用户名: 密码: 验证码:
喀斯特生境中AMF分解枯落物并向宿主植物传递养分
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
丛枝菌根真菌(arbuscular mycorrhizae fungi, AMF)如何利用土壤养分资源供给宿主植物生长是当前菌根生态研究的热点问题。水土流失严重的南方喀斯特地区,生境异质性高,喀斯特生境中的植物个体是如何通过AMF吸收并利用土壤中的养分资源来维持植物的生长,从而实现生态系统的营养循环和养分平衡的问题还没有认识清楚。喀斯特生境中AMF是否具有分解有机物并利用其养分的能力一直未见报道,土壤养分含量是如何调节了这一过程的发生?喀斯特生境中具有较高的AMF多样性,这些菌种是如何共同维持植物生长所需要的土壤养分资源的?养分的形态是如何通过AMF影响了植物生长和土壤性质的?这些问题的明确对阐明喀斯特生态系统养分维持机制具有重要意义。为此,本文进行了如下的两个试验,旨在探索喀斯特土壤中AMF是否具有分解枯落物的腐生营养能力以及多菌种的混合效应对宿主植物的共生发育和土壤性质的影响。
     具体的试验方法为:试验一是以喀斯特地区适生植物香樟(Cinnamomum camphor a)为研究对象、采用隔室分离系统、温室控制实验以及15N同位素示踪方法,以喀斯特土壤作为基质接种AMF。分室系统隔室装置(用20um或0.45umm尼龙网双层隔离)对香樟幼苗进行幼套球囊霉(Glomus etunicatum)接种后,在根际周围施加外源无机氮NH4NO3,相邻隔室施加15N标记的黑麦草(Lolium perenne)枯落物,以检测AMF的腐生营养能力和外源氮对枯落物分解的影响;试验二采用相同的装置对香樟接种幼套球囊霉和摩西球囊霉(Glomus mosseae)的混合接种,相邻隔室用15N标记的(NH4)2SO4处理,并在12周后种植黑麦草,以检测AMF混合接种对香樟幼苗共生发育和土壤养分转移的影响。所有苗木培养15周后测定了隔室幼苗生理生化及土壤生化指标:侵染率、菌丝体密度、根系性状特征、光合指标、植株和土壤氮、磷含量,δ15N值、微生物量氮、微生物量碳、碱性磷酸酶和蛋白酶活性等。主要的试验结果如下:
     (1)外源氮调节AMF对-土壤枯落物分解和养分转移
     施加外源N提高了相邻隔室菌丝密度,净光合速率、根系直径、根体积和生物量的积累;施加外源N提高了植株根、茎、叶各部分的N:P比率,但植株总N摄取量没有显著影响;施加外源N降低了香樟叶片δ15N值;提高了隔室微生物量碳、微生物量氮和有机碳的含量,也提高了微生物量C:N比率;施加外源N对隔室碱性磷酸酶和蛋白酶活性没有显著影响,但菌丝隔离对二者影响显著。隔网对菌丝阻隔显著降低了相邻隔室菌丝体密度、苗高、地径,叶绿素含量和净光合速率,从而降低了生物量的积累;菌丝隔网对植株N:P比率没有显著影响,但是显著降低了植株N和P的摄取量和N:P比率;降低了幼苗叶片的δ15N值和微生物量C:N比率。试验结果表明:试验处理对香樟幼苗侵染率没有显著影响,但是显著改变了相邻隔室菌丝体密度。菌丝体的阻隔改变了根系形态特征和植株生物量;试验证实了AMF具有腐生营养能力,促进了土壤枯落物的分解并吸收其释放的15N供应给宿主植物利用;香樟幼苗优先利用根际周围N维持生长;在低N状态下,香樟植株通过AMF菌丝体更多地利用了相邻隔室枯落物分解释放的15N;施加根际外源氮有利于AMF对隔室枯落物的分解,但降低了植株对枯落物氮的利用;根际高N状态下植株的N、P摄取量较大,相邻隔室微生物量碳、氮含量和菌丝体密度提高。
     (2)AMF混合接种对宿主植物无机养分的吸收和转移效应
     混合接种处理对侵染率和菌丝体密度没有显著影响;混合接种提高了香樟幼苗生长和生物量的积累,改变了根系性状特征如根长、根体积等,但差异不显著;混合接种处理对净光合速率没有显著影响;混合接种提高了根和茎的N:P比率,也提高了植株总N摄取量,但总P摄取量效应不显著,也显著提高植株总体的N:P比率;混合接种提高了香樟叶片δ15N值,降低了相邻隔室土壤和黑麦草叶片的815N值;混合接种显著降低了相邻隔室的微生物量C,也降低了土壤微生物量的C:N比率;混合接种提高了相邻隔室碱性磷酸酶和蛋白酶活性。菌丝隔网对菌丝阻隔显著影响了相邻隔室菌丝体密度,降低了根、茎、叶生物量、根长、根体积、叶绿素含量和净光合速率;隔网显著降低了植株N、P摄取量和N:P比率、15N值,但相邻隔室土壤和黑麦草叶片δ15N值显著高于其他处理;隔网显著降低了隔室土壤的微生物量N和微生物量C及其比率;隔网对相邻隔室全N、碱解N和有效P有显著的降低作用,但是相邻隔室碱性磷酸酶和蛋白酶活性则提高。试验结果表明:混合接种对香樟幼苗侵染率和相邻隔室菌丝体密度没有显著影响。菌丝网的阻隔改变了根系形态特征和植株生物量。AMF混合接种效应提高了相邻隔室养分的利用,促进植株生长,改变了共生体系中的根系性状特征和生物量的积累和植株体内N、P的摄取、土壤酶活性和微生物量C、N等。菌丝体显著影响了植株养分的利用,从而影响到光合作用和生物量的积累。混合接种促进了植株利用更多的远距离的无机养分,而这些养分的利用时通过菌丝体吸收并转移获得的。
