes in the microbial populations in field experiments were the same as those observed in the greenhouse experiment. In the pot experiment, Bio-organic fertilizers (BIO23and BIO36) significantly increased the activities of plant defence enzymes such as POD, CAT, SOD and PPO, in plant leaves, and decreased MDA content, and consequently relieved the symptoms of potato.
     In conclusion, our studies showed that the bio-organic fertilizer, an appropriate combination of organic fertilizer (OF) with the antagonists LH23or LH36used in the present study, could effectively suppress the potato wilt, promote the growth of potato plants and thus the quality of potato tubers, which mainly depends on producing many antibiotics and growth-promoting substances and the alternation of soil microbial community, after the successful colonization of the strains in soils. Results in this study would be useful in the developping new methods to better control potato bacterial wilt disease. Further researches should be done in the molecular microbilogical aspects of the functions performed by bio-organic fertilizers in remediation of continuously cropping obstacles and in the promotion of plant growth and health exerted by functional microbes added.
引文
Ade S, Guanlin X, Bin L and Bo L (2004) Comparative performance of Bacillus spp. in growth promotion and suppression of tomato bacterial wilt caused by Ralstonia solanacearum. Journal of Zhejiang University (Agriculture and Life Sciences) 30,603-610.
    Ahmad F, Ahmad I and Khan M (2008) Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiological research 163,173-181.
    Alfano J R and Collmer A (2004) Type III secretion system effector proteins:double agents in bacterial disease and plant defense. Annu. Rev. Phytopathol.42,385-414.
    Aliye N, Fininsa C and Hiskias Y (2008) Evaluation of rhizosphere bacterial antagonists for their potential to bioprotect potato (Solanum tuberosum) against bacterial wilt (Ralstonia solanacearum). Biological Control 47,282-288.
    Allen C, Prior P and Hayward A (2005) Bacterial wilt disease and the Ralstonia solanacearum species complex. American Phytopathological Society (APS Press).
    Arwiyanto T, Goto M, Tsuyumu S and Takikawa Y (1994) Biological control of bacterial wilt of tomato by an avirulent strain of Pseudomonas solanacearum isolated from Strelitzia reginae. Annals of the Phytopathological Society of Japan 60,421-430.
    Beatty P H and Jensen S E (2002) Paenibacillus polymyxa produces fusaricidin-type antifungal antibiotics active against Leptosphaeria maculans, the causative agent of blackleg disease of canola. Canadian journal of microbiology 48,159-169.
    Benizri E, Baudoin E and Guckert A (2001) Root colonization by inoculated plant growth-promoting rhizobacteria. Biocontrol Science and Technology 11,557-574.
    Bonanomi G, Chiurazzi M, Caporaso S, Del Sorbo G, Moschetti G and Felice S (2008) Soil solarization with biodegradable materials and its impact on soil microbial communities. Soil Biology and Biochemistry 40,1989-1998.
    Boucher C, Gough C and Arlat M (1992) Molecular genetics of pathogenicity determinants of Pseudomonas solanacearum with special emphasis on hrp genes. Annual review of phytopathology 30,443-461.
    Boukaew S, Chuenchit S and Petcharat V (2011) Evaluation of Streptomyces spp. for biological control of Sclerotium root and stem rot and Ralstonia wilt of chili pepper. BioControl 56,365-374.
    Bowler C, Montagu M and Inze D (1992) Superoxide dismutase and stress tolerance. Annual review of plant biology 43,83-116.
    Brosius J, Dull T J, Sleeter D D (1981) Gene organization and primary structure of a ribosomal DNA operon from Escherichia coli. Journal of Molecular Biology,48,107-127.
    Brunel B, Givaudan A, Lanois A, Akhurst R and Boemare N (1997) Fast and accurate identification of Xenorhabdus and Photorhabdus species by restriction analysis of PCR-amplified 16S rRNA genes. Applied and environmental microbiology 63,574-580.
    Buddenhagen I and Kelman A (1964) Biological and physiological aspects of bacterial wilt caused by Pseudomonas solanacearum. Annual review of phytopathology 2,203-230.
    Cao Y, Zhang Z, Ling N, Yuan Y, Zheng X, Shen B and Shen Q (2011) Bacillus subtilis SQR 9 can control Fusarium wilt in cucumber by colonizing plant roots. Biology and Fertility of Soils 47, 495-506.
    Caruso P, Llop P, Palomo J, Garcia P, Morente C and Lopez M (1998) Evaluation of Methods for Detection of Potato. Bacterial Wilt Disease:Molecular and Ecological Aspects,128.
    Cattelan A, Hartel P and Fuhrmann J (1999) Screening for plant growth-promoting rhizobacteria to promote early soybean growth. Soil Science Society of America Journal 63,1670-1680.
    Chapman M R and Kao C C (1998) EpsR modulates production of extracellular polysaccharides in the bacterial wilt pathogen Ralstonia (Pseudomonas) solanacearum. Journal of bacteriology 180, 27-34.
    Chen F, Wang M, Zheng Y, Luo J, Yang X and Wang X (2010) Quantitative changes of plant defense enzymes and phytohormone in biocontrol of cucumber Fusarium wilt by Bacillus subtilis B579. World Journal of Microbiology and Biotechnology 26,675-684.
    Chen W Y and Echandi E (1982) Bacteriocin production and semiselective medium for detection, isolation, and quantification of Pseudomonas solanacearum in soil, indicator 159,217.
    Ciampi-Panno L, Fernandez C, Bustamante P, Andrade N, Ojeda S and Contreras A (1989) Biological control of bacterial wilt of potatoes caused by Pseudomonas solanacearum. American Journal of Potato Research 66,315-332.
    Cook D, Barlow E and Sequeira L (1989) Genetic diversity of Pseudomonas solanacearum:detection of restriction fragment length polymorphisms with DNA probes that specify virulence and the hypersensitive response. Molecular Plant-Microbe Interactions 1,113-121.
