用户名: 密码: 验证码:
海带(Laminaria Japonica Aresch)早期发育对UV-B辐射增强及其与其它环境因子交互作用的响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文综合运用实验生态学、统计学及电镜技术与方法,探讨了大型褐藻—海带(Laminaria japonica Aresch)早期发育对UV-B辐射增强及与其它环境因子交互作用的响应,为明确全球环境变化,特别是UV-B辐射持续增强对大型海藻早期发育的影响作用提供科学依据。
     1.海带早期发育对UV-B辐射增强的响应
     剂量为11.7和23.4 J m-2 d-1UV-B辐射对游孢子的附着无显著影响,而当UV-B辐射剂量大于35.1 J m-2 d-1时,游孢子的附着率显著低于对照组。低剂量UV-B辐射组(11.7-35.1 J m-2 d-1)中的胚孢子萌发率均大于93%,而高剂量组(46.8-70.2 J m-2 d-1)的萌发率在78.5%-88.5%之间,表明高剂量的UV-B辐射对胚孢子萌发的影响显著。游孢子释放120 h后,剂量为35.1-70.2 J m-2 d-1UV-B辐射处理组中仅有极少数胚孢子发育为配子体,大部分已死亡。与对照组相比,低剂量的UV-B辐射下幼孢子体发生率显著降低,雌配子体克隆发生率显著上升。然而,低剂量UV-B辐射对配子体性别比、雌配子体和幼孢子体的生长率无显著影响。研究表明,增强的UV-B辐射能显著影响海带早期发育阶段的多项指标(如游孢子附着、胚孢子萌发、配子体和幼孢子形成等),但对配子体性别、配子体和幼孢子体生长无明显影响。
     2.温度和UV-B辐射对海带早期发育的交互作用
     5℃下,UV-B辐射(11.7,23.4和35.1 J m-2 d-1)刺激了海带胚孢子的萌发;而10,15、20℃与UV-B辐射组合处理对胚孢子的萌发无显著影响。除15℃下配子体发生率与UV-B辐射剂量变化无显著关系外,其他温度(5,10和20℃)下,配子体发生率随UV-B辐射剂量的增加而显著降低。20℃和UV-B辐射(0,11.7,23.4和35.1 J m-2 d-1)之间存在显著交互作用,导致了20℃下雄配子体比例和雌配子体发育率随UV-B辐射剂量的增加而显著降低。第30d时,10℃下各实验组中的幼孢子体发生率均显著高于其它温度下相同水平的UV-B辐射组,而20℃下雌配子体克隆的发生率较高。研究表明,温度和UV-B辐射对海带早期发育的影响存在显著的交互作用,改变了海带配子体形成、生长、发育以及幼孢子体和雌配子体的发生等发育进程。
     3.温度与UV-B辐射对海带配子体细胞超微结构的影响
     温度和UV-B辐射组合处理对海带配子体细胞超微结构的影响,主要表现在细胞壁厚度、色素体结构以及蛋白核的数量和形态变化上。5和10℃下UV-B辐射导致配子体细胞壁明显减薄,而15℃下细胞壁明显增厚。上述3个温度下,UV-B辐射组中配子体的色素体片层结构均模糊不清,且类囊体出现断裂或粘联。配子体细胞中的蛋白核数量在UV-B辐射的刺激下明显增加,UV-B辐射组中的配子体细胞中均含2个以上的蛋白核。此外,在配子体线粒体大小、质体小球数量以及产生畸形细胞的形态等方面,各温度与UV-B辐射处理组合组与空白组之间均存在一定程度的差异。综合前一章的实验结果表明,高温下UV-B辐射能刺激配子体细胞壁厚度增加,在一定程度上能减轻UV-B辐射对色素体、线粒体等细胞器的伤害。
     4.营养元素(氮、磷)和UV-B辐射组合处理对海带生活史早期生长发育的交互作用
     UV-B辐射能显著影响胚孢子萌发、配子体形成、幼孢子体和雌配子体克隆发生,且与不同的氮、磷浓度之间存在显著的交互作用。配子体形成的最适条件为氮浓度N-0,磷浓度P-0且UV-B辐射水平为UVB-0;氮浓度为N-1,磷浓度为P-2或P-1,UV-B辐射水平为UVB-0时最有利于幼孢子体发生;氮浓度为N-0,磷浓度为P-1且UV-B辐射为UVB-2时是雌配子体克隆形成的最佳条件。UV-B辐射对雌配子体大小和相对生长率(RGR)影响的主效应不显著,而雌配子体的相对生长率受氮、磷浓度和UV-B辐射剂量间二维交互作用(N*P,N*UVB,P*UVB)的影响显著。海水中氮、磷浓度变化对雄配子体比例无显著影响,而UV-B辐射以及UV-B辐射与N、P浓度间的二维(N*P,N*UVB,P*UVB)和三维(N*P*UVB)交互作用显著影响了雄配子体比例。研究表明,UV-B辐射和海水中氮、磷浓度对海带早期发育阶段的交互作用十分明显,且交互作用会随着海带发育时期的变化而呈现出较大差异。
     5.不同光合有效辐射(PAR)强度和光质条件下海带早期发育对UV-B辐射增强的响应
     方差分析显示,PAR强度为35μmol photons m-2 s-1时,UV-B辐射对配子体形成、雌配子体发育和叶绿素含量的不利影响最小,且对雌配子体克隆的发生有一定的促进作用,不利于幼孢子体的形成。光质与UV-B辐射之间的交互作用显著影响了配子体形成、雌配子体发育、幼孢子体和雌配子体克隆发生及叶绿素a的含量。与白光相比,蓝光能显著缓解UV-B辐射对配子体发生率、雌配子体发育和叶绿素a含量的不利影响;红光下UV-B辐射对配子体发生率的不利影响小于白光,却加剧了UV-B辐射对雌配子体发育和叶绿素a含量的不利影响;绿光对海带早期发育最为不利。蓝光、红光和绿光均显著抑制了幼孢子体的形成。蓝光对雌配子体克隆发生有一定的刺激作用,蓝光与UV-B辐射剂量为23.4 J m-2 d-1的处理组合是本实验中雌配子体克隆发生的最适条件。研究表明,不同的PAR强度、光质与UV-B辐射之间存在显著的交互作用,对配子体形成、雌配子体发育、幼孢子体和雌配子体克隆发生及叶绿素a含量产生明显的影响。
     6. UV-B辐射对海带幼孢子体生长和生理的影响
     辐射处理期间(第2-10 d),3个辐射剂量(低剂量:11.7;中剂量:46.8;高剂量:93.6 J m-2 d-1)处理组的海带幼孢子体体长和体重的相对增长率显著低于对照组(即0 J m-2 d-1);第6-10 d内,低剂量处理组和高剂量处理组的叶绿素a含量与对照组相比呈现出完全相反的变化趋势,前者显著高于对照组,后者显著低于对照组;中、高剂量处理组中的ATP酶活性在整个实验期间均显著低于对照组,而低剂量组与对照组无显著差异。培养海水中氮、磷元素缺乏与中剂量UV-B辐射联合作用条件下的海带幼孢子体体长、体重相对增长率与中剂量UV-B辐射单独处理组无显著差异;辐射处理初期(第2-4 d),氮、磷缺乏与中剂量UV-B辐射共同处理组的ATP酶活性明显高于单独辐射处理组,后期(第10 d)则显著低于单独辐射处理组;氮、磷元素的缺乏加剧了中剂量UV-B辐射对幼孢子体叶绿素a含量的影响,氮、磷缺乏与中剂量UV-B辐射组合处理组的叶绿素a含量显著低于中剂量UV-B辐射单独处理组。在高剂量UV-B辐射处理过程中附加一定强度的光合有效辐射(photosynthetically active radiation,PAR,400-700nm)能在一定程度上减轻UV-B辐射对幼孢子体生长和生理状况的影响。
? For comprehensive understanding the effects of global enviromental changes, especially of increasing UV-B radiation, on the growth and development of macroalgae, the responses of the early developmental stages of Laminaria japonica Aresch to the interaction between enhanced UV-B radiation and other environmental factors were studied in the laboratory based on the integrated techniques and methods with experimental ecology, data statistics analysis and electronic microscopy.
     1. The response of the early developmental stages of L.japonica to enhanced UV-B radiation
     The low UV-B radiations (11.7-23.4 J m-2 d-1) had no significant effects on zoospores attachment, but when the UV-B dose > 35.1 J m-2 d-1 the attachment decreased significantly compared with the control. Germination of embryospores was >93% under the low (11.7 - 35.1 J m-2 d-1) doses, and in the range of 78.5% - 88.5% under the high (46.8 - 70.2 J m-2 d-1) UV-B doses, indicating a significant radiation effect. Under the higher UV-B exposure (35.1 - 70.2 J m-2 d-1), all of the few gametophytes formed from embryospores died 120 h post-release. After exposure to the low UV-B radiation (11.7 - 23.4 J m-2 d-1), the formation of sporophytes decreased and the female gametophyte clones increased compared with the control. However, the sex ratio and the relative growth of female gametophytes/sporophytes had not significantly changed. According to the results, enhanced UV-B radiation has a significant effect on the early development of L. japonica under laboratory conditions, suggesting that the UV-B radiation could not be overlooked as one of the important environmental factors influencing the ontogeny of macroalgae living in marine ecosystems.