     (3)养分形态和AMF菌丝对宿主植物共生发育建成及土壤性质的影响
     双因素方差分析结果表明:养分形态(有机和无机养分)对香樟幼苗生长发育的影响主要是通过影响了根系生物量改变了植株总生物量的积累,光合速率和叶绿素a的含量也显著受养分形态的影响,而菌丝对植株的生物量积累以及形态建成均有显著或较大的影响;香樟幼苗总N和总P摄取量受有机养分或无机养分的影响不显著,但是对摄取养分的N:P比率影响显著,而菌丝隔网对N:P比率影响不显著,养分形态和菌丝隔网交互作用对N的摄取影响显著,但对P的摄取不显著。交互作用主要是影响了植株茎的生物量来影响植株总的生物量的,养分形态对根系性状没有显著影响,但是这些指标主要受到菌丝隔网的显著影响,他们共同影响了植株的光合和叶绿素含量;土壤有效态的N和P含量受养分形态和菌丝网影响显著,他们共同影响了土壤微生物量C,而微生物量N则主要受到菌丝隔网的影响。试验结果表明土壤养分的形态对植株生长所需要的养分和土壤生化过程产生显著影响,AM菌丝体在植物养分利用方面起到了显著的调节作用,植株生长维持所需的养分与其在土壤中存在的形态和AM菌丝状况有关。
     综上所述,AM真菌具有促进土壤有机物分解的能力,根际养分的高低对植株养分利用和有机物分解产生显著的作用,多菌种的混合效应在植株养分利用和维持生长方面具有显著的正效应,植株生长在一定程度上受到土壤养分形态和菌丝体状况的影响,这两个因素共同作用并影响了植物-AM-土壤共生体系的生化过程。
How arbuscular mycorrhiza fungi (AMF) utilize soil nutrients and supports host plant growth are intriguing. In the south Karst ecosystem with high soil erosion, mycorrhizal fungi can be extremely important for nutrient cycling. Researchers have been focused on the questions of saprotrophic ability on AMF for long. It has not been reported for the saprotrophic ability on decomposing organic matter and utilizing nutrients in Karst habitat to maintain nutritional balance of the ecosystem. How nitrogen mediates the process? How high diversity of AMF species maintains nutrients need of plant growth? How nutrients form and hypha affet plant growth and soil characteristics? It is important significance to know these questions for revealing mechanisms of nutrient cycle in Karst ecosystem. Therefore, two experiments were conducted in order to study the saprotrophic ability of litter decoompositon via AMF mycelium and the mixed effets of multiple AMF species to symbiotic development of host plant and soil property in this thesis. The experimental measurements are as follows.