    Cook D and Sequeira L (1991) The use of subtractive hybridization to obtain a DNA probe specific for Pseudomonas solanacearum race 3. Molecular and General Genetics MGG 227,401-410.
    Demoz B T and Korsten L (2006) Bacillus subtilis attachment, colonization, and survival on avocado flowers and its mode of action on stem-end rot pathogens. Biological Control 37,68-74.
    Demoz Caruso P, Bertolini E, Cambra M (2003) A new and sensitive co-operation alpolymerase chain Reaction for rapid detection of Ralstnia solanacearum in water. Journal of Microbiological Methods,55(1),257-272.
    Denny T P, B F Carney, M A Schell (1990) Inactivation of multiple vitulence genes reduces the ability of Pseudomonas solanacearun to cause wilt symptoms. Mol Plant-Microbe Interact.3,293-300.
    Dijksterhuis J, Sanders M, Gorris L and Smid E (2003) Antibiosis plays a role in the context of direct interaction during antagonism of Paenibacillus polymyxa towards Fusarium oxysporum. Journal of applied microbiology 86,13-21.
    Durrant W and Dong X (2004) Systemic acquired resistance. Annu. Rev. Phytopathol.42,185-209.
    Eilenberg J, Hajek A and Lomer C (2001) Suggestions for unifying the terminology in biological control. BioControl 46,387-400.
    Eilenberg J and Hokkanen H M T (2006) An ecological and societal approach to biological control. Springer.
    El-Abyad M, El-Sayed M, El-Shanshoury A and El-Sabbagh S M (1993) Towards the biological control of fungal and bacterial diseases of tomato using antagonistic Streptomyces spp. Plant and Soil 149,185-195.
    El-Tarabily K A (2008) Promotion of tomato (Lycopersicon esculentum Mill.) plant growth by rhizosphere competent 1-aminocyclopropane-l-carboxylic acid deaminase-producing streptomycete actinomycetes. Plant and Soil 308,161-174.
    El Zemrany H, Czarnes S, Hallett P D, Alamercery S, Bally R and Jocteur Monrozier L (2007) Early changes in root characteristics of maize (Zea mays) following seed inoculation with the PGPR Azospirillum lipoferum CRT1. Plant and Soil 291,109-118.
    Elad Y and Chet I (1987) Possible role of competition for nutrients in biocontrol of Pythium damping-off by bacteria. Phytopathology 77,190-195.
    Elphinstone J G (2005) Bacterial wilt disease and the Ralstonia solanacearum: Species Complex. APS Press, St. Paul, MN. Comb. Nov. Microbiology and Immunology,39,897-904.
    Elphinstone J, Hennessy J, Wilson J and Stead D (1996) Sensitivity of different methods for the detection of Ralstonia solanacearum in potato tuber extracts. EPPO Bulletin 26,663-678.
    Elphinstone J, Stead D, Caffier D, Janse J, Lopez M, Mazzucchi U, Muller P, Persson P, Rauscher E and Schiessendoppler E (2000) Standardization of methods for detection of Ralstonia solanacearum in potato*. EPPO Bulletin 30,391-395.
    Emmert E A B and Handelsman J (2006) Biocontrol of plant disease:a (Gram-) positive perspective. FEMS Microbiology letters 171,1-9.
    Engelbrecht M (1994) Modification of a semi-selective medium for the isolation and quantification of Pseudomonas solanacearum. Bacterial Wilt Newsletter,3-5.
    FAO (2006) Database, http://faostat.fao.org.
    Fegan M, Prior P, Allen C and Hayward A (2005) How complex is the" Ralstonia solanacearum species complex"? Bacterial wilt disease and the Ralstonia solanacearum species complex,449-461.
    Feng D X, Deslandes L, Keller H, Revers F, Favery B, Lecomte P, Hirsch J, Olivier J and Marco Y (2004) Isolation and characterization of a novel Arabidopsis thaliana mutant unable to develop wilt symptoms after inoculation with a virulent strain of Ralstonia solanacearum. Phytopathology 94,289-295.
    French E and De Lindo L (1982) Resistance to Pseudomonas solanacearum in potato:Specificity and temperature sensitivity. Phytopathology 72,1408-1412.
    French E, Gutarra L, Aley P and Elphinstone J (1995) Culture media for Pseudomonas solanacearum isolation, identification and maintenance. Fitopatologia 30,126-130.
    French E R, Aley P, Torres E (1993) Diversity of Pseudomonas solanacearumin Peru and Brazil [C] //Hartman G L, Hayward A C.Bacterial Wilt. AustCent IntAgric ResProc,70-77.
    Frey P, Prior P, Marie C, Kotoujansky A, Trigalet-Demery D and Trigalet A (1994) Hrp-mutants of Pseudomonas solanacearum as potential biocontrol agents of tomato bacterial wilt. Applied and environmental microbiology 60,3175-3181.
    Gebhardt C and Valkonen J P T (2001) Organization of genes controlling disease resistance in the potato genome. Annual review of phytopathology 39,79-102.
    Genin S and Boucher C (2002) Ralstonia solanacearum: secrets of a major pathogen unveiled by analysis of its genome. Molecular plant pathology 3,111-118.
    Genin S and Boucher C (2004) Lessons learned from the genome analysis of Ralstonia solanacearum. Annu. Rev. Phytopathol.42,107-134.
    Ghorbani R, Wilcockson S, Koocheki A and Leifert C (2008) Soil management for sustainable crop disease control:a review. Environmental Chemistry Letters 6,149-162.
    Glick B R (1995) The enhancement of plant growth by free-living bacteria. Canadian journal of microbiology 41,109-117.
    Glick B R, Patten C, Penrose D, Holguin G and Glick B (1999) Biochemical and genetic mechanisms used by plant growth promoting bacteria. World Scientific.
    Glick B R, Penrose D M and Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. Journal of Theoretical Biology 190,63-68.