     2. The interaction between temperature and UV-B radiation on the early development of L.japonica
     Embryospore germination was stimulated by UV-B radiation (11.7,23.4 and 35.1 J m-2 d-1) at 5℃, and UV-B radiations had no significant effects on embryospore germination at 10,15 and 20℃. Gametophytes incidences were irrelevant to the doses of UV-B radiation at 15℃, however, the incidences of gametophytes significantly decreasing as UV-B doses increasing at the three other temperatures. Both the percentage male gametophytes and the fecundity of female gametophytes decreasing with UV-B radiation dose increasing at 20℃showed that the significant interaction existed between 20℃and UV-B radiation(0,11.7,23.4 and 35.1 J m-2 d-1). At 30th d, the incidences of sporophytes in all experimental groups at 10℃were obviously higher than that of the other combinations of the same UV-B doses and other temperatures respectively. However, the highest incidences of female gametophytes clones occured at 20℃.The results suggested that significant interactions existed between temperature and UV-B radiation, which significantly influenced the early development of L.japonica, such as the incidence and development of gametophytes, incidences of both sporophytes and female gametophytes clones.
     3. The interaction between temperature and UV-B radiation on gametophyte ultrastructures
     The main ultrastructural influences on gametophytes of L.japonica by the combinations of temperature and UV-B radiation were thickness of cell wall, chloroplast structures and the changes in number and morphology of pyrenoid. At both 5 and 10℃, UV-B radiation caused gametophyte cell wall thin significantly, however, cell wall became thicken obviouly at15℃. The lamellar structure of chloroplast was unclear and thylakoid appeared fracture or stick under the treatments ?of combinations of the above three temperatures and UV-B radiation. The number of pyrenoid seemed to be stimulated by UV-B radiation and more than two pyrenoids in gametophyte cells were detected. Meanwhile, the differences in the size of mitochondria, the number of lipid globuli and the morphology of abnormal cells were also discovered between the control groups and the combination groups of temperature and UV-B radiation. Considering the results of the previous chapter, we concluded that proper high temperature could reduce the damages on chloroplast, mitochondria and other organelles caused by the UV-B radation due to the thickness of cell wall increased at high temperature.
     4. The interaction of nutrient elements (nitrogen, phosphorus) and UV-B radiation on the growth and development of L.japonica in its early life history
     Our data suggested that there were significant interactions between UV-B radiation and different nitrogen and phosphorus concentration, which significantly affected the embryospores germination, gametophytes formation, young sporophyte and female gametophyte clones incidence. The optimal conditions for gametophytes formation, young sporophyte incidence and female gametophyte colones incidence were the combination of N-0, P-0 and UVB-0, the combination of N-1, P-2 or P-1 and UVB-0, and the combination of N-0, P-1 and UVB-2 respectively. The main influence caused by UV-B radiation alone on the female gametophyte size and relative growth rate (RGR) was not significant, but the RGR was affected significantly by the two-dimensional interaction of nitrogen, phosphorus concentration and UV-B radiation (N * P, N * UVB, P * UVB). The proportion of male gametophytes was significantly affected by UV-B radiation, the two-dimensional (N * P, N * UVB, P * UVB) and the three-dimensional ( N * P * UVB) interactions, but the nitrogen or phosphorus concentrations had no significant effects. The results indicated that the interactions between UV-B radiation and nitrogen or phosphorus concentration in seawater may change the growth and development of L.japonica in its early life history.
     5. The response of the early developmental stages of L.japonica to enhanced UV-B radiation under different PAR intensity and light quality conditions
     Variance analysis showed that the adverse effects of UV-B radiation on the formation of gametophyte, female gametophyte development and chlorophyll content were smallest when PAR intensity was at 35μmol photons m-2 s-1, and the PAR intensity could promote the incidence of female gametophytes clones which would further restrain the incidence of young sporophytes. The interaction between light quality and UV-B radiation had significant impacts on the formation of the gametophytes, female gametophytes development, young sporophytes or female gametophyte clones happened and Chl-a content. Compared with white light, blue light could significantly alleviate the adverse effects of UV-B radiation on the incidences of gametophytes, female gametophytes development and Chl-a content. The adverse effects of UV-B radiation under red light on the incidences of gametophytes were less than white light, and green light was the most disadvantaged for the early development of L.japonica. Blue light could stimulate the incidence of female gametophytes clones and the optimum condition for clones happen was the combination of blue light and 23.4 J m-2 d-1 dose of UV-B in our experiments. The results suggested that the interaction of PAR intensity, light quality and UV-B radiation could significantly effect the formation of the gametophytes, female gametophytes development, young sporophytes or female gametophyte clones incidence and Chl-a content.
     6. The effect of UV-B radiation on the growth and physiological of the young sporophytes of L.japonica
     During the period from the 2th d to 10th d post UV-B radiation, the length and weight relative growth rates of young sporophytes under three doses of UV-B radiation treatments(11.7 J m-2 d-1, 46.8 J m-2 d-1, 93.6 J m-2 d-1) were significantly lower than that of the control (0 J m-2 d-1); the changes of Chl-a content from the 6th to the 10th day under the UV-B doses 11.7 J m-2 d-1 and 93.6 J m-2 d-1 showed inverse, which indicated that low UV-B dose could provoke the increase of Chl-a content and high dose could inhibit; the ATPase activities of young sporophytes treated with the two doses 46.8 J m-2 d-1 and 93.6 J m-2 d-1 were significantly lower than that of the control, and no obviously differences detected between the low dose 11.7 J m-2 d-1 and the control. Under the conditions of the shortage of N/P element accompanying with the UV-B dose 46.8 J m-2 d-1, there were no significantly difference between the relative growth rate of young sporopytes and that of just under the UV-B dose 46.8 J m-2 d-1; During the early period of the experiment (from 2th d to 4th d), the ATPase activities treated with the shortage of N/P element and the UV-B dose 46.8 J m-2 d-1 simultaneously were obviously higher than that of treated with the UV-B dose 46.8 J m-2 d-1 only, however, inverse changes appeared at the late stage; the Chl-a content under the coation of the shortage of N/P and UV-B radiation was significantly lower than that of the UV-B dose 46.8 J m-2 d-1 only, which suggested that the shortage of N/P intensified the impact of UV-B radiation on Chl-a content. Our results also suggested that a certainly intensity of photosynthetically active radiation could relieve the influence of the high UV-B dose 93.6 J m-2 d-1 on the growth and physiology of the young sporophytes.