     Experiment1:The effects of inoculation of Cinnamomum camphora seedlings with AMF were investigated. C.camphora seedlings were inoculated with Glomus etunicatum in isolated compartments with soils from a Karst area. Exogenous nitrogen of NH4NO3was added in rhizosphere soil and litter of15N Lolium perenne labeled with15N was applied in TEST soil in order to study the saprotrophic ability and the effects of exogenous nitrogen on decomposition. Experiment2:C.camphora seedlings were inoculated with two AMF species of G. etunicatum and G. mosseae, the adjacent compartment was applied (NH4)2SO4with15N labeled and planted Lolium perenne after12weeks in TEST. The aim was to test mixed inoculation with AMF species to host plant After15weeks treatments, the following was investigated:the colonized rate, mycelium density; photosynthesis and growth characteristics, plants and soil nitrogen and phosphorus status and815N;soil microbial nitrogen and carbon content, alkaline phosphatase and protease acitivity.
     (1) Exogenous nitrogen mediated litter decomposition and nutrient transportation for host plant by AMF
     Exogenous nitrogen application increased mycelium density, plants photosynthesis rate and growth. It also increased N:P in root, stem and leaf. However, the total amount of nitrogen uptake was not affected. The application of exogenous nitrogen decreased utilization of15N from but increased soil microbial carbon, nitrogen, organic carbon, microbial C:N and alkaline phosphatase and protease activity in the neighbor compartments. The isolation interrupted mycelium extension and decreased mycelium density, plants height and stem diameter, leaf chlorophyll content and photosynthesis rate and consequently biomass accumulation. The isolation did not change the plants N:P remarkably, but decreased nitrogen and phosphorus uptake. It also decreased leaf815N value and soil microbial C:N. In conclusion, the results indicated that exogenous nitrogen application did not change the colonized rate of C.camphora seedlings, but did affected the mycelium density in the neighbor compartments significantly. The isolation altered root characteristics and plants growth. AMF was saprophytic, promoted soil litter decomposition and uptake and transphere the15N to the host plants. C.camphora seedlings preferred to utilize the rhizophere soil nitrogen. Under the conditions of low level nitrogen supply, the plants utilized more15N released from the neighbor compartments. Application of exogenous nitrogen promoted soil litter decomposition but decreased its utilization by the plants; in contrast, with high level of nitrogen supply, the plants uptake much more nitrogen and phosphorus and microbial carbon, nitrogen content and mycelium density were also increased in the neighbor compartments.