    Granada G and Sequeira L (1983) Survival of Pseudomonas solanacearum in soil, rhizosphere, and plant roots. Canadian journal of microbiology 29,433-440.
    Granger M, Van Reenen C and Dicks L (2008) Effect of gastro-intestinal conditions on the growth of Enterococcus mundtii ST4SA, and production of bacteriocin ST4SA recorded by real-time PCR. International journal of food microbiology 123,277-280.
    Guo J H, Qi H Y, Guo Y H, Ge H L, Gong L Y, Zhang L X and Sun P H (2004) Biocontrol of tomato wilt by plant growth-promoting rhizobacteria. Biological Control 29,66-72.
    Haas D and Defago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nature Reviews Microbiology 3,307-319.
    Hayward A (1964) Characteristics of Pseudomonas solanacearum. Journal of applied microbiology 27, 265-277.
    Hayward A (1991) Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum. Annual review of phytopathology 29,65-87.
    Hikichi Y, Yoshimochi T, Tsujimoto S, Shinohara R, Nakaho K, Kanda A, Kiba A and Ohnishi K (2007) Global regulation of pathogenicity mechanism of Ralstonia solanacearum. Plant biotechnology 24,149-154.
    Horita M, Yano K and Tsuchiya K (2004) PCR-based specific detection of Ralstonia solanacearum race 4 strains. Journal of General Plant Pathology 70,278-283.
    Hsieh F C, Lin T C, Meng M and Kao S S (2008) Comparing methods for identifying Bacillus strains capable of producing the antifungal lipopeptide iturin A. Current microbiology 56,1-5.
    Huang Q and Allen C (1997) An exo-Poly-a-D-galacturonosidase, PehB, is required for wild type virulence of Ralstonia solanacearom. J Bacteriol,179,7369-7378.
    Husain A K and A Kelman (1958) Relation of slime production to mechanism of wilting and pathogenicity of Pseudomonas solanacearum. Phytopathology,48,155-165.
    Ibrahim M, Metry E, Moustafa S, Tawfik A and El-Din T M N (2005) Morphological and molecular diagnosis of commercial potato cultivars infected with Ralstonia solanacearum. Arab Journal of Biotechnology,8(2),211-222.
    Janse J D (1988) Adetection method for Pseudomonas solanacearuminin symptom less potatotubers and some dataonits sensitivity and specificity. BullOEPP,18,343-351.
    Ji X, Lu G, Gai Y, Zheng C and Mu Z (2008) Biological control against bacterial wilt and colonization of mulberry by an endophytic Bacillus subtilis strain. FEMS microbiology ecology 65,565-573.
    Jouve L, Engelmann F, Noirot M and Charrier A (1993) Evaluation of biochemical markers (sugar, proline, malonedialdehyde and ethylene) for cold sensitivity in microcuttingsof two coffee species. Plant Science 91,109-116.
    Kamnev A A and van der Lelie D (2000) Chemical and biological parameters as tools to evaluate and improve heavy metal phytoremediation. Bioscience Reports 20,239-258.
    Kang Y, Huang J, Mao G, He L and Schell M A (1994) Dramatically reduced virulence of mutants of Pseudomonas solanacearum defective in export of extracellular proteins across the outer membrane. MPMI-Molecular Plant Microbe Interactions 7,370-377.
    Karganilla A D and Buddenhagen I W (1972) Development of a selective medium for Pseudomonas solanacearum. Phytopatholgy,62,1373-1376
    Kelman A (1954) The relationship of pathogenicity of Pseudomonas solanacearum to colony appearance in a tetrazolium medium. Phytopathology 44,693-695.
    Kilian M, Steiner U, Krebs B, Junge H, Schmiedeknecht G and Hain R (2000) FZB24(?) Bacillus subtilis-mode of action of a microbial agent enhancing plant vitality. Pflanzenschutz Nachrichten Bayer 1,1.
    Kinsella K, Schulthess C P, Morris T F and Stuart J D (2009) Rapid quantification of Bacillus subtilis antibiotics in the rhizosphere. Soil Biology and Biochemistry 41,374-379.
    Kitamura N, Semler B L, Rothberg P G, Larsen G R, Adler C J, Dorner A J, Emini E A, Hanecak R, Lee J J and van der Werf S (1981) Primary structure, gene organization and polypeptide expression of poliovirus RNA.
    Kloeppe J, Rodriguez-Kabana R, Zehnder A, Murphy J, Sikora E and Fernandez C (1999) Plant root-bacterial interactions in biological control of soilborne diseases and potential extension to systemic and foliar diseases. Australasian Plant Pathology 28,21-26.
    Kloepper J W, Lifshitz R and Zablotowicz R M (1989) Free-living bacterial inocula for enhancing crop productivity. Trends in Biotechnology 7,39-44.
    Klopper J W and Schroth M N (1976) Plant growth promoting rhizobacteria on radishes. Proc.Ⅳ Cont.Plant Pathogenic Bacteria,2,897-882.
    Kolbert C P and Persing D H (1999) Ribosomal DNA sequencing as a tool for identification of bacterial pathogens. Current opinion in microbiology 2,299-305.
    Krausz J P and Thurston H D (1975) Breakdown of resistance to Pseudomonas solanacearum in tomato. Phytopathology 65,1272-1274.
    Kutin R K, Alvarez A and Jenkins D M (2009) Detection of Ralstonia solanacearum in natural substrates using phage amplification integrated with real-time PCR assay. Journal of microbiological methods 76,241-246.
    Larson N, Ismail B, Nielsen S and Hayes K (2006) Activity of Bacillus polymyxa protease on components of the plasmin system in milk. International dairy journal 16,586-592.
    Lebuhn M, Heulin T and Hartmann A (2006) Production of auxin and other indolic and phenolic compounds by Paenibacillus polymyxa strains isolated from different proximity to plant roots. FEMS microbiology ecology 22,325-334.