引文
蔡恒江,唐学玺,张培玉,等. UV-B辐射对孔石莼生长及其生理生化特征的影响.科学技术与工程, 2005, 5(5):283~288
    郝再彬,苍晶,徐仲.植物生理实验.哈尔滨:哈尔滨工业大学出版社,2004. 75~77
    黄鹤忠,易剑国.海带(Laminaria japonica Aresch)胚孢子萌发和配子体生长与光照波长间关系的研究.水产科技情报,1998,25(6):265~269
    蒋霞敏,翟兴文,王丽,等.雨生红球藻对紫外辐射的生理适应及超微结构变化.水产学报,2003,27(2):105~111
    刘德厚,于波,田素敏.不同营养元素对海带幼体发病及育苗效果的影响。齐鲁渔业,1997,14(4):10~12
    刘鹏,缪锦来,阚光锋,等. UV-B增强对南极蓝藻形态和超微结构影响的研究.海洋科学,2004,28(5):21~25
    刘涛,崔竞进,戴继勋,等.海带配子体克隆的培养及应用.青岛海洋大学学报, 2000,30(2):203~206
    王镜岩,朱圣庚,徐长法.生物化学.北京:高等教育出版社,2002. 197~214
    王素娟.中国经济海藻超微结构研究.浙江:浙江科学技术出版社,1991
    王悠,杨震,唐学玺,等. 7种海洋微藻对UV-B辐射的敏感性差异分析.环境科学学报,2002,22(2):225~230
    王忠,王三根,李合生,等.植物生理学.北京:中国农业出版社,1999
    王宗诚,方宗熙.无机氮和磷对海带配子体生长发育的影响.山东海洋学院学报,1980,10(4):74~77
    吴鲁阳,王美丽,张振文.紫外线(UV)-B增强对植物的影响研究.中国农学通报,2005,21(9):222~227
    徐达,唐学玺,张培玉. UV-B辐射对2种海洋微藻的生理效应.青岛海洋大学学报:自然科学版, 2003,33(2):240~244
    杨宇峰,费修梗.大型海藻对富营养化海水养殖区生物修复的研究与展望.青岛海洋大学学报,2003,33(1):53~57
    于娟,唐学玺,田继远,等. UV-B辐射对3种海洋微藻的中间竞争平衡的影响.中国海洋大学学报:自然科学版,2005,35(1):108~112
    曾呈奎,吴超元,孙国玉.温度对海带孢子体的生长和发育的影响.植物学报, 1957,6(2):103~130
    曾呈奎,吴超元.海带养殖学.北京:科学出版社,1962
    曾呈奎。海带栽培学。上海:科学出版社,1994,77~81
    张海宇.范春江,曹淑青,等.长海带海区暂养与栽培技术的研究.大连水产学院学报,1999,14(1):16~20
    张培玉,唐学玺,蔡恒江,等. 3种海洋赤潮微藻蛋白质和核酸合成对UV-B辐射增强的响应.植物生态学报,2005,29(3):505~509
    赵焕登.海藻养殖生物学.青岛:青岛大学出版社,1993,32~38
    周党卫,韩发,滕中华,等. UV-B辐射增强对植物光合作用的影响及植物的相关适应性研究.西北植物学报,2001,22(4):1004~1010
    邹定辉,高坤山.高CO2浓度对大型海藻光合作用及有关过程的影响.生态学报,2002,22(10):1750~1757
    Abele D, Ferreira G A, Schloss I. H2O2 accumulation from photochemical production and atmospheric wet deposition in Antarctic coastal and off-shore waters of Potter Cove, King George Island. Antarc Sci, 1999, 11: 131~139
    Abele-Oeschger D, Tüg H, R?ttgers R. Dynamics of UV-driven hydrogen peroxide formation on an intertidal sandflat. Limnol Oceanogr, 1997, 42: 1406~1415
    Adamse P, Britz S J. Rapid fluence dependent response to UV-B radiation in cucumber leaves: the role of UV absorbing pigments in damage protection. J Plant Physiol, 1996, 148: 57~62
    Aguilera J, Bischof K, Karsten U, et al. Seasonal variation in ecophysiological patterns in macroalgae from an Arctic fjord: II. Pigment accumulation and biochemical defence systems. Mar Biol, 2002a, 140: 1087~1095
    Aguilera J, Dummermuth A, Karsten U, et al. Enzymatic defences against photooxidative stress induced by ultraviolet radiation in Arctic marine macroalgae. Polar Biol, 2002b, 25: 432~441
    Aguilera J, Karsten U, Lippert H, et al. Effects of solar radiation on growth, photosynthesis and respiration of marine macroalgae from the Arctic. Mar Ecol Prog Ser, 1999, 191: 109~119
    Allen D J, McKee I F, Farage P K, et al. Analysis of limitations to CO2 assimilation on exposure ofleaves of two Brassica napus cultivars to UVB. Plant Cell Envir, 1997, 20: 633~640
    Altamirano M, Flores-Moya A, Figueroa F L. Effects of UV radiation and temperature on growth of germlings of three species of Fucus (Phaeophyceae). Aquatic Botany, 2003, 75: 9~20
    Altamirano M, Flores-Moya A, Figueroa F L. Growth seasonality, photosynthetic pigments, and C and N content in relation to environmental factors: a field study on Ulva olivascens (Ulvales, Chlorophyta). Phycologia, 2000b, 39: 50~58
    Altamirano M, Flores-Moya A, Figueroa F L. Long-term effects of natural sunlight under various ultraviolet radiation conditions on growth and photosynthesis of intertidal Ulva rigida (Chlorophyceae) cultivated in situ. Bot Mar, 2000, 43: 19~126
    Altamirano M, Flores-Moya A, Kuhlenkamp R, et al. Stage-dependent sensitivity to ultraviolet radiation in zygotes of the brown alga Fucus serratus. Zygote, 2003, 11 (2): 101~106
    Amsler C, Neushul M. Chemostatic effects of nutrients on spores of the kelps Macrocystis pyrifera and Pterygophora californica. Mar Biol, 1989, 102: 557~564
    Amsler C, Neushul M. Nutrient stimulation of spore settlement in the kelps Pterygophora californica and Macrocystis pyrifera. Mar Biol, 1990, 107: 297~304
    Amsler C, Reed D, Neushul M. The microclimate inhabited by macroalgal propagules. Br Phycol J, 1992, 27: 253~270
    Anderson B S, Hunt J W, Turpen S L, et al. Copper toxicity to microscopic stages of giant kelp Macrocystis pyrifera: Interpopulation comparisons and temporal variability. Mar Ecol Prog Ser, 1990, 68: 147~156
    Anderson B S, Hunt J W. Bioassay methods for evaluating the toxicity of heavy metals, biocides and sewage ef?uent using microscopic stages of giant kelp Macrocystis pyrifera (Agardh.): A preliminary report. Mar Environ Res, 1988, 26: 113~134
    Aro E M, Virgin I, Andersson B. Photoinhibition of photosystem II: Inactivation, protein damage and turnover. Biochim Biophys Acta, 1993, 1143: 113~134
    Arts M T, Robarts R D, Kasai F, et al. The attenuation of ultraviolet radiation in high dissolved organic carbon waters of wetlands and lakes on the northern Great Plains. Limnol Oceanogr, 2000, 45, 292~299
    Asada K. Production and action of active oxygen species in photosynthetic tissues. In: Foyer C H, Mullineaux P M (eds). Causes of photooxidative stress and amelioration of defence systems inplants. Boca Raton: CRC Press, 1994. 77~104
    Aucamp P J. Questions and answers about the effects of the depletion of the ozone layer on humans and the environment. Photochem Photobiol Sci, 2007, 6(3): 319~330
    Baker E T, Massoth R A, Feely G A, et al. The rise and fall of the CoAxial hydrothermal site, 1993~1996. J Geophys Res, 1998, 103(B5): 9791~9806
    Ba?ares E, Altamirano M, Figueroa L F, et al. In?uence of UV radiation on growth of sporelings of three non-geniculate coralline red algae from Southern Iberian Peninsula. Phycol Res, 2002, 50: 23~30
    Bawden F C, Kleczkowski A. Ultraviolet injury to higher plants counteracted by visible light. Nature (Loud), 1952, 169: 90~91
    Bellgrove A, Clayton M, Quinn G. Effects of secondarily treated sewage ef?uent on intertidal macroalgal recruitment processes. Mar Freshwatr Res, 1997, 48: 137~146
    Bisalputra T, Shields C, Markhan J. In suit observation of the fine structure of gametophytes and embryos in cultureⅠMethods and ultrastructure of zygote. J Microscopie, 1971, 10: 85~98
    Bischof K, Gómez I, Molis M, et al. Utraviolet radiation shapes seaweed communities. Rev Environ Sci Biotechnol, 2006, 5: 141~166
    Bischof K, Hanelt D, Tüg H, et al. Acclimation of brown algal photosynthesis to ultraviolet radiation in Arctic coastal waters (Spitsbergen, Norway). Pol Biol, 1998b, 20: 388~395
    Bischof K, Hanelt D, Wiencke C. Acclimation of maximal quantum yield of photosynthesis in the brown alga Alaria esculenta under high light and UV radiation. Plant Biol, 1999, 1: 435~444
    Bischof K, Hanelt D, Wiencke C. Effects of ultraviolet radiation on photosynthesis and related enzyme reactions of marine macroalgae. Planta, 2000a, 211: 555~562
    Bischof K, Kr?bs G, Hanelt D, et al. Photosynthetic characteristics and mycosporine-like amino acids under UV-radiation: a competitive advantage of Mastocarpus stellatus over Chondrus crispus at the Helgoland shoreline? Helgol Mar Res, 2000b, 54:47~52
    Bj?rn L O, Callaghan T V, Gehrke C, et al. Ozone depletion, ultraviolet radiation and plant life. Chemosphere: Global Change Sci, 1999, 1: 449~454
    Bjorn L O. Effects of ozone depletion and increased UV-B on terrestrial ecosystem. Intern J Environ Studies, 1996, 51: 217~243
    Bornman J F. Target sites of UV-radiation in photosynthesis of higher plants. J PhotochemPhotobiol B Biol, 1989, 4:145~158
    Bouchcr N P, Prezelin B B. Spectral modeling of UV inhibition of in Situ Antarctic primary production using a field-derived biological weighting function. Photochem Photobiol, 1996, 63: 407~418
    Brawley S H, Johnson L E. Gametogenesis, gametes and zygotes: an ecological perspective on sexual reproduction in the algae. Br Phycol J, 1992, 27: 233~252
    Brawley S H. Fertilization in natural populations of the dioecious brown alga Fucus ceranoids and the importance of the polyspermy block. Mar Biol, 1992, 113: 145~157
    Brawley S H. The fast block polyspermy occurs in eggs of fucoid algae is an electrical block. Dev Biol, 1991, 144: 94~106
    Britt A B. DNA damage and repair in plants. Annu Rev Plant Physiol Plant Mol Biol, 1996, 47: 75~100
    Britt A B. Repair of DNA damage induced by solar UV. Photosynthesis Research, 2004, 81: 105~112
    Brouwer P E M, Bischof K, Hanelt D, et al. Photosynthesis of two Arctic macroalgae under different ambient radiation levels and their sensitivity to enhanced UV radiation. Polar Biol, 2000, 23: 257~264
    Burridge T R, Portelli T, Ashton P. Effect of sewage effluents on germination of three marine brown algal macrophytes. Marine and Freshwater Research, 1996, 47(8): 1009~1014
    Burritt D J, Larkindale J, Hurd C L. Antioxidant metabolism in the intertidal red seaweed Stictosiphonia arbuscula following desiccation. Planta, 2002, 215: 829~838
    Burrows E M, Pybus C. Laminaria saccharina and marine pollution in north-east England. Mar Poll Bull, 1971, 2: 53~56
    Burton G W, Ingold K U.β-Carotene: an unusual type of lipid antioxidant. Science, 1984, 224: 569~573
    Caldwell M M, Bjorn L O, Bornman J F, et al. Effects of increased solar ultraviolet radiation on terrresstrial ecosystems. J Photochem Photobiol B: Biol, 1998, 46: 40~52
    Caldwell M M, Flint S D. Stratospheric ozone reduction, solar UV-B radiation and terrestrial ecosystem. Climatic Change, 1994, 28: 375~394
    Caldwell M M, Robberecht R, Flint S D. Internal filters prospects for UV-acclimation in high plant. Physiol Plant, 1983, 58: 445~450
    Caldwell M M. Solar ultraviolet radiation as an ecological factor for alpine plants. Ecol Monogr, 1968, 38: 243~268.
