用户名: 密码: 验证码:
颅内动脉瘤发生与治疗后复发的血流动力学数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:颅内动脉瘤破裂是引起蛛网膜下腔出血的最常见原因,而蛛网膜下腔出血具有非常高的病死率和病残率,因此对动脉瘤的病因学及治疗机制研究具有非常重要意义。尽管目前仍不明确动脉瘤的发生和生长的机理,血流动力学因素被普遍认为在动脉瘤病理发展过程中起重要作用。我们对颅内动脉瘤进行血流动力学数值模拟并获取血流动力学参数,分析血流动力学因素在颅内动脉瘤发生及介入治疗后复发中的作用,判断引起动脉瘤发生与介入治疗后复发的特定血流动力学因素,为动脉瘤的临床预防、治疗提供理论依据。
     方法:首先,借助计算流体力学有限元方法软件建立研究动脉瘤的数值模型,分别研究在动脉瘤发生之前该节段载瘤动脉以及动脉瘤发生后相应部位的血流动力学特征,获取血流动力学的各种参数。对比描述不同区域血流动力学参数特点,分析血流动力学因素在颅内动脉瘤发生、生长的作用。具体如下:获取颅内29例后交通动脉瘤患者的脑血管三维旋转造影资料,初步剪切、加工后,经3DMAX软件转换、定标,再通过GEOMAGIC软件进一步切割、截取和光滑处理,将去除动脉瘤的载瘤血管作为动脉瘤发生前的原始状态,所得结果在ANSYS ICEM中建立有限元网格,在一定的假设前提下,用ANSYS CFX配置边界条件后并进行计算,得出载瘤血管的壁面切应力、壁面压力、流线、血流速度等多种血流动力学研究参数。
     其次,筛选出经过致密栓塞后造影复查证实复发的10例动脉瘤,与致密栓塞后未复发的10例形态学近似的动脉瘤进行配对。对于用同样的方法处理后的动脉瘤进行数值模型建立并进行血流动力学分析,获得相应的血流动力学参数。比较两组病例载瘤动脉的血流动力学相关参数并统计学分析。
     结果:根据研究结果可以分析和计算颅内动脉瘤的多种血液动力学参数,包括:壁面切应力、壁面压力、流线及流场基本特征、速度血流、动脉瘤内血流方式、射入流宽度、冲击域位置及大小。从而可以更直观清晰的认识颅内动脉瘤的血液动力学特点。
     为了找出影响动脉瘤发生的血流动力学因素,在上述各项参数中进行比较和分析。对在动脉发生之前的载瘤动脉不同节段壁面剪应力比较:近端血管平均WSS为7.38±3.82Pa,远端血管平均为7.19±3.14Pa,原动脉瘤区平均为10.05±5.39Pa。原动脉瘤区平均WSS要明显高于远端血管和近端血管,两两比较的统计分析有统计学差异。载瘤动脉不同节段之间比较壁面压力,结果近端血管平均压力为1301.27±1512.86Pa,远端血管平均为1087.33±1230.37Pa,原动脉瘤区平均为1343.19±1487.61Pa,尽管原动脉瘤区平均压力要高于远、近端血管,但仅原动脉瘤区与远侧血管之间存在统计学差别。载瘤动脉不同节段之间比较血流速度,近端血管平均流速为0.61±0.38m/s,远端血管平均流速为0.56±0.32m/s,原动脉瘤区平均流速为0.57±0.32m/s。两两比较,差别均无统计学意义。动脉瘤发生前、后各项血流动力学参数比较,仅壁面剪应力存在统计学显著性差异,发生前壁面剪应力要高于发生后的壁面剪应力。
     介入治疗后随访时复发动脉瘤和未复发动脉瘤配对后,比较瘤颈远、近端和瘤颈中心区域的WSS,结果均无统计学意义。在未复发动脉瘤的不同部位之间壁面剪应力比较,同样无统计学意义。然而在复发组中不同部位壁面剪应力比较:瘤颈近侧剪应力平均为6.01±6.27Pa,瘤颈远侧剪应力平均为7.34±6.31Pa,瘤颈中心剪应力平均为5.36±6.46Pa。三者中瘤颈远侧平均剪应力为最高。统计分析:瘤颈口的远、近端两两比较及瘤颈中心与瘤颈远侧两两比较WSS有统计差别,而瘤颈中心与近侧比较WSS无统计学差别。在复发组中不同部位壁面压力比较:瘤颈近侧压力平均为854.09±1120.98Pa,瘤颈远侧压力平均为851.88±1137.39Pa,瘤颈中心压力平均为862.03±1056.14Pa,但各部位壁面压力比较无统计学意义。复发组中不同部位血流速度比较,各部位速度差异亦无统计学意义。
     配对样本的复发与未复发两组射入流宽度无统计学差异。而冲击域大小存在统计学差异,复发组的冲击域要小于未复发组。
     结论:利用计算流体力学数值模拟方法,可很好的反映颅内动脉瘤血流动力学特点,获取血流动力学各种参数。颅内动脉瘤的发生与产生前的该血管节段(载瘤动脉)血液动力学特征有关。载瘤血管不同节段的壁面剪应力分布存在差异,高的壁面剪应力可能诱发动脉瘤。介入治疗后当载瘤动脉存在明显壁面剪应力分布不均匀和具有较小冲击域时,动脉瘤容易复发。
Objective:Cerebral aneurysm rupture is the most common cause of subarachnoid hemorrhage, well known for its very high mortality and mobility. Therefore, the etiology of the aneurysms and the treatment mechanism has great importance.Although how aneurysms initiate and grow is still unclear, hemodynamic factors are thought to be important in the pathogenesis. The aim of this paper is to simulate and obtain related parameters of hemodynamics of intracranial aneurysms. Analyze the effect of hemodynamic factors on origin and growth of intracranial aneurysms. Identification of specific hemodynamic factors responsible for aneurysm initiation and provide theoretic support to clinical prophylaxis and treatment of aneurysm.