    Lee K, Pan J J and May G (2009) Endophytic Fusarium verticillioides reduces disease severity caused by Ustilago maydis on maize. FEMS Microbiology letters 299,31-37.
    Lee S Y (2007) Induced systemic resistance by Bacillus vallismortis EXTN-1 suppressed bacterial wilt in tomato caused by Ralstonia solanacearum. The Plant Pathology Journal 23,22-25.
    Leifert C, Li H, Chidburee S, Hampson S, Workman S, Sigee D, Epton H and Harbour A (1995) Antibiotic production and biocontrol activity by Bacillus subtilis CL27 and Bacillus pumilus CL45. Journal of applied microbiology 78,97-108.
    Lemessa F and Zeller W (2007) Screening rhizobacteria for biological control of Ralstonia solanacearum in Ethiopia. Biological Control 42,336-344.
    Ling N, Huang Q, Guo S and Shen Q (2011) Paenibacillus polymyxa SQR-21 systemically affects root exudates of watermelon to decrease the conidial germination of Fusarium oxysporum f. sp. niveum. Plant and Soil 341,485-493.
    Luo J, Ran W, Hu J, Yang X, Xu Y and Shen Q (2010) Application of bio-organic fertilizer significantly affected fungal diversity of soils. Soil Science Society of America Journal 74,2039-2048.
    Madigan M T (2005) Brock Biology of Microorganisms,11th edn. International Microbiology 8,149-152.
    Marin J E and El-Nashaar H M (1993) Pathogenicity and new phenotypes of Pseudomonas solanacearum from Peru [C]//Hartman G L, Hayward AC. Bacterial Wilt. Aust Cent Int Agric Res Proc,78-84.
    Masalha J, Kosegarten H, Elmaci O and Mengel K (2000) The central role of microbial activity for iron acquisition in maize and sunflower. Biology and Fertility of Soils 30,433-439.
    Masunaka A, Nakaho K, Sakai M, Takahashi H and Takenaka S (2009) Visualization of Ralstonia solanacearum cells during biocontrol of bacterial wilt disease in tomato with Pythium oligandrum. Journal of General Plant Pathology 75,281-287.
    Matsuki T, Watanabe K, Fujimoto J, Takada T and Tanaka R (2004) Use of 16S rRNA gene-targeted group-specific primers for real-time PCR analysis of predominant bacteria in human feces. Applied and environmental microbiology 70,7220-7228.
    Messiha N A S, Van Diepeningen A, Farag N, Abdallah S, Janse J and van Bruggen A H C (2007) Stenotrophomonas maltophilia: a new potential biocontrol agent of Ralstonia solanacearum, causal agent of potato brown rot. European Journal of Plant Pathology 118,211-225.
    Mew T and Ho W (1977) Effect of soil temperature on resistance of tomato cultivars to bacterial wilt. Phytopathology 67,909-911.
    Michel V V and Mew T (1998) Effect of a soil amendment on the survival of Ralstonia solanacearum in different soils. Phytopathology 88,300-305.
    Moffett M L and Hayward A C (1980) The role of weeds Peeies in the survival of Pseudomonas solanacearum in tomato croping land. Austrbllas Plantpathol,9,6-8
    Nagorska K, Bikowski M and Obuchowski M (2007) Multicellular behaviour and production of a wide variety of toxic substances support usage of Bacillus subtilis as a powerful biocontrol agent. Acta biochimica polonica-english edition 54,495.
    Nesmith W and Jenkins Jr S (1979) A selective medium for the isolation and quantification of Pseudomonas solanacearum from soil. Phytopathology 69,6.
    Ongena M and Jacques P (2008) Bacillus lipopeptides:versatile weapons for plant disease biocontrol. Trends in Microbiology 16,115-125.
    Orgambide G, Montrozier H, Servin P, Roussel J, Trigalet-Demery D and Trigalet A (1991) High heterogeneity of the exopolysaccharides of Pseudomonas solanacearum strain GMI 1000 and the complete structure of the major polysaccharide. Journal of Biological Chemistry 266,8312-8321.
    Perez-Garcia A, Romero D and De Vicente A (2011) Plant protection and growth stimulation by microorganisms: biotechnological applications of Bacilli in agriculture. Current Opinion in Biotechnology 22,187-193.
    Paulitz T, Anas O and Fernando D (1992) Biological control of Pythium damping-off by seed-treatment with pseudomonas putida: Relationship with ethanol production by pea and soybean seeds. Biocontrol Science and Technology 2,193-201.
    Piuri M, Sanchez-Rivas C and Ruzal S (1998) A novel antimicrobial activity of a Paenibacillus polymyxa strain isolated from regional fermented sausages. Letters in applied microbiology 27, 9-13.
    Poueymiro M and Genin S (2009) Secreted proteins from Ralstonia solanaceanm: a hundred tricks to kill a plant. Current opinion in microbiology 12,44-52.
    Poussier S and Luisetti J (2000) Specific detection of biovars of Ralstonia solanacearum in plant tissues by Nested-PCR-RFLP. European Journal of Plant Pathology 106,255-265.
    Poussier S, Thoquet P, Trigalet-Demery D, Barthet S, Meyer D, Arlat M and Trigalet A (2003) Host plant-dependent phenotypic reversion of Ralstonia solanacearum from non-pathogenic to pathogenic forms via alterations in the phcA gene. Molecular microbiology 49,991-1003.
    Priou S, Gutarra L and Aley P (2006) An improved enrichment broth for the sensitive detection of Ralstonia solanacearum (biovars 1 and 2A) in soil using DAS-ELISA. Plant pathology 55,36-45.
    Priou S, Marquez M and Gutarra L (2005) Biological control of bacterial wilt of potato (Ralstonia solanacearum) using antagonistic Pseudomonas putida strains. Phytopathology 95.
    Raaijmakers J M, Paulitz T C, Steinberg C, Alabouvette C and Moenne-Loccoz Y (2009) The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant and Soil 321,341-361.