    Campbell D, Eriksson M J, ?quist G, et al. The cyanobacterium Synechococcus resists UV-B by exchanging photosystem II reaction-center D1 proteins. Proc Nat Acad Sci, 1998, 95: 364~369
    Chapman A R O, Lindley J E. Seasonal growth of Laminaria solidungula in the Canadian high Arctic in relation to irradiance and dissolved nutrient concentrations. Mar Biol, 1980, 57: 1~5
    Choi H G, Nam K W, Norton T A. No whirlwind romance: typhoons, temperature and the failure of reproduction in Caulacanthus okamurae (Gigartinales, Rhodophyta). Eur J Phycol, 2001, 36: 353~358
    Cockell C S, Knowland J. Ultraviolet radiation screening compounds. Biol Rev, 1999, 74: 311~345
    Coelho S M, Rijstenbil J W, Brown M T. Impacts of anthropogenic stresses on the early development stages of seaweeds. J Aquat Ecosyst Stress Recovery, 2000, 7: 317~333
    Conde F R, Churio M S, Previtali C M. The photoprotector mechanism of mycosporine-like amino acids. Excited-state properties and photostability of porphyra-334 in aqueous solution. J Photochem Photobiol, 2000, 56B: 139~144
    Cooper J C, Zika R G. Photochemical formation of hydrogen peroxide in surface and ground waters exposed to sunlight. Science, 1983, 220: 711~712
    Cristina S, Patrick J N. Short-term and long-term effects of temperature on photosynthesis in the diatom Thalassiosora Pesudonana under UVR exposure. J Phycol, 2007, 43: 426~436
    Crutzen P J. Ultraviolet on the increase. Nature, 1992, 356: 104~105
    Davidson A T, Bramich D, Marchant H J, et al. Effects of UVB irradiation on growth and survival of Antarctic marine diatoms. Mar Biol, 1994, 119: 507~515
    Davison I R. Environmental effects on algal photosynthesis: Temperature. J Phycol, 1991, 27: 28
    Dawson S P, Dennison W C. Effects of ultraviolet and photosynthetically active radiation on five seagrass species. Mar Biol, 1996, 125: 629~638
    de Bakker N V J, Van Beem A P, Van de Staaij J W M, et al. Effects of UV-B radiation on a charophycean alga, Chara aspera. In: Rozema J, Manetas Y, Bj?rn L O (eds). Plant EcologySpecial Issue: Responses of Plants to UV-B Radiation. Dordrecht: Kluwer Academic Publishers, 2001b, 237~246
    de Bakker N, Rozema J, Aerts R. UV effects on a charophycean algae, Chara aspera. Plant Ecol, 2001a, 154: 205~212
    Demmig-Adams B. Carotenoids and photoprotection in plants: a role for the xanthophyll zeaxanthin. Biochim Biophys Acta, 1990, 1020: 1~24
    Devinny J, Volse L. Effects of sediments on the development of Macrocystis pyrifera gametophytes. Mar Biol, 1978, 48: 343~348
    Doblin M A, Clayton M N. Effects of secondarily-treated sewage ef?uent on the early life-history stages of two species of brown macroalgae: Hormosira banksii and Durvillaea potatorum. Mar Biol, 1995, 122: 689~698
    Doyle S, Saros J E, Williamson C E. Interactive effects of temperature and nutrient limitation on the response of alpine phytoplankton growth to UV radiation. Limnol Oceanogr, 2005, 50: 1362~1367
    Dring M J, Makarov V, Schoschina E, et al. Influence of ultraviolet radiation on chlorophyⅡfluorescence and growth in different life history stages of three species of Laminaria (Phaeophyta). Mar Biol, 1996, 126: 183~191
    Dring M J. Photocontrol of development in algae. Annu Rev Plant Physiol. Mol Biol, 1988, 39:107~117
    Dring, M J. Photomorphogenesis of brown algae in the laboratory and in the sea. Proi Int Seaweed Symp, 1981, 8: 159~166
    Druehl L D, Robertson B R, Button D K. Characterizing and sexing Laminarialean meiospores by flow cytometry. Mar Biol, 1989, 101: 451~456
    Duffy J E, Hay M E. Strong impacts of grazing amphipods on the organization of a benthic community. Ecol Monogr, 2000, 70: 237~263
    Dulbecco R. Reactivation of ultraviolet-inactivated bacteriophage by visible light. Nature (Lond), 1949, 163: 949~950
    Edding M E, Tala F. Development of techniques for the cultivation of Lessonia trabeculata Villouta et Santelices (Phaeophyceae, Laminariales) in Chile. Aquac Res, 2003, 34: 507~515
    Edge R, McGarvey D J, Truscott T G. The carotenoids as antioxidants– a review. J Photochem Photobiol B, 1997, 41: 189~200
    Emerson S, Zedler J. Recolonization of intertidal algae: An experimental study. Mar Biol, 1978, 44: 315~324
    Evans L V. Cytological studies in the Laminariales. Ann Bot, 1965, 29: 541~562
    Falkowski P G, Laroche J. Molecular biology in the study of ocean processes. International Review in Cytology, 1991, 128: 261~303
    Farman J C, Gardiner B G, Shanklin J D. Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction. Nature, 1985, 315: 207~210
    Favre-Bonvin J, Arpin N, Brevard C. Structure de la mycosporine. Can J Chem, 1976, 54: 1105~1113
    Fei X, Jiang B, Ding M, et al. Light demends of juvenile Laminaria japonica. Chin J Oceanol Limnol, 1989, 7: 1~9
    Flores-Moya A, Hanelt D, Figueroa F L, et al. Involvement of solar UV-B radiation in recovery of inhibited photosynthesis in the brown alga Dictyota dichotoma (Hudson) Lamouroux. J Photochem Photobiol B Biol, 1999, 49: 129~135
    Franklin L A, Forster R M. The changing irradiance environment: consequences for marine macrophyte physiology, productivity and ecology. Eur J Phycol, 1997, 32 (3): 207~232
    Furgal J A, Smith R E H. Ultraviolet radiation and photosynthesis by Georgian Bay phytoplankton of varying nutrient and photoadaptive. Can J Fish Aquat Sci, 1997, 54(7): 1659~1667
    Gao K, McKinley K R. Use of macroalgae for marine biomass production and CO2 remediation: a review. J Appl Phycol, 1994, 6: 45~60
    Garman G D, Pillai M C, Goff J, et al. Nuclear events during early development in gametophytes of Macrocystis pyrifera, and the temporal effects of marine contaminant. Mar Biol, 1994, 121: 355~362
    Gerard V A. Environmental stress during early development of kelp sporophytes (Laminaria saccharina) : how long do effects persist. J Appl Phycol, 1997, 9: 5~9
    Gómez I, Figueroa F L, Huovinen P, et al. Photosynthesis of the red alga Gracilaria chilensis under natural solar radiation in an estuary in southern Chile. Aquaculture, 2005a, 244: 369~382
    Gómez I, Ulloa N, Orostegui M. Morpho-functional patterns of photosynthesis and UV sensitivityin the kelp Lessonia nigrescens (Laminaria, Phaeophyta). Mar Biol, 2005b, 148: 231~240
    Graham M. Effect of high irradiance on recruitment of the giant kelp Macrocystis (Phaeophyta) in shallow water. J Phycol, 1996, 32: 903~906
    Grobe C W, Murphy T M. Inhibition of growth of Ulva expansa (Chlorophyta) by ultraviolet-B radiation. J Phycol, 1994, 30: 783~790
    Gwynn-Jones D, Lee J A, Callaghan T V. Effects of enhanced UV-B radiation and elevated carbon dioxide concentrations on a sub-arctic forest heath ecosystem. Plant Ecol, 1997, 128: 242~249
    H?der D -P, Kumar H D, Smith R C, et al. Effects of solar UV radiation on aquatic ecosystems and interactions with climate change. Photochem Photobiol Sci, 2007, 6: 267~285
    H?der D -P, Lebert M, Sinha R P, et al. Role of protective and repair mechanisms in the inhibition of photosynthesis in marine macroalgae. Photochem Photobiol Sci, 2002, 1: 809~814
    H?der D-P, Lebert M, Helbling E W. Effects of solar radiation on the Patagonian Rhodophyte, Corallina officinalis (L.). Photosynth Res, 2003b, 78: 119~132
    Han T, Han Y S, Kim K Y, et al. Influences of light and UV-B on growth and sporulation of the green alga Ulva pertusa Kjellman. J Exp Mar Biol Ecol, 2003, 4125: 1~17
    Han T, Kain J M. Blue light photoreactivation in Ultraviolet irradiated young sporophytes of Alaria Esculenta and Laminaria Saccharina (Phaeophyta). J Phycol, 1993, 29: 79~81