     (2) Mixed inoculation with AMF affected uptake and transportation of inorganic nutrients for host plants in Karst soil
     Mixed inoculation did not significantly affect mycelium density in the neighbor compartments and colonized rate of Cinnamomum camphora seedlings in this experiment.It affected photosynthesis of C.camphora seedlings significantly, and also promoted growth, such as biomass accumulation, root length and volume, although not significantly. Mixed inoculation increased N:P in the roots, stems and the plants as a whole and total nitrogen uptake, but did not affect total phosphorus uptake. This treatments also increased δ15N value of the leaves, but decreased δ15N value of the soil and Lolium perenne leaves in the neighbor compartments. It also decreased soil microbial C:N, but increased alkaline phosphatase and protease activity significantly. The isolation affected the mycelium density in the neighbor compartments and it decreased biomass accumulation of root, stem and leaf and root length and volume, leaf chlorophyll content and photosynthesis rate, nitrogen and phosphours uptake and N:P value. The0.45um net isolation decreased significantly815N value of C.camphora seedlings leaves,but the815N value of the soil and the Lolium perenne leaves in the neighbor compartments was significantly much higher than in the other treatments. The net isolation also decreased the soil microbial carbon and nitrogen content and the C:N value. It also decreased significantly the content of total nitrogen, alkali soluble nitrogen and available phosphorous respectively. It increased alkaline phosphatase and protease activity in the neighbor compartments.In conclusion, the treatments did not affected the colonized rate of the C.camphora seedlings, but they significantly altered the mycelium density in the neighbor compartments. The isolation changed the root morphology and plants total biomass. Mixed AMF inoculation increased nutrients utilization and promoted plants growth, affected the root morphology, biomass and nitrogen and phosphorus accumulation and. The improvement was mainly the consequent of changed soil enzyme activity and microbial carbon and nitrogen and nutrients utilization. The mycelium affected significantly the plants nutrients utilization, and consequent photosynthesis and biomass accumulation. The mixed inoculation promoted utilization nutrients from distance farer away via mycelium uptake and transfer.
     (3) Effects of nutrients from and AMF mycelium on symbiotic development of host plant and soil characteristics
     The two-ANOVA indicated that the total amount of nitrogen and phosphorus uptake by the C.camphora seedlings was not affected significantly by the organic or inorganic nutrients, but the N: P uptake was. The net isolation did not changed N:P, though. The interaction of nutrients form (organic or inorganic) and net isolation affected nitrogen uptake but not phosphorus uptake. The significant effects on plant total biomass were mainly due to changes of stem biomass. The nutrients form did not affected root morphology remarkably which was mainly affected by net isolation. Both nutrients form (organic or inorganic) and net isolation affected the chlorophyll content and plants photosynthesis, soil available nitrogen and phosphorus and soil microbial carbon. The soil microbial nitrogen was mainly affected by the net isolation. In conclusion, the soil nutrients form affected the soil biochemical processes; both soil form and AM mycelium regulated plants nutrients utilization.
     In summary, AM fungi promoted soil organic matter decomposition; rhizosphere nutrients availability affected soil organic matter decomposition and plants nutrients utilization significantly. Mixed AM fungi species inoculation imposed positive effects on nutrients utilization and plants growth. Plants growth was affected by soil nutrients form and AM mycelium. Both factors contributed to the Plant-AM fungi-Soils system processes.
引文
Abuzinadah R.& Read, D. J.1989. The role of proteins in the nitrogen nutrition of ectomycorrhizal plants V. Nitrogen transfer in birch (Betula pendula L.) infected with different mycorrhizal fungi. New Phytologist.112:55-60
    Agustin R and Adrian E. Small2scale spatial soil.2000. Plant relationship in semiarid gypsum environments. Plant and Soil,220:139-150.
    Azcon R, Rodriguez R and Amora-Lazcano E, et al.2008. Uptake and metabolism of nitrate in mycorrhizal plants as affected by water availability and N concentration in soil. European Journal of soil science,59:131-138
    Barea,J.M.,C.AzconAguilar&R.Azcon.1997. Interaction between mycorrhizal fungi and rhizosphere microorganisms with in the context of sustainable soil plan tsystems.In:Gange,A.C&V.K.Browneds.Multitrophic interactions in terrestrial systems,Oxford:Blackwell. Science,Inc.65-77
    Bethlenfalvay GJ, Reyes-Solis MG, Camel SB, et al.1991. Nutrient transfer between the root zones of soybean and maize plants connected by a common mycorrhizal mycelium. Physiol Plant, 82:423-432.
    Booth MG.2004. Mycorrhizal networks mediate overstoreyunderstorey competition in a temperate forest. Ecol Lett,7:538-546.