     Methods:First of all, used finite element method with computational fluid dynamics software to establish numerical model of aneurysm, studied the hemodynamic characteristics of parent artery before the initiation of aneurysms and the corresponding parts after aneurysms occurred, acquired hemodynamic parameters. Compared and described the characteristics of different regions and analyzed the effect of hemodynamic factors in the initiation of intracranial aneurysm.The 3DRA image of 29 post-communicating aneurysms were transferred into 3DMAX and GEOMAGIC software for being segmented and smoothed surface data. The surface data was imported into ANSYS CFD in order to create finite element grids. After meshing, we applied ANSYS CFX to create configuration files for fluid field computations and structural mechanics computations respectively, which include the setting of material properties, boundary condition and time step. At last we obtained the hemodynamic parameters including wall shear stress, wall pressure, streamline, and stream velocity. We study the hemodynamic characteristics of parent artery before aneurysm occurrence and the hemodynamics of before and after aneurysms formation respectively.
     Second, we focused on 10 patients with intravascular aneurysms accepted endovascular treatment and after a period of time aneurysms recurred. To Pairred this group with another similar morphological group which also accepted treatment but not recurred. By the same method we built patient-specific computational models of 20 aneurysms, calculated wall pressure, wall shear stress, blood velocity, inflow jet, and impaction zone. We compared these parameters with statistical analysis. Results:We analyzed hemodynamic characters of the intracranial aneurysm including WSS, wall pressure, streamline, within aneurysmal flow pattern, stream velocity, width of inflow jet, location and size of impaction zone.
     To identify impact of hemodynamic factors in occurred aneurysm, the above parameters were compared and analyzed. Compare the wall shear stress of the different parts of vessel before aneurysm formed, the average WSS of proximal vessel was 7.38±3.82Pa, the average WSS of distal vessel was 7.19±3.14Pa, the average WSS of the original aneurysm was 10.05±5.39Pa. Original aneurysm area is obviously higher than the distal and proximal blood vessels. Comparisons between groups have statistically difference. Compare the wall pressure of the different parts of vessel, the average WP of proximal vessel was 1301.27±1512.86 Pa, the average WP of distal vessel was 1087.33±1230.37 Pa, the average WP of the original aneurysm was 1343.19±1487.61 Pa. Although the average pressure of the original aneurysm area is higher than the proximal and distal vessels, but only between the original zone and distal vascular has statistical difference. the stream velocity among different parts of parent arteries has no statistical difference. the average stream velocity of proximal vessel was 0.61±0.38m/s, the average stream velocity of distal vessel was 0.56±0.32m/s, the average stream velocity of the original aneurysm was 0.57±0.32m/s. The stream velocity among different parts of parent arteries has no statistical difference. Compare the parameters of before and after aneurysms formation only wall shear stress has significantly statistical difference.