    Han T, Kain J M. Blue light sensitivity of UV-irradiated young sporophytes of Laminnria hyperborea). J Exp Mar Biol Ecol, 1992, 158: 219~230
    Han T, Kain J M. Effects of photon irradiance and photoperiod on young sporophytes of four species of the Laminariales. Eur J Phycol, 1996, 31: 233~240
    Han Y S, Han T. UV-B induction of UV-B protection in Ulva pertusa (Chlorophyta). J Phycol, 2005, 41: 523~530
    Hanelt D, Tüg H, Bischof K, et al. Light regime in an Arctic fjord: a study related to stratospheric ozone depletion as a basis for determination of UV effects on algal growth. Mar Biol, 2001, 138: 649~658
    Hanelt D, Wiencke C, Bischof K. Effects of UV radiation on seaweeds. In: ?rb?k J B, Kallenborn R, Tombre I (eds). Arctic Alpine Ecosystems and People in a Changing Environment. Berlin: Springer Berlin Heidelberg, 2007. 251~227
    Hanelt D, Wiencke C, Bischof K. Photosynthesis in marine macroalgae. In: Larkum A W, Douglas S E, Raven J A (eds). Photosynthesis in Algae. Dordrecht: Kluwer Academic Publisher, 2003. 413~435
    Hanelt D, Wiencke C, Karsten U, et al. Photoinhibition and recovery after high light stress in different development and life history stages of Laminaria saccharina (Phaeophyta). J Phycol, 1997, 33: 387~395
    Hanelt D, Wiencke C, Nultsch W. In?uence of UV radiation on the photosynthesis of Arctic macroalgae in the field. J Photochem Photobiol, 1997, 38 (1): 40~47
    Hanelt D. Capability of dynamic photoinhibition in Arctic macroalgae is related to their depth distribution. Mar Biol, 1998, 131 (2): 361~369
    Harries R. An investigation by cultural methods of some of the factors influeucing the development of the gametophytes and the early stages of sporophytes of Laminaria digitata, L.saccharina and L.cloustonii. Annals of Botany. 1932, 46(184): 893~928
    Hay M E, Fenical W. Chemical mediation of seaweed-herbivore interactions. In: John D M, Hawkins S J, Price J H (eds). Plant-animal interactions in the marine benthos, 1992. 46: 319~337
    Helbling E W, BallaréC L, Villafaňe V E. In this Special Issue: Impacts of ultraviolet radiation on aquatic and terrestrial ecosystems. J Photochem Photobiol, 2001, 62(1): 7~9
    Herndl G J , Arrieta J M , Obernosterer I, et al. Role of Solar UV-B Radiation on Ecosystems. In: Nolan C V, H?der D–P (eds). Ecosystem Research Report No 30. Belgium: European Communities, 1998. 69~77
    Hoffman J R, Hansen L J, Klinger T. Interactions between UV radiation and temperature limit inferences from single-factor experiments. J Phycol, 2003, 39: 268~272
    Holm-Hansen O, Lubin D, Helbling E W. Ultraviolet radiation and its effects on organisms in aquatic environments. In: Young A R (eds). Environmental UV photobiology. New York: Plenum Press, 1993. 379~425
    Holm-Hansen O, Mitchell B G, Vernet M. Ultraviolet radiation in Antarctic waters: Effect on rates of primary production. Antarct J U S, 1989, 24: 177~178
    Holzinger A, Karsten U, Lütz C, et al. Ultrastructure and photosynthesis in the supralittoral greenmacroalga Prasiola crispa (Lightfoot) Kützing from Spitsbergen (Norway) under UV exposure. Phycologia, 2006, 45(2): 168~177.
    Holzinger A, Lütz C. Algae and UV irradiation: effects on ultrastructure and related metabolic functions. Micron, 2006, 37: 190~207
    Holzinger A. Aspects of cell development in Micrasterias muricata (Desmidiaceae) revealed by cryofixation and freeze substitution. Nova Hedwigia, 2000, 70 (3~4): 275~287
    Hoyer K, Karsten U, Sawall T, et al. Photoprotective substances in Antarctic macroalgae and their variation with respect to depth distribution, different tissues, and developmental stages. Mar Ecol Prog Ser, 2001, 211: 117~129
    Hoyer K, Karsten U, Wiencke C. Inventory of UV-absorbing mycosporine-like amino acids in polar macroalgae and factors controlling their concentration. In: Huiskes A H L, Gieskes W W C, Rozema J, et al. (eds). Proceedings of the VIII SCAR Meeting (Scientific Community on Antarctic Research). The Netherlands: Backhuys Publishers Leiden, 2003. 56~62
    Hunt J E , Mcneil D L. Nitrogen status affects UV-B sensitivity of cucumber. Aust J Plant Physiol , 1998, 25 :79~86
    Huovinen P S, Oikari A O J , Soimasu M R, et al. Impact of UV radiation on the early development of the giant kelp (Macrocystis pyrifera) gametophytes. Photochem Photobiol, 2000, 72: 308~313
    Huovinen P, Gómez I, Figueroa F L, et al. Ultraviolet absorbing mycosporine-like amino acids in red macroalgae from Chile. Bot Mar, 2004, 47: 21~29
    Huovinen P, Oikar A, Soimasuo M, et al. Impact of UV radiation on the early development of the giant kelp (Macrocystis pyrifera) gametophytes. Photochem Photobiol, 2000, 72: 308~314
    Inka tom Dieck (Bartsch). Temperature tolerance and survival in darkness of kelp gametophytes (Laminariales, Phaeophyta): ecological and biogeographical implications. Mar Ecol Prog, 1993, 100: 253~264
    
    IPCC (Intergovernmental Panel on Climate Change). Observed climate variability and change. In Houghton J T, Ding Y, Griggs D J, et al. (eds). Climate Change 2001: The Scientific Basis. Cambridge: Cambridge University Press. 2001, 99~182
    IPCC, Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the ThirdAssessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK, 2001
    Iwanzik W, Tevini M, Dohnt G, et al. Action of UV-B radiation on photosynthetic primary reactions in spinach chloroplasts. Physiol Plant, 1983, 58:401~407
    Izquierdo J L, Pérez-Ruzafa I M, Gallardo T. Effect of temperature and photon fluence rate on gametophytes and young sporophytes of Laminaria ochroleuca Pylaie. Helgol Mar Res, 2002, 55: 285~292
    Jagger J. Photoreactivation and photoprotection. Photochem Photobiol, 1958, 3: 451~461
    Jagger J. Photoreactivation. Bacteriol Rev, 1964, 22: 99~142
    Janssens A S, Pavel S, Ling T. Susceptibility to UV-A and UV-B provocation does not correlate with disease severity of polymorphic light eruption. Archives of Dermatology, 2007, 143(5): 599~604
    Jenssen A. ChlorophyⅡ-a and Carotenoids. In: Handbook of physiological and biochemical method. New York: Cambridge University Press, 1978. 59~70
    Jerlov N G. Marine optics. Elsevier Oceanography Series 14. New York: Elsevier Scientific Publishing, 1976
    Jordan B B, He J, Chow W S, et al. Changes in mRNA levels and polypeptide subunits of ribulose 1, 5-bisphosphate carboxylase in response to supplementary ultraviolet-B radiation. Plant Cell Envir, 1992, 15: 91~98
    Karban R, Agrawal A A, Thaler J S, et al. Induced plant responses and information content about risk of herbivory. Trend Ecol Evol, 1999, 14: 443~447
    Karentz D. Chemical defenses of marine organisms against solar radiation exposure: UV absorbing mycosporine-like amino acids and scytonemin. In: McClintock J B, Baker B J (eds). Marine chemical ecology. Boca Raton: CRC Press, 2001. 481~519
    Karsten U, Bischof K, Hanelt D, et al. The effect of UV-radiation on photosynthesis and UV-absorbing substances in the endemic Arctic macroalga Devaleraea ramentacea (Rhodophyta). Physiol Plant, 1999, 105: 58~66
    Karsten U, Friedl T, Schumann R, et al. Mycosporine-like amino acids (MAAs) and phylogenies in green algae: Prasiola and its relatives from the Trebouxiophyceae (Chlorophyta). J Phycol, 2005, 41: 557~566
    Karsten U. Defense Strategies of Algae and Cyanobacteria Against Solar Ultraviolet Radiation. In: Amsler C D (eds). Algal Chemical Ecology. Berlin: Springer Berlin Heidelberg, 2008. 273~296
    Kelner A. Photorcactivation of ultraviolet-irradiated Escherichia coli. with special reference to the dose-reduction principle and to ultraviolet-induced mutation. J Bacteriol, 1949, 58: 511~522.