    Bidartondo MI, Redecker D, Hijri I, Wiemken A, Bruns TD,Dominguez L, Sersic A, Leake JR, Read DJ,2002. Epiparasitic plants specialized on arbuscular mycorrhizal fungi. Nature,419: 389-392.
    Bucking H, Shachar-Hill Y.2005. Phosphate uptake, transport and transfer by the arbuscular mycorrhizal fungus Glomus intraradices is stimulated by increased carbohydrate availability. New Phytol,165:899-911.
    Bending, G.D.& Read, D.J.1995. The structure and function of the vgetative mycelium of ectomycorrhizal plants on oraging behavior and translocation of nutrients from exploited litter. New Phytologist,130:401-409.
    Borhidi, A.1991. Phytogeography and vegetation ecology of Cuba, Akaemiai Kiado-Budapest, Pp, 857.
    Brundrett MC.2002. Coevolution of roots and mycorrhizas of land plants. New Phytologist, 154:275-304.
    Chinea, J. D.1980. The forest vegetation of the limestone hills of northern Puerto Rico. Cornell University, Master's Thesis.
    Cuenca G & Azcon R.1994. Effecfs of ammonium and nitrate on the of vesicular-arbuscular mycorrhizal Erythrina poeppigiana O.I. Cook seedlings. Biol Fertil So//,18: 249-254
    Du YX, Pan GX, Li LQ, Hu ZL, Wang XZ.2011. Leaf N/P ratio and nutrient reuse between dominant species and stands:predicting phosphorus deficiencies in karst ecosys-tems, southwestern China. Environmental Earth Sciences,64,299-309.
    Ehrenfeld, J.G., Ravit, B.& Elgersma, K.2005. Feedback in the plant-soil system. Annual Reviews of Environment and Resources,30:75-115.
    Forrester DI, Bauhus J, Cowie AL, et al.2006. Mixed-species planta-tions of Eucalyptus with nitrogen-fixing trees:a review. For Ecol Manag,233:211-230.
    Frey B, Schuepp H.1993. A role of vesicular-arbuscular (VA) mycorrhizal fungi in facilitating interplant nitrogen transfer. Soil Biol Biochem,25:651-658.
    Furley, P. A.& Newey, W. W.1979. Variation in plant communities with topography over tropical limestone. Journal of Biogeography,6:1-15.
    Furley, P. A.1987. Impact of forest clearance on the soils of tropical cone karst. Earth Surface Processes and Landforms,12:523-529.
    Graham PH, Vance CP.2003. Legumes:importance and constraints to greater use. Plant Physiol,131:872-877.
    Hammer EC, Pallon J, Wallander H, Olsson PA.2011. Tit for tat? A mycorrhizal fungus accumulates phosphorus under low plant carbon availability. FEMS Microbiol Ecol.76:236-244.
    Hawkins H J, Johansen A, George E.2000.Uptake and transport of organic and inorganic nitrogen by arbuscular mycorrhizal fungi. Plant and Soil,226:275-285
    Harley JL,1989. The significance of mycorrhiza. Mycological Research 92:129-139.
    He XH, Bledsoe CS, Zasoski RJ, et al.2006. Rapid nitrogen transfer from ectomycorrhizal pines to adjacent ectomycorrhizal and arbuscular mycorrhizal plants in a California oak woodland. New Phytol,170:143-151.
    He XH, Critchley C, Bledsoe CS.2003.Nitrogen transfer within and between plants through common mycorrhizal networks (CMNs). Crit Rev Plant Sci,22:531-567.
    He XH, Critchley C, Ng H, et al.2004. Reciprocal N (15NH4+ or 15NO3-) transfer between non-N2-fixing Eucalyptus maculata and N2-fixing Casuarina cunninghamiana linked by the ectomycorrhizal fungus Pisolithus sp. New Phytol,163:629-640.
    He XH, Critchley C, Ng H, et al.2005. Nodulated N2-fixing Casuarina cunninghamiana is the sink for net N transfer from non-N2-fixing Eucalyptus maculata via an ectomycorrhizal fungus Pisolithus sp. supplied as ammonium nitrate. New Phytol,167:897-912.