     Paired the recurred aneurysms and un-recurred aneurysms and compared wall shear stress of different locations. The results have no statistical difference. The same results existed in different locations of un-recurred aneurysms. However, in recurred group compared the wall shear stress in different parts:the average wall shear stress of the proximal part of the ostium was 6.01±6.27Pa,the distal part was 7.34±6.31Pa,the central part was 5.36±6.46Pa.The distal part is highest in three parts. There has statistical difference either between the central and distal part of the ostium or between the proximal and the distal part. In recurred group we compared the wall pressure and stream velocity in different parts. The results has no statistical difference.
     It was found that in paired samples of recurred aneurysms and unrecurred aneurysms has no statistical difference in the width of inflow jet (P=0.779).But there was statistical difference in the magnitude of impaction zone (P=0.045).
     Conclusion:The numerical simulation is a reliable method, reflect the hemodynamics of cerebral aneurysm, obtain the varieties parameters of hemodyanmics. The origin of aneurysm has relation with the hemodynamic characteristic of parent artery before the aneurysm formation. There were differences among different parts of vessel. High magnitude of wall shear stress may initiate an intracranial aneurysm. When the parent arteries own obviously uneven distribution of wall shear stress, it can be easily recur. So was the aneurysms has small impaction zone.
引文
[1]李铁林,凌锋.我国介入神经放射学发展现状及应注意的几个问题.中华医学杂志,2000.80:7-8
    [2]Inci S, Spetzler RF. Intracranial aneurysms and arterial hypertentsion:a review and hypothesis. Surg Neurol,2000,53:530-540
    [3]Yasargil MG. Microneurosurgery. Vol I stutzgat, New York:Georg Thieme Verlag,1984, 274-296
    [4]Fujiwara NH, Cloft HJ, Marx WF, et al. Serial angiography in an elastase induced aneurysm model in rabbits:evidence for progres sive aneurysm enlargement after creation. AJNR Am J Neuroradiol,2001,22:698-703
    [5]苏正,李铁林,黄庆.弹性蛋白酶快速诱发动脉瘤动物模型实验研究.中国神经精神疾病杂志,2002,28:182-184
    [6]符策基.颅内动脉瘤血液动力学的二维数值模拟:学位论文,北京:北京大学,2000
    [7]戴建华,丁光宏,龚剑秋,颅内动脉瘤的血液动力学二维数值模拟,复旦学报,2004,6,43:392-396
    [8]赵丛海,李淼,史万超等.颅内动脉瘤内涡流的血液动力学研究,中华实验外科杂志,2006,23(12):1447-1449
    [9]Shojima M, Oshima M, Takagi K, et al, Role of the bloodstream impacting force and the local pressure elevation in the rupture of cerebral aneurysms, stroke,2005,36:1933-1938
    [10]Cebral JR, Castro MA, Burgess JE, et al.Characterization of cerebral aneurysms for assessing risk of rupture by using patient-specific computational hemodynamics models, AJNR Am J Neuroradiol,2005,26:2550-2559
    [11]Ford MD, Lee SW, Lownie SP,et al.On the effect of parent-aneurysm angle on flow patterns in basilar tip aneurysms:towards a surrogate geometric marker of intra-aneurismal hemodynamics. Journal of biomechanics,2008,41(2):241-248
    [12]Hoi Y, Meng H, Woodward S, et al.Effects of arterial geometry on aneurysm growth: three-dimensional computational fluid dynamics study. Journal of Neurosurgery, 2004,101:676-681
    I、Weir B. Unruptured intracranial aneurysms:a review. J. Neurosurg.2002,96(1):3-42
    2、Wetzel S, Meckel S, Frydrychowicz A, Bonati L, Radue EW, et al. In vivo assessment and visualization of intracranial arterial hemodynamics with flow-sensitized 4D MR imaging at 3T. Am. J. Neuroradiol,2007,28:433-438
    3、Wiebers DO, Piepgras DG, Meyer FB, Kallmes DF, Meissner IF, et al. Pathogenesis, natural history,and treatment of unruptured intracranial aneurysms. Mayo Clin. Proc.2004, 79:1572-1583
    4、Guzman RJ, Abe K, Zarins C. Flow-induced arterial enlargement is inhibited by suppresion of nitric oxide synthase activity in vivo. Surgery,1997,122:273-79
    5、Cebral JR, Sheridan M, Putman CM, Hemodynamics and bleb formation in intracranial aneurysms,AJNR Am J Neuroradilol,2009,31:304-311
    6、黄清海,张星,施洋,余钊胜,邵雪明,刘建民.不同类型脑动脉瘤内流体力学的三维数值模拟研究.中华神经外科疾病研究杂志,2009,8(1):69-72
    7、张星,黄清海,刘建民,施洋,余钊胜,邵雪明.支架孔率对脑动脉瘤血液动力学影响的三维数值模拟研究.中国脑血管病杂志,2009,6(3):139-143.