    Kerby N W, Evan L V. Isolation and partial characterization of pyrenoid from the brown alga Pilayella littoralis (L.) Kjellm Planta, 1978, 142: 91~95
    Kirk J T O. Light and photosynthesis in aquatic ecosystems. Cambridge: Cambridge University Press, 1994.
    Kl?ser H, Quartino M L, Wiencke C. Distribution of macroalgae and macroalgal communities in gradients of physical conditions in Potter Cove, King George Island, Antarctica. Hydrobiologia, 1996, 333: 1~17
    Korbee N, Figueroa F L, Aguilera J. Effect of light quality on the accumulation of photosynthetic pigments, proteins and mycosporine-like amino acids in the red alga Porphyra leucosticta (Bangiales, Rhodophyta). J Photochem Photobiol B Biol, 2005, 80: 71~78
    Korbee N, Huovinen P, Figueroa F L, et al. Availability of ammonium influences photosynthesis and the accumulation of MAAs in two Porphyra species (Bangiales, Rhodophyta). Mar Biol, 2005, 146: 645~654
    Lakatos M, Bilger W, Büdel B. Lipophilous carotenoids of terrestrial cyanobacteria from different habitats in Venezuela. Eur J Phycol, 2001, 36: 367~375
    Lee J A, Brinkhuis B H. Effect of temperature and light on gametogenesis of Laminaria saccharina at its southern limit of distribution in the Western Atlantic Ocean. J Phycol, 1988, 24: 181~191
    Lee J A, Brinkhuis B H. Seasonal light and temperature interaction effects on development of Laminaria saccharina (Phaeophyta) gametophytes and juvenile sporophytes. J Phycol, 1988, 24(2): 181~191
    Lesser M P, Stochaj W R. Photoadaptation and protection against active forms of oxygen in the symbiotic prokaryote Prochloron sp. and its ascidian host. Appl Environ Microbiol, 1990, 56: 1530~1535
    Leukart P, Lüning K. Minimal spectral light requirements and maximum light levels for long term germling growth of several red algae from different water depths and a green algae. Eur JPhycol, 1994, 29: 103~112
    Lignel A, Pedersén M. Agar composition as a function of morphology and growth rate. Studies on some morphological strains of Gracilaria secundata and Gracilaria verrucosa (Rhodophyta). Bot Mar, 1989, 32: 219~227
    Lippert H, Iken K, Rachor E, et al. Macro-fauna associated with macroalgae in the Kongsfjord (Spitsbergen). Polar Biol, 2001, 24: 512~522
    Liu S, Zhang Q S, Wang Y, et al. The response of the early developmental stages of Laminaria japonica to enhanced ultraviolet-B radiation. Science in China press, 2008, 51(12): 1129~1136
    Lobban C J, Harrison P J. Seaweed Ecology and Physiology. Cambridge: Cambridge University Press. 1994, 366
    Long N J, Yin S, Echternach P M, et al. Photon-induced universal conductance fluctuations in mesoscopic Au films. Phys Rev B, 1994, 50: 2693~2695
    Lorenz M, Schubert H, Forster R M. In vitro- and in vivo-effects of ultraviolet-B radiation on the energy transfer in phycobilisomes. Photosynthetica, 1997, 33: 517~527
    Lubchenco J, Gaines S D. Aunified approach to marine plant-herbivore interactions. I. Poluations and communities. Annu Rev Syst, 1981, 12: 405~437
    Lüning K, Neushul M. Light and temperature demands for growth and reproduction of Lamiarian gamtophytes in southern and central California. Mar Biol, 1978, 45: 297~309
    Lüning K. Critical levels of light and temperature regulating the gametogenesis of three Laminaria species (Phaeophyceae). J Phycol, 1980, 16: 1~15
    Lüning K. Their environment, biogeography, and ecophysiology. In: Wiley, Sons (eds). Seaweeds. New York, 1990. 527
    MacFadyen E J, Williamson C E, Grad G, et al. Molecular response to climate change: temperature dependence of UVR-induced DNA damage and repair in the freshwater crustacean Daphnia pulicaria. Global Change Biol, 2004, 10: 408~416
    Mackerness S A H, Butt P J, Jordan B R, et al. Amelioration of UV-B-induced down regulation of mRNA leaves for chloroplast proteins by high irradiance is mediated by photosynthesis. J Plant Physiol, 1996, 148 :100~106
    Maier I, Müller D G. Antheridium fine structure and spermatozoid release in Laminaria digitatia(Phaeophyceae). Phycol, 1982, 21: 1~8
    Makarov M, Voskoboinikov G. The influence of ultraviolet-B radiation on spore release and growth of the kelp Laminaria saccharina. Bot Mar, 2001, 44: 89~94
    Makarov V N. The behaviour of zoospores and early ontogenic stages in the kelp Laminaria saccharina (L.) Lamour. in the White and the Barents Seas. Doctor Dissertation. Leningrad: Russian Academy of Sciences, 1987
    Mansilla A, Werlinger C, Palacios M, et al. Effects of UVB radiation on the initial stages of growth of Gigartina skottsbergii, Sarcothalia crispata and Mazzaella laminarioides (Gigartinales, Rhodophyta). J Appl Phycol, 2006, 18: 451~459
    Mark U, Tevini M. Combination effects of UV-B radiation and temperature on sunflower ( Helianthus annuus L. cv. Polstar) and maize (Zea mays L. cv. Zenit200) seedlings. J Plant Physiol, 1996, 148: 49~56
    MátéZ, Sass L, Szekeres M, et al. UV-B induced differential transcription of psbA genes encoding the D1 protein of photosystem II in the cyanobacterium Synechocystis 6803. J Biol Chem, 1998, 273: 17439~17444
    McMinn A, Ashworth C, Ryan K. Growth and productivity of Antarctic sea ice algae under PAR and UV irradiances. Bot Mar, 1999, 42: 401~407
    Mepsted R, Paul N D, Stephen J, et al. Effects of enhanced UVB radiation on pea (Pisum sativum L.) grown under field conditions in the UK. Global Change Biol, 1996, 2: 325~334
    Michler T, Aguilera J, Hanelt D, et al. Long term effects of ultraviolet radiation on growth and photosynthetic performance of polar and cold-temperate marcoalgae. Mar Biol, 2002, 140: 1117~1127
    Montomara T, Sakai Y. Regulation of gametogenesis of Laminaria and Desmarestia (Phaeophyta) by iron and boron. Jpn J Phycol, 1984, 32: 209~215.