    Ramesh R, Joshi A and Ghanekar M (2009) Pseudomonads:major antagonistic endophytic bacteria to suppress bacterial wilt pathogen, Ralstonia solanacearum in the eggplant (Solanum melongena L.). World Journal of Microbiology and Biotechnology 25,47-55.
    Ramos H J O, Roncato-Maccari L D B, Souza E M, Soares-Ramos J R L, Hungria M and Pedrosa F O (2002) Monitoring A zospirillum-wheat interactions using the gfp and gusA genes constitutively expressed from a new broad-host range vector. Journal of biotechnology 97,243-252.
    Ran L, Liu C, Wu G, Van Loon L and Bakker P (2005) Suppression of bacterial wilt in Eucalyptus urophylla by fluorescent Pseudomonas spp. in China. Biological Control 32,111-120.
    Raza W, Yang X, Wu H, Wang Y, Xu Y and Shen Q (2009) Isolation and characterisation of fusaricidin-type compound-producing strain of Paenibacillus polymyxa SQR-21 active against Fusarium oxysporum f. sp. nevium. European Journal of Plant Pathology 125,471-483.
    Rica C (1983) A new selective medium for Pseudomonas solanacearum. Plant disease 67,1084-1088.
    Robinson A (1992) Serological detection of Pseudomonas solanacearum by ELISA [C]//Taiwan Kaohsiung:Proceedings of the international Bacterial Wilt Symposium.
    Santos B M, Gilreath J P, Motis T N, Noling J W, Jones J P and Norton J A (2006) Comparing methyl bromide alternatives for soilborne disease, nematode and weed management in fresh market tomato. Crop Protection 25,690-695.
    Schell M A (2000) Control of virulence and pathogenicity genes of Ralstonia solanacearum by an elaborate sensory network. Annual review of phytopathology 38,263-292.
    Seal S, Taghavi M, Fegan N, Hayward A and Fegan M 1999 Determination of Ralstonia (Pseudomonas) solanacearum rDNA subgroups by PCR tests. Plant pathology 48,115-120.
    Seal S E, Jackson L A and Daniels M J (1992) Isolation of a Pseudomonas solanacearum-specific DNA probe by subtraction hybridization and construction of species-specific oligonucleotide primers for sensitive detection by the polymerase chain reaction. Applied and environmental microbiology 58,3751-3758.
    Shiomi Y, Nishiyama M, Onizuka T and Marumoto T (1999) Comparison of bacterial community structures in the rhizoplane of tomato plants grown in soils suppressive and conducive towards bacterial wilt. Applied and environmental microbiology 65,3996-4001.
    Stover A G and Driks A (1999) Regulation of synthesis of the Bacillus subtilis transition-phase, spore-associated antibacterial protein TasA. Journal of bacteriology 181,5476-5481.
    Stein T (2005) Bacillus subtilis antibiotics:structures, syntheses and specific functions. Molecular microbiology 56,845-857.
    Strain U W M (1983) Biological control of bacterial wilt of potatoes:attempts to induce resistance by treating tubers with bacteria. Plant disease,499.
    Taghavi S, Barac T, Greenberg B, Borremans B, Vangronsveld J and Van Der Lelie D (2005) Horizontal gene transfer to endogenous endophytic bacteria from poplar improves phytoremediation of toluene. Applied and environmental microbiology 71,8500-8505.
    Tan H, Zhou S, Deng Z, He M and Cao L (2011) Ribosomal-sequence-directed selection for endophytic streptomycete strains antagonistic to Ralstonia solanacearum to control tomato bacterial wilt. Biological Control 59,245-254.
    Tong Y H, Ji Z L, Xu J Y (2002) Identification of bacterial species antagonistic against Botrytis cinerea and conditions for their growth. Journal of Yangzhou University. Agricultural and life Sciences Edition,23(2):67-70.
    Trigalet A and Demery D (1986) Invasiveness in tomato plants of Tn5-induced avirulent mutants of Pseudomonas solanacearum. Physiological and Molecular Plant Pathology 28,423-430.
    Trigalet A and Trigalet-Demery D (1990) Use of avirulent mutants of Pseudomonas solanacearum for the biological control of bacterial wilt of tomato plants. Physiological and Molecular Plant Pathology 36,27-38.
    Tsuchiya K (2004) Molecular biological studies of Ralstonia solanacearum and related plant pathogenic bacteria. Journal of General Plant Pathology 70,385-387.
    Valls M, Genin S, Boucher C. Integrated regulation of the typeⅢ secretion system and other virulence determinants in Ralstonia solanacearnm. Plos Pathogens,2006,2:798-807
    Vanderwolf J M, Elphinstone J G, Roux A C (1997) Evaluation of polyclonal antisera and becomelnant monoclonal antibodies against Ralstonia solanacearum race3 in immuno fluorescence techniques and ELISA [C]//France Gadelou rial Wilt Symposium.1997
    van Overbeek L S, Cassidy M, Kozdroj J, Trevors J T and van Elsas J D (2002) A polyphasic approach for studying the interaction between Ralstonia solanacearum and potential control agents in the tomato phytosphere. Journal of microbiological methods 48,69-86.
    Vandamme P, Pot B, Gillis M, De Vos P, Kersters K and Swings J (1996) Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiological reviews 60,407-438.
    Vanitha S, Niranjana S, Mortensen C and Umesha S (2009) Bacterial wilt of tomato in Karnataka and its management by Pseudomonas fluorescens. BioControl 54,685-695.
    Vanitha S and Umesha S (2011) Pseudomonas fluorescens mediated systemic resistance in tomato is driven through an elevated synthesis of defense enzymes. Biologia Plantarum 55,317-322.
    Walsh C T (2004) Polyketide and nonribosomal peptide antibiotics:Modularity and versatility. Science Signalling 303,1805.
    Wang J F and Lin C H (2005) Integrated management of tomato bacterial wilt. AVRDC-The world vegetable center, Taiwan,1-12.