    8、Inci S, Spetzler RF. Intracranial aneurysms and arterial hypertension:a review and hypothesis. Surg Neurol,2000,53:530-540.
    9、Fujiwara NH, Cloft HJ, Marx WF, et al. Serial angiography in an elastase induced aneurysm model in rabbits:evidence for progressive aneurysm enlargement after creation. AJNR Am J Neuroradiol,2001,22:698-703.
    10、苏正,李铁林,黄庆.弹性蛋白酶快速诱发动脉瘤动物模型实验研究.中国神经精神疾病杂志,2002,28:182-184.
    11、Jou L. D., Wong G, Dispensa B., et al, Correlation between luminal geometry changes and hemodynamics in fusiform intracranial aneurysms, AJNR,2005,26:2357-2363
    12、Hoi Y., Meng H., Woodward S., et al, Effects of arterial geometry on aneurysm growth: three-dimensional computational fluid dynamics study. Journal of Neurosurgery,101:676-681, 2004
    13、Tateshima S, Tanishita K, Omura H, et al. Intra-aneurysmal hemodynamics during the growth of unruptured aneurysm:in vitro study using longitudinal CT angiogram database. AJNR Am J Neuroradiol 2007,28:622-627
    1、Tateshima S, Murayama Y, Villablanca JP. Intraaneurysmal flow dynamics study featuring an acrylic aneurysm model manufactured using computerized tomography angiogram as a mold. J Neurosurg 2001,95:1020-1027
    15、Shojima M, Oshima M, Takagi K, et al. Magnitude and role of wall shear stress on cerebral aneurysm:computational fluid dynamic study of 20 middle cerebral artery aneurysms. Stroke,2004,35:2500-2505
    16、Sforza DM, Putman CM, Cebral, JR. Hemodynamics of Cerebral Aneurysms, Annual Review of Fluid Mechanics,2009,41:91-107
    17、Shojima, M., Oshima, M., Takagi, K., Torii, R., Nagata, K., Shirouzu, I., Morita, A., Kirino, T., Role of the bloodstream impacting force and the local pressure elevation in the rupture of cerebral aneurysms. Stroke.2005,36 (9):1933-1938.
    18、Shimogonya Y, Ishikawa T, Imai Y, et al. Can temporal fluctuation in spatial wall shear stress gradient initiate a cerebral aneurysm? A proposed novel hemodynamic index, the gradient oscillatory number (GON). Journal of Biomechanics,2009,42:550-554
    19、Castro, M.A., Putman, C.M., Cebral, J.R., Patient-specific computational fluid dynamics modeling of anterior communicating artery aneurysms:a study of the sensitivity of intra-aneurysmal flow patterns to flow conditions in the carotid arteries. American Journal of Neuroradiology 2006,27 (10):2061-2068.
    20、Cebral, J.R., Castro, M.A., Burgess, J.E., Pergolizzi, R.S., Sheridan, M.J., Putman, C.M., Characterization of cerebral aneurysms for assessing risk of rupture by using patient-specific computational hemodynamics models. AJNR American Journal of Neuroradiology, 2005,26:2550-2559.
    1、Murayama Y, Nien YL, Duckwiler G, et al. Guglielmi detachable coil embolization of cerebral aneurysms:11 years'experience, J Neurosurg,2003,98:959-966
    2、Thornton J, Debrun GM, Aletich VA, et al. Follow-up angiography of intracranial aneurysms treated with endovascular placement of Guglielmi detachable coils. Neurosurgery, 2002,50:239-249
    3、金点石,高宝山,钱盛伟等,89例颅内动脉瘤栓塞术后血管造影随访报告,中华神经外科杂志,2007,23(3):194-196
    4、汪求精,李铁林,段传志等,颅内动脉瘤栓塞治疗后数字减影血管造影随访研究,中国脑血管病杂志,2006,3(3):100-105
    5、李铁林,段传志,田喜光等,颅内动脉瘤栓塞术后短期内复发的原因探讨,解剖学研究,1999,21(2):157
    6、Piotin M, Mandai S, Murphy KJ, et al. Dense packing of cerebral aneurysms:an invitro study with detachable platinum coils, AJNR,2000,21(4):757-760.