    Mural N S, Teramura A H. Effects of ultraviolet-B irradiance on soybean VII. Biomass and concentration and uptake of nutrients at varying P supply. Plant Nutr, 1985b, 8: 177~192
    Murali N S, Teramura A H. Effects of ultraviolet-B irradiance on soybeanⅥInfluence of phosphorus nutrition on growth and falconoid content. Physiol Plant, 1985, 63: 416~423
    Nash K. Sun damage occurs slowly from both UVA, UVB rays. Dermatology Times, 2005, 26(6): 51~53
    Navarro N P, Mansilla A, Palacios M. UVB effects on early development stages of commercially important macroalgae in southern Chile. J Appl Phycol, 2008, 20: 897~906
    Neushul M, Foster M S, Coon D A, et al. An in situ study of recruitment, growth and survival of subtidal marine algae: Techniques and preliminary results. J Phycol, 1976, 12: 397~408
    Novaczek I. Response of Ecklonia radiata (Laminariales) to light at 15℃with reference to the field light budget at Goat island Bay, New Zealand. Mar Biol, 1984, 80: 263~272
    Osafune T, Yokota A, Ehara T, et a1. Immunogold localization of ribulose-1, 5-bisohosphate carboxylase with reference to pyrenoid morphology in chroloplasts of synchronized Euglena gracilis cells. Plant Physiology, 1990, 92: 803~808
    Pakker H, Beekman C A C, Breeman A M. Efficient photoreactivation of UVBR-induced DNA damage in the sublittoral macroalga Rhodymenia pseudopalmata (Rhodophyta). Eur J Phycol, 2000a, 35: 109~114
    Pakker H, Martins R S T, Boelen P, et al. Effects of temperature on the photoreactivation of UVB-induced DNA damage in Palmaria palmata (Rhodophyta). J Phycol, 2000b, 36: 334~341
    Pang S, Gómez I, Lüning K. The red macroalga Delesseria sanguinea as a UVB-sensitive model organism: selective growth reduction by UVB in outdoor experiments and rapid recording of growth rate during and after UV pulses. Eur J Phycol, 2001, 36: 207~216
    Pavia H, Cervin G, Lindgren A, et al. Effects of UV-B radiation and simulated herbivory on phlorotannins in the brown alga Ascophyllum nodosum. Mar Ecol Prog Ser, 1997, 157: 139~146
    Pavia H. Brock Extrinsic factors influencing phlorotannin production in the brown alga Ascophyllum nodosum. Mar Ecol Prog Ser, 2000, 193: 285~294
    Pearson E A, Murray S. Patterns of reproduction, genetic diversity, and genetic differentiation in California populations of the geniculate coralline alga Lithothrix aspergillum (Rhodophyta). J Phycol, 1997, 33: 753~763
    Pellegrini L. On the origin and development of vacuoles in Bromeristematic cells of Cystoseira stricta (Phaeophyta, Fucales). J Cell Sci, 1979, 41: 209~232
    Piazena H, H?der D P. Penetration of solar UV radiation in coastal lagoons of the southern Baltic and its effect on phytoplankton communities. Photochem Photobiol, 1994, 60: 463~469
    Pinto M E, Casati P, Ku M S, et al. Effects of UV-b radiation on growth , photosynthetisis , UV-B-absorbing compounds and NADP-malicenzyme in bean ( Phaseou usv ulgaris L. ) grown under different nitrogenconditions. J Photochem Photobiol B : Biology, 1999, 48: 200~209
    Poppe F, Hanelt D, Wiencke C. Changes in ultrastructure, photosynthetic activity and pigments in the Antarctic red alga Palmaria decipiens during acclimation to UV radiation. Bot Mar, 2002, 45: 253~261
    Poppe F, Schmidt R A M, Hanelt D, et al. Effects of UV radiation on the ultrastructure of several red algae. Phycol Res, 2003, 51: 11~19
    Price D, Worsfold P J, Mantoura R F C. Hydrogen peroxide in the environment: cycling and methods of analysis. Trends analyt Chem, 1992, 11: 379~384
    Rae R, Vincent W F. Effects of temperature and UV radiation on microbial food web structure: potential responses to global change. Freshw Biol, 1998, 40: 1~12
    Ragan M A, Glombitza K W. Phlorotannins, brown algal polyphenols. In: Round F E, Chapman D J, eds. Progress in phycolocical research 4. Bristol: Biopress Ltd, 1986. 129~241
    Reed D, Amsler C, Ebeling A. Dispersal in kelps: Factors affecting spore swimming and competency. Ecology, 1992, 73: 1577~1585
    Reid K, Croxall J P. Environmental response of upper trophic- level predators reveals a system change in an Antarctic marine ecosystem. Proc R Soc Lond B, 2001, 268, 377~384
    Renger G, Voss M, Gr?ber P, et al. Effect of UV irradiation on differential partial reactions of the primary processes of photosynthesis. In: Worrest R C, Caldwell M M (eds). Stratospheric ozone reduction, solar ultraviolet radiation and plant life. NATO ASI Series, vol G8. Heidelberg: Springer, 1986. 171~184
    Roleda M Y, Clayton M N, Wiencke C. Screening capacity of UV-absorbing compounds in spores of Arctic Laminariales. Journal of experimental marine biology and ecology, 338(1): 123~133
    Roleda M Y, Hanelt D, Kr?bs G, et al. Tissue damage, growth and photosynthetic parameters in Laminaria ochroleuca (Laminariales, Phaeophyta) under UV radiation. Phycologia, 2004a, 43: 603~613
    Roleda M Y, Hanelt D, Wiencke C. Exposure to ultraviolet radiation delays photosyntheticrecovery in Arctic kelp zoospores. Photosynth Res, 2006d, 88(3): 311~322
    Roleda M Y, Van de Poll W H, Hanelt D, et al. PAR and UVBR effects on photosynthesis, viability, growth and DNA in different life stages of two coexisting Gigartinales: implications for recruitment and zonation pattern. Marine Ecology Progress Series, 2004, 281: 37~50
    Roleda M Y, Wiencke C, Hanelt D, et al. Sensitivity of Laminariales zoospores from Helgoland (North Sea) to ultraviolet and photosynthetically active radiation: implications for depth distribution and seasonal reproduction. Plant Cell Environ, 2005, 28: 466~479
    Roleda M Y, Wiencke C, Hanelt D, et al. Sensitivity of Laminariales zoospores from Helgoland (North Sea) to ultraviolet and photosynthetically active radiation: implications for depth distribution and seasonal reproduction. Plant Cell Environ, 2005, 28: 466~479
    Roleda M Y, Wiencke C, Hanelt D. Thallus morphology and optical characteristic affect growth and DNA damage by UV radiation in juvenile Arctic Laminaria sporophytes. Planta, 2006, 223: 407~417
    Roleda M Y, Wiencke C, Lüder U H. Impact of ultraviolet radiation on cell structure, UV-absorbing compounds, photosynthesis, DNA damage, and germination in zoospores of Arctic Saccorhiza dermatodea. J Exp Bot, 2006, 57(14): 3847~3856
    Roos J C, Vincent W F. Temperature dependence of UV radiation effects on Antarctic cyanobacteria. J Phycol, 1998, 34: 118~125
    Rozema J, Lenssen G M, Van de Staaij J W M. In: Van Laar H H (eds). The greenhouse effect and primary productivity in European agro-ecosystems. Pudoc: Wageningen, 1990. 68~71
    Ryan S, Thierry C. Effect of germanium dioxide, an inhibitor of diatom growth, on the microscopic laboratory cultivation stage of kelp, Laminaria saccharina. J Appl Phycol, 2007, 19: 27~32
    Sanders R W, Macaluso A L, Sardina T J, et al. Photoreactivation in two freshwater ciliates: differential responses to variations in UV-B ?ux and temperature. Limnol Oceanogr, 2005, 40: 283~292
    Satoh H, Okada M, Nakayama K, et a1. Purificatron and further characterization of pyrenoid proteins and ribulose-1, 5-bisphosphate carboxylase-oxygenase from the green alga Bryopsis maxima.Plant Cell Physio1, 1984, 25: l205~1214
    Sch?nw?lde M E A. Physode distribution and the effects of“Thallus Sunburn”in Hormosira banksii (Fucales, Phaeophyceae). Bot Mar, 2002b, 45: 262~266
    Sch?nw?lder M E A, Wiencke C, Clayton M N, et al. The effect of elevated UV radiation on Fucus spp. (Fucales, Phaeophyta) zygote and embryo development. Plant Biol. 2003, 5 (4): 366~377
    Sch?nw?lder, M.E.A. The occurrence and cellular significance of physodes in brown algae. Phycologia, 2002, 41 (2): 125~139
    Serrao E A, Brawley S H, Hedman J, et al. Reproductive success of Fucus vesiculosus (Phaeophyceae) in the Baltic Sea J. Phycol, 1999, 35: 254~269
    Shelly K, Roberts S, Heraud P, et al. Interactions Between UV-B Exposure And Phosphorus Nutrition I. Effects On Growth, Phosphate Uptake, And ChlorophyⅡFluorescence. J Phycol, 2005, 41: 1204~1211
    Shick J M, Dunlap W C. Mycosporine-like amino acids and related gadusols: biosynthesis, accumulation, and UV-protective functions in aquatic organisms. Annu Rev Physiol, 2002, 64: 223~262
    Shick J M. The continuity and intensity of ultraviolet irradiation affect the kinetics of biosynthesis, accumulation, and conversion of mycosporine-like amino acids (MAAs) in the coral Stylophora pistillata. Limnol Oceanogr, 2004, 49: 223~262
    Shindell D T, Rind D, Lonergan P. Increased stratospheric ozone losses and delayed eventual recovery owing to increasing greenhouse-gas concentrations. Nature, 1998, 392: 589~592
    Shoenwaelder M E A. Phycological Reviews: The occurrence and cellular significance of physodes in th e brown algae. Phycologia, 2002, 41(2): 125~139
    Short F T, Neckles H A. The effects of global climate change on seagrasses. Aqua Bot, 1999, 63: 169~196
    Sies H. Oxidative stress: oxidants and antioxidants. San Diego: Academic Press, 1991
    Smith R C, Prezelin B B, Baker K S, et a1. Ozone depletion: Ultraviolet radiation and phytoplankton biology in Antarctic water. Science, 1992, 225: 952~959