    He X H, Caroline S. Bledsoe, Robert J. Zasoski, Darlene Southworth.2006. Rapid nitrogen transfer from ectomycorrhizal pines to adjacent ectomycorrhizal and arbuscular mycorrhizal plants in a California oak woodland. New Phytologist,170:143-151
    He X H, Xu M G, Qiu G Y, Zhou J B.2009. Use of 15N stable isotope to quantify nitrogen transfer
    between mycorrhizal plants. Plant Ecology,2:107-118
    Herridge DF, Peoples MB, Boddey RM.2008. Global inputs of biological nitrogen fixation in agricultural systems. Plant Soil,311:1-18.
    Hernes, P.J.& Hedges, J.I.2000. Determination of condensed tannin monomers in environmental samples by capillary gas chromatography of acid depolymerization extracts. Analytical Chemistry, 72:5115-5124.
    Hodge, A., Campbell, C.D.& Fitter, A.H.2001. An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature,413:297-299.
    Hodge A, Helgason T., Fitter A.H.2010. Nutritional ecology of arbuscular mycorrhizal fungi. Fungal Ecology,3:267-23
    Hodge, A., Alexander, I. J.& Gooday, G.W.1995. Chitinolytic enzymes of pathogenic and ectomycorrhizal fungi. Mycological Research.99:935-941.
    Hooker,J.E.,M.Jaizme_Vega&D.Atkinson.1994. Biocontro of plant pathogens using arbuscular mycorrhizal fungi.In:Gianinazzi S.&H. Schuepp eds.Impact of arbuscular mycorrhizas on sustainable agriculture and natural ecosystems.Basel:Birkhauser.197-200.
    Jones, D.L.& Kielland, K.2002. Soil amino acid turnover dominates the nitrogen flux in permafrost-dominated taiga forest soils. Soil Biology and Biochemistry,34:209-219.
    Jones, D.L., Shannon, D., Murphy, D.V.& Farrar, J.2004. Role of dissolved organic nitrogen (DON) in soil N cycling in grassland soils. Soil Biology and Biochemistry,36:749-756.
    Kennedy PG, Izzo AD, Bruns TD.2003. There is high potential for the formation of common mycorrhizal networks between understorey and canopy trees in a mixed evergreen forest. J Ecol, 91:1071-1080.
    Kiers ET, et al..2011. Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science,333:880-882.
    Kelly, D. L., Tanner, E. V. J., Kapos, V., Dickinson, T. A., Goodfriend, G. A.& Fairbaim, P.1988. Jamaican limestone forest:floristics, structure and environment of three examples along a rainfall gradient. Journal of Tropical Ecology,4:121-156.
    Kerley, S.J.& Read, D.J.1997. The biology of mycorrhiza in the Ericaceae.19. Fungal mycelium as a nitrogen source for the ericoid mycorrhizal fungus Hymenoscyphus ericae and its host plants. New Phytologist,136:691-701.
    Kerley, S.J.& Read, D.J.1998. The biology of mycorrhiza in the Ericaceae XX. Plant and mycorrhizal necromass as nitrogenous substrates for the ericoid mycorrhizal fungus Hymenscyphus ericae and its host. New Phytologist,139:353-360.
    Kogel-Knabner, I..2002.The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil Biology and Biochemistry,34:139-162.
    Li X L, George E, Marschner H.1997.Phosphorus acquisition of VA mycorrhizal hyphae from compact soil in clover. J Can Bot,75:723
    Li X L, George E, Marschner H.1991.Extension of the phosphorus depletion zone in VA-mycorrhizal white clover in a calcareous soil. Plant and Soil,136:41
    Malezieux E, Crozat Y, Dupraz C, et al.2009. Mixing plant species in cropping systems:concepts, tools and models. A review. Agron Sustain Dev,29:43-46.
    Mosse, B.1959. Observations on the extramatrical mycelium of a vesicular-arbuscular endophyte. Transaction of the British Mycological Society.42:439-448.