    7、Piotin M, Iijima A, Wada H, et al. Increasing the packing of small aneurysms with complex-shaped coils:an in vitro study [J]. Am J Neuroradiol,2003,24(7):1446-1448
    8、Tamatani S, Ito Y, Abe H, et al. Evaluation of the stability of aneurysms after embolization using detachable coils:correlation between stability of aneurysms and embolized volume of aneurysms [J].AJNR Am J Neuroradiol,2002,23(5):762-767
    9、Kawanabe Y, Sadato A, Taki W, et al. Endovascular occlusion of intracranial aneurysms with Guglielmi detachable coils:correlation between coil packing density and coil compaction [J]. Acta Neurochir (Wien),2001,143(5):451-455
    10、Cognard C, Weill A, Spelle L, et al. Long-term angiographic follow-up of 169 intracranial berry aneurysms occluded with detachable coils [J]. Radiology,1999,212(2): 348-356
    11、邱胜利,张扬,魏建军等。影响颅内动脉瘤致密栓塞的临床因素分析,中国临床神经外科杂志,2007,12(8):487-489
    12、Raghavan M., Ma B., Harbaugh R. Quantified aneurysm shape and rupture risk, Journal of Neurosurgery,2005,102:355-362
    13、Jou L. D., Wong G., Dispensa B., et al, Correlation between luminal geometry changes and hemodynamics in fusiform intracranial aneurysms, AJNR,2005,26:2357-2363
    14、Hassan T., Tieofeev E. V., Saito T., et al, Computational replicas:anatomic reconstructions of cerebral vessels as volume numerical grids at three-dimensional angiography, AJNR,2004,25:1356-1365
    15、Steinman D. A., Milner J. S., Norley C. J. et al, Image-based computational simulation of flow dynamics in a Giant Intracranial Aneurysm. AJNR,2003,24:559-566
    16.Valencia,A.,Solis,F..Blood ow dynamics and arterial wall interaction in a saccular aneurysm model of the basilar artery. Computers and Structures,2006,84(21),1326-1337
    17.Ford,M.D.,Alperin,N.,Lee,S.H.,Holdsworth,D. W.,Steinman,D.A. Characterization of volumetric flow rate wave forms in the normal internal Carotid and vertebral arteries. Physiological Measurement,2005,26:477-488
    18.Hoi Y, Meng H, Woodward SH, Bendok BR, Hanel RA, Guterman LR,et al. Effects of arterial geometry on aneurysm growth:three-Dimensional computational fluid dynamics study. Journal of Neurosurgery,2004,101 (4):676-681
    19.Castro,M.A.,Putman,C.M.,Cebral,J.R..Patient-specic computational fluid dynamics modeling of anterior communicating artery aneurysms:a study of the sensitivity of intra-aneurysmal flow patterns to flow conditions in the carotid arteries. American Journal of Neuroradiology,2006,27(10):2061-2068
    20.Tateshima,S.,Vinuela,F.,Villablanca,J.P.,Murayama,Y.,Morino,T.,Nomura,K.,Tanishita,K.. Three-dimensional blood flow analysis in a wide-necked Internal carotid artery-ophthalmic artery aneurysm. Journal of Neurosurger,2003,99(3),526-533
    21.Campbell GJ, Eng P, Roach MR. Fenestrations in the internal Elastic Lamina at bifuractions of human carotid arteries. Stroke,1981,12:489-496
    22.George N. Saccular aneurysm formation in curved and bifurcating arteries. AJNR Am J Neuroradilo.1999,20:1309-1317
    23.Gobin YP, Counord JL, Flaud P, Duffaux J. In vitro study of hemodynamics in a giant saccular aneurysm model:influence of flow dynamics in the parent vessel and effects of coil embolisation.Neuroradiology,1994,36(7):530-536
    24.Cebral JR,Castro MA,Burgess JE,et al. Characterization of Cerebral Aneurysms for Assessing Risk of Rupture By Using Patient-Specific Computational Hemodynamics Models. AJNR Am J Neuroradiol,2005,26:2550-2559
    25.Nikolaos MP kalalis, Aristotelis PM, James VB,et al. The haemodynamics of endovascular aneurysm treatment:a computational modelling approach for estimating the Influence of Multiple Coil Deployment. IEEE Transactions on medical imaging,2008,27(6):814-824