    Sokal R R, Rohlf F J. Biometry, 3rd edn. Freeman W H. NewYork. 1995, 807
    Sommaruga R, Psenner R. Ultraviolet radiation in a high mountain lake of the Austrian Alps: air and underwater measurements. Photochem Photobiol, 1997, 65: 957~963
    Sousa W P, Connell J H. Grazing and succession in marine algae. In: John D M, Hawkins S, Price J H (eds). Plant-animal interactions in the marine benthos. Oxford: Clarendon Press, 1992. 425~441
    SPSS Inc, 1999. Release 13.0 Version for Windows
    Starr R, Zeikus J. UTEX - the culture collection of algae at the University of Texas at Austin. J Phycol, 1993, 29:1~106
    Stebbing A R D. Hormesis-the stimulation of growth by low levels of inhibitors. Sci Tol Environ, 1982, 22: 213~234
    Steinhoff F S, Wiencke C, Müller R, et al. Effects of ultraviolet radiation and temperature on the ultrastructure of zoospores of the brown macroalga Laminaria hyperborean. Plant Biol (Stuttg), 2008, 10(3): 388~397
    Strid A, Chow W S, Anderson J M, Effects of supplementary ultraviolet-B radiation on photosynthesis in Pisum sativum. Biochim Biophys Acta, 1990, 1020: 260~268
    Strid A, Chow W S, Anderson J M. Temperature-dependency of changes in the relaxation of relectrochromic shifts of chlorophyⅡfluorescence and in the levels of mRNA transcripts in detached leaves from Pisum sativum exposed to supplementary UV-B radiation. Plant Sci, 1996, 115: 199~206
    Strid A, Chow W S, Anderson J M. UV-B damage and protection at the molecular level in plants. Photosynth Res, 1994, 39: 475~489
    Swanson A K, Druehl L D. Differential meiospore size and tolerance of ultraviolet light stress within and among kelp species along a depth gradient. Mar Biol, 2000, 136: 657~664
    Swanson A K, Druehl L D. Induction, exudation and the UV protective role of kelp phlorotannins. Aquat Bot, 2002, 73: 241~253
    Taylor R M, Nikaido O, Jordan B R, et al. Ultraviolet-B induced DNA lesions and their removal in wheat ( Triticum aestium L.). Plant Cell Environ, 1996, 19(2): 171~181
    Teramura A H, Murali N S. Interaspecific differences in growth and yield of soybean exposed to ultraviolet-B radiation under green-house and field conditions. Environ Exp Bot, 1986, 26(1): 89~95
    Teramura A H. 1982. The amelioration of UV-B effects on productivity by visible radiation, In: Calkins J (eds). The Role of Solar Ultraviolet Radiation in Marine Ecosystem. New York: Plenum, 1982. 367~387
    Teramura A H. Effects of ultraviolet-B radiation on the growth and yield of crop plants. Physiol Plant, 1983, 58: 415~427
    Tevini M, Teramura A H. UV-B effects in terrestrial plants. Photochem Photobiol, 1989, 50: 479~487
    Tyrell B, Johansen H W. Reproductive and regenerative strategies of Lithothrix aspergillum (Corallinales, Rhodophyta) in Southern California.P hycologia, 1995, 34: 39~44
    Underwood A J, Fairweather P G. Supply-side ecology and benthic marine assemblages. Trends Ecol Evol, 1989, 4: 16~20
    UNEP, 2003. Environmental Effects of Ozone Depletion and its Interactions with Climate Change: 2002 Assessment. United Nations Environmental Programme
    Vadas R L, Wright W A, Miller S L. Recruitment of Ascophyllum nodosum: Wave action as a source of mortality. Mar Ecol Prog Ser, 1990, 61: 263~272
    Vadas S, Johnson S, Norton T A. Recruitment and mortality of early post-settlement stages of benthic algae. Br Phycol J, 1992, 27: 331~335
    Van de Leun J C , Tang X Y, Tevini M (eds). Environmental effects of ozone depletion: 1994 assessment. (UNEP 1994). Ambio, 1995, 24: 102~224
    Van de Poll W H , Eggert A , Buma, A G J, et al. Effects of UV-B-induced DNA damage and photoinhibition on growth of temperate marine red macrophytes: habitat-related differences in UV-B tolerance. J. Phycol, 2001, 37 (1): 30~37
    Van de Poll W H, Bischof K, Buma A G J, et al. Habitat related variation in UV tolerance of tropical marine red macrophytes is not temperature dependent. Physiol Plant, 2003, 118: 74~83
    Van de Poll W H, Eggert A, Buma A G J, et al. Effect of UV-B-induced DNA damage and photoinhibition on growth of temperate marine red macrophytes: Habitat-related differences in UV-B tolerance. J Phycol, 2001, 37(1): 30~38
    Van de Poll W H, Eggert A, Buma A G J, et al. Effects of UV-B induced DNA damage andphotoinhibition on growth of six temperate marine red macrophytes: distinct habitat related differences in ultraviolet-B tolerance. J Phycol, 2001, 37: 30~37
    Van de Poll W H, Eggert A, Buma A G J, et al. Temperature-dependence of UV radiation effects in Arctic and temperate isolates of three red macrophytes. Eur J Phycol, 2002, 37: 59~68
    Vass I. Adverse effects of UV-B light on the structure and function of the photosynthetic apparatus. In: Pessarakli M (eds). Handbook of photosynthesis. New York: Marcel Dekker Inc, 1997. 931~949
    Véliz K, Edding M, Tala F, et al. Effects of ultraviolet radiation on different life cycle stages of the south Pacific kelps, Lessonia nigrescens and Lessonia trabeculata (Laminariales, Phaeophyceae). Mar Biol, 2006, 149(5): 1015~1024
    Vincent W F, Belzile C. Biological UV exposure in the polar oceans: Arctic–Antarctic comparisions. In: Huiskes AHL et al (eds). Antarctic biology in a global context. Leiden Netherland: Backhuys Publishers. 2003, 176~181
    Vogt H, Schramm W. Conspicuous decline of Fucus in Kiel Bay (Western Baltic): What are the causes? Mar Ecol Prog Ser, 1991, 69: 189~194
    Voskoboinikov G M, Kamnev A N. Morphofunctional changes of the chloroplasts during the seaweed ontogenesis. Nauka Leningrad, 1991, 96
    W?ngberg S -?, Selmer J -S, Ekelund N G A, et al. Effects of increased UV-B radiation on Nordic marine ecosystem - a literature review. Nordic Council of Ministers TemaNord 515. 1996
    Wessel S, Aoki S, Winkler P, et al. Tropospheric ozone depletion in polar regions. A comparison of observations in the Arctic and Antarctic. Tellus B, 1998, 50: 34~50
    Whitaker D M. Counteracting the retarding and inhibitory effect of strong ultraviolet on Fucus eggs by white light. J Gen Physiol, 1942, 25: 391~397
    Wiencke C, Clayton M N, Sch?nw?lder M E A. Sensitivity and acclimation to UV radiation of zoospores from five species of Laminariales from the Arctic. Mar Biol, 2004, 145: 31~39
    Wiencke C, Clayton M N. Schoenwaelder M. Sensitivity and acclimation to UV radiation of zoospores from five species of Laminariales from the Arctic. Mar Biol, 2004, 145: 31~39
    Wiencke C, Gómez I, Pakker H, et al. Impact of UV radiation on viability, photosynthetic characteristics and DNA of brown algal zoospores: implications for depth zonation. Marine Ecology Progress Series, 2000, 197: 217~229
    Wiencke C, Roleda M Y, Gruber A, et al. Susceptibility of zoospores to UV radiation determines upper depth distribution limit of Arctic kelps: evidence through field experiments. J Ecol, 2006, 94: 455~463
    Wiencke C, V?gele B, Kovaltchouk N A, et al. Species composition and zonation of marine benthic macroalgae at Hansneset in Kongsfjorden, Svalvard. In: Wiencke C (eds). The costal ecosystem of Kongsfjorden, Svalbard. Synopsis of biological research performed at the Koldewey Station in the years 1991~2003. Berichte zur Polar-und Meeresforschung, 2004a, 492: 55~62
    Williamson C E, Grad G, Gilroy S, et al. Temperature dependent UV responses in zooplankton: implications of climate change. Limnol Oceanogr, 2002, 47: 1844~1848
    WMO (World Meterorological Organization), Scientific Assessment of Ozone Depletion: 2002
    Global Ozone Research and Monitoring Project, Report No: 47, Geneva, Switzerland, 2003
    Wood W. Effect of solar ultraviolet radiation on the kelp Ecklonia radiata. Mar Biol, 1987, 96: 143~150
    Xiong F, Komenda J, Kopecky J, et al. Strategies of ultraviolet-B protection in microscopic algae. Physiol Plant, 1997, 100: 378~388
    Yabe K, Makino M, Suzuki M. Growth inhibition on gametogenesis of Laminaria religiosa induced by UV-B radiation. Fish Sci, 1997, 63 : 668~670
    Yan X J, Li X C, Fan X, et al. Studies on extraction procedure and antioxidative activity of phlomtannins from Sargassurn kjelbnanianum, Chin J Oceanol Limnol, 1997, 5(1): 42~45
    Yan X J, Li X C, Zhou C X, et al. Prevention of fish oil rancidity by phlomtannins from Sargassurn kjellmanianwn, J App1 Phyco1, 1996, 8: 201~203
    Yan X J,Fang G M, Lou Q X. Studies on free radical scavenging activity in Chinese seaweeds,Chin J Oceanol Limnol, 1999, 17(3): 240~246
    Zagarese H E, Diaz M, Pedrozo F, et al. Photodegradation of natural organic matter exposed to fluctuating levels of solar radiation. J Photochem Photobiol B, 2001, 61, 35~45
    Zepp R G, Callaghan T V, Erickson III D J. Interactive effects of ozone depletion and climate change on biogeochemical cycles. Photochem. Photobiol Sci, 2003, 2(1): 51~61
    Zimmerman R, Kremer J. Episodic nutrient supply to a kelp forest ecosystem in Southern California. J Mar Res, 42: 591~604
    Ziska L H, Teramura A H. CO2 enhancement of growth and photosynthesis in rice (Oryza sativa). Modification by increased ultraviolet-B radiation. Plant Physiol, 1992, 99, 473~481

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700