    Wei G, Pan L, Du H, Chen J and Zhao L (2004) ERIC-PCR fingerprinting-based community DNA hybridization to pinpoint genome-specific fragments as molecular markers to identify and track populations common to healthy human guts. Journal of microbiological methods 59,91-108.
    Wei Z, Yang X, Yin S, Shen Q, Ran W and Xu Y (2011) Efficacy of Bacillus-fortified organic fertiliser in controlling bacterial wilt of tomato in the field. Applied Soil Ecology 48,152-159.
    Weller D M (2007) Pseudomonas biocontrol agents of soilborne pathogens:looking back over 30 years. Phytopathology 97,250-256.
    Weller D M, Raaijmakers J M, Gardener B B M S and Thomashow L S (2002) Microbial populations responsible for specific soil suppressiveness to plant pathogens 1. Annual review of phytopathology 40,309-348.
    Wicker E, Grassart L, Coranson-Beaudu R, Mian D, Guilbaud C, Fegan M and Prior P (2007) Ralstonia solanacearum strains from Martinique (French West Indies) exhibiting a new pathogenic potential. Applied and environmental microbiology 73,6790-6801.
    Wilson K H and Blitchington R B (1996) Human colonic biota studied by ribosomal DNA sequence analysis. Applied and environmental microbiology 62,2273-2278.
    Wu H, Yang X, Fan J, Miao W, Ling N, Xu Y, Huang Q and Shen Q (2009) Suppression of Fusarium wilt of watermelon by a bio-organic fertilizer containing combinations of antagonistic microorganisms. BioControl 54,287-300.
    Wu H S, Raza W, Fan J Q, Sun Y G, Bao W and Shen Q R (2008) Cinnamic acid inhibits growth but stimulates production of pathogenesis factors by in vitro cultures of Fusarium oxysporum f. sp. niveum. Journal of agricultural and food chemistry 56,1316-1321.
    Wullings B, Van Beuningen A, Janse J and Akkermans A (1998) Detection of Ralstonia solanacearum, which causes brown rot of potato, by fluorescent in situ hybridization with 23s rRNA-targeted probes. Applied and environmental microbiology 64,4546-4554.
    Xue Q Y, Chen Y, Li S M, Chen L F, Ding G C, Guo D W and Guo J H (2009) Evaluation of the strains of Acinetobacter and Enterobacter as potential biocontrol agents against Ralstonia wilt of tomato. Biological Control 48,252-258.
    Yabuuchi E, Kosako Y, Oyaizu H, Yano I, Hotta H, Hashimoto Y, Ezaki T and Arakawa M (1992) Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes 1981) comb. nov. Microbiology and immunology 36,1251.
    Yabuuchi E, Kosako Y, Yano I, Hotta H and Nishiuchi Y (1995) Transfer of two Burkholderia and an Alcaligenes species to Ralstonia gen. nov.:Proposal of Ralstonia pickettii (Ralston, Palleroni and Doudoroff 1973) comb. nov., Ralstonia solanacearum (Smith 1896) comb. nov. and Ralstonia eutropha (Davis 1969) comb. nov. Microbiology and immunology 39,897.
    Zaidi S, Usmani S, Singh B R and Musarrat J (2006) Significance of Bacillus subtilis strain SJ-101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea. Chemosphere 64,991-997.
    Zhang S, Raza W, Yang X, Hu J, Huang Q, Xu Y, Liu X, Ran W and Shen Q (2008) Control of Fusarium wilt disease of cucumber plants with the application of a bioorganic fertilizer. Biology and Fertility of Soils 44,1073-1080.
    Zhao Q, Dong C, Yang X, Mei X, Ran W, Shen Q, Xu Y (2011) Biocontrol of Fusarium wilt disease for Cucumis melo melon using bio-organic fertilizer. Applied Soil Ecology,47,67-75.
    Zhou T, Chen D, Li C, Sun Q, Li L, Liu F, Shen Q, Shen B 20120 Isolation and characterization of Pseudomonas brassicacearum J12 as an antagonist against Ralstonia solanacearum and identification of its antimicrobial components. Microbiolgical Research, doi:10.1016/j. micres,01.003
    布坎南R E,吉本斯N E.(1984)伯杰细菌鉴定手册[M].中国科学院微生物研究所,译.8版.北京:科学出版社,729-759.
    蔡学清,何红,胡方平.(2005)内生菌Bs-2对辣椒苗的促生作用及对内源激素的影响.亚热带农业研究,1(4):49-52.
    曹丹,宗良纲,肖峻,张倩,赵妍.(2010)生物肥对有机黄瓜生长及土壤生物学特性的影响.应用生态学报,21(10):2557-2592.
    曹林奎,陆贻通,林玮.(2001)生物有机肥料对温室蔬菜硝酸和土壤盐分累积的影响.农村生态环境,(3):45-47.
    曹惠铃,王琦,胡青平,陈五岭.(2009)添加复合菌剂好氧发酵生产生物肥料的工艺优化.农业工程学报,25(1):189-193.
    曹宜,刘波,朱育著,等.(2003)青枯病生防菌ANTI-8098A菌株生物学特性研究.福建农业学报,18(4):239-242.
    常志州,马艳,黄红英,等.(2005)辅以拮抗菌的有机肥对辣椒疫病生防效果的研究.土壤肥料,(2):28-30.
    陈中义,张杰,黄大防.(2003)植物病害生防芽孢杆菌抗菌机制与遗传改良研究.植物病理学报,33(2):97-103.
    陈建勋,王晓峰.(2002)植物生理学实验指导.广州:华南理工大学出版社,119-124.
    陈绍兴,赵翔,沈萍,等.(2006)高灵敏假单胞菌铁载体的平板检测方法.微生物学通报,33(3):122-127.
    陈晓敏,胡方平,吴燕榕.(2000)福建省花生青枯病菌致病型及生物型的测定.福建农业大学学报,29(4):470-473.