    26.Liou TM, Liou SN. A review on in vitro studies of hemodynamic characteristics in terminal and lateral aneurysm models,Proc Natl Sci Counc Repub China B,1999,23(4):133-148
    1、Weir B. Unruptured intracranial aneurysms:a review. J. Neurosurg,2002,96(1):3-42
    2、Wetzel S, Meckel S, Frydrychowicz A, Bonati L, Radue EW, et al. In vivo assessment and visualization of intracranial arterial hemodynamics with flow-sensitized 4D MR imaging at 3T. Am. J. Neuroradiol,2007,28:433-438
    3、Wiebers DO, Piepgras DG, Meyer FB, Kallmes DF, Meissner IF, et al. Pathogenesis, natural history,and treatment of unruptured intracranial aneurysms. Mayo Clin. Proc,2004, 79:1572-1583
    4、Chyatte D, Lewis I.Gelatinase Activity and the Occurrence of Cerebral Aneurysms. Stroke, 1997,28(4):799-804
    5、Sakaki T, Kohmura E, Kishiguehi T, et al. Loss and Apotosis of Smooth Muscle Cells in Intracranial Aneurysms Studies with in DNA and Labeling and Antibody against simgle-strand DNA. Acta neurochirurgica,1997,135(5):469-475
    6、Onda H, Kasuya H, Yoneyama T, et al. Genomewide-linkage and haplotype-association studies map intracranial aneurysm to chromosome 7qll.Am J hum Genet,2001,69:80-819
    7、Van der Voet M, Olson JM, Kuivaniemi H, et al. Intracranial aneurysms in Finnish families: confirmation of linkage and refinement of the interval to Chromosome 19q1 3.3.Am J Hum Genet,2004,74(3):564-571
    8、Kuivaniemi H, Prockop DJ, Wu Y, et al. Exclusion of mutations in the gene for typeⅢ collagen(COL3A1)as a common cause of intracranial aneurysms or cervical artery dissections:results from sequence analysis of the coding sequences of typeⅢ collagen from 55 unrelated patients.[J].Neuorlogy,1993,43:2652-2658
    9、Yoneyama T, Kasuya H,Onda H,et al. Collagen type Ⅰ alpha2 (COL1A2) is the susceptible Gene for intracranial aneurysms[J].Stroke,2004,35:443-348
    10、Yoneyama T, Kasuya H, Onda H, et al. Association of positional and functional candidate genes FGFI, FBN2, and LOX on 5q31 with intracranial aneurysm [J].J Hum Genet 2003, 48:309-314
    11、Guzman RJ, Abe K, Zarins C. Flow-induced arterial enlargement is inhibited by suppresion of nitric oxide synthase activity in vivo. Surgery,1997,122:273-279
    12、Kamiya A, Ando J, Shibata S, Matsuda H. Roles of fluid shear stress in physiological regulation of vascular structure and function. Biorheology,1988,25:271-278
    13、Linn FH, Rinkel GJ, Algra A, van Gijn J.1996. Incidence of subarachnoid hemorrhage: role of region, year,and rate of computed tomography. A meta-analysis. Stroke,1996,27:625-629
    14、Liou TM, Liou SN. A review of in vitro studies of hemodynamic characteristics in terminal and lateral aneurysm models. Proc. Natl. Sci. Counc. Repub. China B,1999,23:133-148
    15、Luscher TF, Tanner FC.1993. Endothelial regulation of vascular tone and growth. Am J Hypertens,1993,6(6):283S-293S
    16、Matsuda M, Handa J, Saito A, Matsuda I, Kamijyo Y. Ruptured cerebral aneurysms associated with arterial occlusion. Surg. Neurol,1983,20:4-12
    17、Ferguson GG.Physical factors in the initiation, growth, and rupture of human intracranial saccular aneurysms. J Neurosurg,1972,37:666-677
    18、Morimoto M, Miyamoto S, Mizoguchi A, Kume N, Kita T, Hashimoto N. Mouse model of cerebral aneurysm experimental induction by renal hypertension and local hemodyanmic changes, Stroke,2002,33:1911-1915
    19、Kondo S, Hashimoto N, Kikuchi H, et al. Cerebral aneurysms arising at nonbranching sites:an experimental study, Stroke,1997,28:398-404

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700