    陈文新.(1993)土壤与环境微生物学[M].北京:北京农业大学出版社,1-7.
    陈武,何命军,易建华,等.(2005)三株拮抗菌对烟草幼苗根系活力的影响.湖南农业科学,(4):26-27.
    段秀梅,高晓蓉,吕军,等.(1010)两株土壤分离菌的解磷能力及对玉米的促生作用.中国土壤与肥料,(2):79-85.
    方中达.(1998)植病研究方法(第3版)[M].北京:中国农业出版社.
    葛红莲,郭坚华,祁红英,等.(2004)复合菌剂防治辣椒青枯病.植物病理学报,34(2):162-165.
    葛诚.(1996)微生物肥料的生产应用及发展[M].北京:中国农业科技出版社,1-9.
    郭培国,陈建军,李荣华.(2000)pH值对烤烟根系活力及烤后烟叶化学成分的影响.中国农业科学,33(1):39-45.
    郭坚华,郭亚辉,张立新,等.(2001)辣椒青枯病拮抗菌株的筛选及田间防效的测定.中国生物防治,17(3):101-106.
    郭坚华,龚龙英,祁红英,等.(2003)三个拮抗菌株对辣椒青枯病的作用机制.中国生物防治,19(1):6-10.
    郭坚华,王玉菊,李瑾,等.(1996)抑菌圈-定殖力双重测定法筛选青枯病生防细菌.植物病理学报,26(1):49-54.
    郭良栋.(2001)菌物系统,20(1):148-152.
    黄福新,陈永惠,华静月,等.(1998)广西烟草青枯菌菌系及其主要生理特性研究.植物保护学报,25(3):240-244.
    焦振泉,刘秀梅.(2010)细菌分类鉴定的分子生物学方法研究进展.国外医学:卫生学分册,(6):356-361.
    何欣,郝文雅,杨兴明,沈其荣,黄启为.(2010)生物有机肥对香蕉植株生民和香蕉枯萎病防治的研究.植物营养与肥料学报,26(4):978-985.
    何红,欧雄常,王立才,等.(2008)红树内生海洋细菌CⅢ-1菌株对辣椒青枯病的防病效果.植物保护学报,35(6):497-500.
    何礼远,康耀卫.(1995)植物青枯(Pseudamonas solanaceasrum)致病机理.自然科学进展—国家重点实验室通讯,5(1):7-14.
    何礼远.(2002)植物细菌性青枯病[A].二十世纪中国学术大典—农科学卷[c].福州:福建教育出版社,277-279.
    何自福,虞皓,罗方芳.(2003)广东茄科青枯菌致病力分化及其DNA多态性分析.植物病理学报,33(5):415-420.
    江欢欢,程凯,杨兴明,等.(2010)辣椒青枯病拮抗菌的筛选及其生物防治效应.土壤学报,47(6):1225-1231.
    林娟,马骋,刘树滔,吴玲玲,饶平凡.(2007)应用高效离子交换色谱快速分离定量不同致病力的青枯菌.色谱,25(1):70-74.
    刘波,林营志,朱育菁,葛慈斌,曹宜.(2004)生防菌对青枯雷尔氏菌的致弱特性.农业生物技术学报,12(3):322-329.
    康耀卫,黄建中,毛国璋.(1995)青枯假单胞菌胞外蛋白缺失突变株的致病力.植物病虫害研究进展,(1):71.
    康贻军,程洁,梅丽娟,等.(2010)植物根际促生菌的筛选及鉴定.微生物学报,50(7):853-861
    黎起秦,罗宽.(2006)内生菌B47的定殖能力及其对番茄青枯病的防治作用.植物保护学报,33(4):363-368.
    李德全,陈志谊,聂亚锋.(2008)生防菌Bs-916及高效突变菌株抗菌物质及其对水稻抗性诱导作用的研究.植物病理学报,38(2):192-198.
    李远明,申庆龙,张凤泉,等.(2002)生物有机肥在优质大豆生产中应用效果的研究.大豆通报,3:7.
    李琳,李槿年,余为一.(2004)细菌分类鉴定方法的研究概况.安徽农业科学,32(3):549-55
    李琳,焦新之.(1980)应用蛋白质染色剂考马斯亮蓝G-250测定蛋白质的方法.植物生理学通讯,(6):52-55.
    李广存.(2002)马铃薯青枯病的PE-EL ISA检测.中国马铃薯,(1):18-21.
    李玉娥,姚拓,荣良燕.(2010)溶磷菌溶磷和分泌IAA特性及对苜蓿生长的影响.草地学报,18(3):84-88.
    李合生,孙群,赵世杰,等.(2000)植物生理生化实验原理和技术[M].北京:高等教育出版社.
    李阜棣,喻子牛,何绍江.(1996)农业微生物学实验技术.北京:中国农业出版社.
    凌宁,王秋君,杨兴明,等.(2009)根际施用微生物有机肥防治连作西瓜枯萎病研究.植物营养与肥料学报,15,1136-1141.
    刘荣昌.(1996)微生物肥料的生产应用及其发展[M].北京:中国农业科技出版社,66-74.
    刘波,林营志,朱育菁,葛慈斌,曹宜.(2004)生防菌对青枯雷尔氏菌的致弱特性.农业生物技术学报,12,322-329.
    龙良鲲.(2002)番茄青枯病的研究进展.广西农业科学,3,134-137.
    罗宽,王庄.(1983)利用拮抗的Pseudomonas spp.和无致病力的P. solanacearum防治青枯病的研究.植物病理学报,13,51-56.
    卢秉林,李娟,郭天文.(2007)甘肃微生物肥料研发应用现状及其发展对策.甘肃农业技,(8):36-38.
    申爱荣,姬广海,魏兰芳,何月秋.(2006)复合菌剂防治马铃薯青枯病研究.云南农业大学,21(4):449-453.
    沈德龙,曹凤明,李力.(2007)我国生物有机肥的发展现状及展望.中国土壤与肥料,(6):1-5.
    沈德龙,李俊,姜昕.(2007)我国生物有机肥的发展现状及展望.中国农技推广,23(9):35-37.
    隋文志.(2009)生物有机肥2007产业化加工及田间应用技术研究进展.现代化农业,10:11-14.
    孙力军,陆兆新,别小妹,等.(2008)培养基对解淀粉芽孢杆菌ES-2菌株产抗菌脂肤的影响.中国农业科学,41(10):3389-3398.
    孙建波,王宇光,赵平娟,等.(2010)拮抗菌XB16在香蕉体内的定殖及对抗病相关酶活性的影响.热带作物学报,31(2):212-216.
    苏阿德,谢关林,李斌,Coosemans,刘波.(2004)芽孢杆菌在促进番茄生长和控制青枯病上的比较优势(英文).浙江大学学报(农业与生命科学版),30,603-610.
    帅正彬,苏家烈,罗小波.(1997)成都番茄青枯菌生理分化和品种抗性鉴定.中国蔬菜,(3):16-18.
    田宏先,崔林,孙振,等.(2002)内生菌对马铃薯环腐病的田间防效及增产作用.山西农业科学,30(1):73-75.
    田宏先,崔林,王秀英,等.(2003)马铃薯内生促生菌的促生长作用.山西农业科学,31(1):28-30.
    魏春妹,张春明,王建明,刘宗镇,赵建华.(2000)拮抗青枯病9084-2-2菌株作用机理探讨.上海农业学报,16,74-77.
    魏海雷,王烨,张力群,唐文华.(2004)生防菌株2P24与CPF-10的鉴定及其生防相关性状的初步分析.植物病理学报,34,80-85.
    魏兰芳,姬广海,张世光.(2002)云南马铃薯青枯病菌的PCR检测.西南农业报,24(1):72-741.
    吴建峰,林先贵.(2002)我国微生物肥料研究现状及发展趋势.土壤,34(2):68-73.
    肖相政,刘可星,廖宗文.(2009)生物有机肥对番茄青枯病的防效研究及机理初探.农业环境科学学报,28(11):2368-2373.
    肖爱萍,游春平,刘建斌,等.(2005)三株拮抗细菌对辣椒青枯病的防治试验.江西植保,28(4):177-179.
    肖田,肖崇刚,邹阳,等.(2008)青枯菌无致病力菌株对烟草青枯病的控病作用初步研究.植物保护,34(2):79-82.
    徐玲,王伟,魏鸿刚,等.(2006) 多粘类芽孢杆菌HY96-2对番茄青枯病的防治作用.中国生物防治,22(3):216-220.
    王金生.(2000)植物病原细菌学[M].北京.中国农业出版社.
    王静,赵廷昌,孔凡玉,等.(2007)拮抗细菌对烟草青枯病的温室防病及促生效果.植物保护,33(5):103-106.
    王立刚,李维炯,邱建军,等.(2004)生物有机肥对作物生长、土壤肥力及产量的效应研究.土壤肥料,(5):12-16.
    王羽,肖崇刚.(2004)番茄青枯病病菌无致病力菌株的分离和控病研究.西南农业大学学报,26,426-428.
    王雅平,刘伊强,潘乃,等.(1993)枯草芽孢杆菌TG26防病增产效应的研究.生物防治通报,9(2):63-68.
    王琦.(2008)牛粪发酵生产生物有机肥的工艺优化及应用研究[D].西北大学硕士学位论文,6.
    王罗竑,刘国胜.(2007)畜禽排泄物对环境的危害及处理进展.耕作与栽培,(5):32.
    杨海君,谭周进,肖启明,等.(2004)假单胞菌的生物防治作用研究.中国生态农业学报,12(3):158-161.
    杨宇红,刘俊平,杨翠荣,龚惠芝,冯东昕,谢丙炎.(2008)无致病力hrp-突变体防治茄科蔬菜青枯病.植物保护学报,35,433-437.
    杨兴明,徐阳春,黄启为,等.(2009)有机(类)肥料与农业可持续发展和生态环境保护.土壤学报,45(5):925-932.
    张永成,田丰.(2007)马铃薯试验的研究方法[M].北京:中国农业科学技术出版社.
    张致平,姚天爵.(2005)抗生素与微生物产生的生物活性物质[M].北京:化学工业出版社,365-2367.
    张志斌.(2007)生物有机肥在马铃薯上的施用效应.安微农学通报,13(12):107.
    章健,任欣正.(1993)利用无致病力青枯菌株防治番茄青枯病的研究.南京农业大学学报,16:63-67.
    赵亚华.(2000)生物化学实验技术教程[M].广州:华南理工大学出版社.
    赵小蓉,林启美.(2001)微生物解磷的研究进展.土壤肥料,3(7):6-11.
    郑继法,张建华,许永玉,等.(195)利用无毒产细菌素菌株防治烟草细菌性青枯病.中国烟草,3:21-24.
    周莉华,李维炯,倪永珍.(2005)长期施用EM生物有机肥对冬小麦生产的影响.农业工程学报增刊,21:221-224.
    周陈.(2008)蝇蛆生物有机肥对土壤主要环境及作物生长的影响.贵州大学硕士研究生论文,25.
    周陈,李许滨,徐德彬,等.(2008)土壤肥力及冬小麦产量与生物有机肥的效应研究.安徽农业科学,36(3):1130-1132.
    周光,吴兆波.(2009)畜禽粪便的危害及防治对策.中国资源综合利用,27(10):26-27.
    钟希琼,王惠珍,邓日烈.(2005)生物有机肥对蔬菜生理性状和品质的影响.佛山科学术学院学报,(6):74-76.
    朱红惠,姚青,等.(2004)微生物学通报,31(1):1-5.
    朱林,张春兰,沈其荣.(2001)施用稻草等有机物料对黄瓜连作土壤pH、EC值和微生物的影响.安徽农业大学学报:自然科学版,(4):350-353.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700