    Morton J B and D. Redecker.2001. Two new families of Glomales, Archaeosporaceae and Paraglomaceae, with two new genera Archaeospora and Paraglomus, based on concordant molecular and morphological characters. Mycologia,93(1):181-195
    Morton JB, Benny GL. Revised classification of arbuscular mycorrhizal fungi(Zygomycetes):A new order, Glomales, two new suborders, Glomineae and Gigasporineae, and two new families, Acaulosporaceae and Gigasporaceae with and emendation of Glomaceae. Mycotaxon, 1990,37:471-491
    Nina Wurzburger and Ronald L. Hendrick.2009. Plant litter chemistry and mycorrhizal roots promote a nitrogen feedback in a temperate forest, Journal of Ecology,97:528-536.
    Newsham KK, Fitter AH, Watkinson AR.1995. Multi-functionality and biodiversity in arbuscular mycorrhizas. Trends in Ecology and Evolution 10:407-411.
    Newman El, Devoy ALN, Basen NJ, et al.1994. Plant species that can be linked by VA mycorrhizal fungi. New Phytol,126:691-693.
    Newman EI, Eason WR, Eissenstat DM, et al.1992. Interaction between plants:the role of mycorrhizae. Mycorrhiza,1:47-53.
    Onguene NA, Kuyper TW.2002. Importance of the ectomycorrhizal network for seedling survival and ectomycorrhiza formation in rain forests of south Cameroon. Mycorrhiza,12:13-17.
    Perry DA.1998. Amoveable feast:the evolution of resource sharing in plant-fungus communities. Trends Ecol Evol,13:432-434.
    Perez-Moreno, J.& Read, D.J.2001. Exploitation of pollen by mycorrhizal mycelial systems with special reference to nutrient recycling in boreal forests. Proceedings of the Royal Society of London Series B-Biological Sciences,268:1329-1335.
    Read DJ, Perez-Moreno J.2003. Mycorrhizas and nutrient cycling in ecosystems-a journey towards relevance? New Phytologist,157,475-492.
    Redecker D, Kodner R, Graham LE,2000. Glomalean fungi from the Ordovician. Science 289: 1920-1921.
    Remy W, Taylor TN, Haas H, Kerp H.1994. Four hundred-million-year-old vesicular-arbuscular mycorrhizae. Proceedings of the National Academy of Sciences of the United States of America 91:11841-11843.
    Robinson D, Fitter A,1999. The magnitude and control of carbon transfer between plants linked by a common mycorrhizal network. Journal of Experimental Botany,50:9-13.
    Ronsheim ML, Anderson SE.2001. Population-level specificity in the plant-mycorrhizae association alters intraspecific interactions among neighbouring plants. Oecologia,128:77-84.
    Selosse M-A, Richard F, He XH, et al.2006. Mycorrhizal networks:des liaisons dangereuses? Trends Ecol Evolution,21:621-628.
    Simard SW, Perry DA, Jones MD, et al.1997. Net transfer of carbon between ectomycorrhizal tree species in the field. Nature,388:579-582.
    St. John, T. V., Coleman, D. C.& Reid, C. P. P.1983. Association of vesicular-arbuscular mycorrhizal hyphae with soil organic particles. Ecology,64:957-959.
    Smith S E and Read D J.1997. Mycorrhizal symbiosis.2nd edn. London, Academic Yress,16-05
    Taylor, A.F.S., Gebauer, G.& Read, D.J.2004. Uptake of nitrogen and carbon from double-labelled (N-15 and C-13) glycine by mycorrhizal pine seedlings. New Phytologist,164:383-388.
    Talbot J. M, Allison.S. D, Treseder K. K..2008. Decomposers in disguise:mycorrhizal fungi as regulators of soil C dynamics in ecosystems under global change. Functional Ecology, 22:955-963
    Tisdall JM, Smith SE, Rengasamy P.1997. Aggregation of soil by fungal hyphae. Australian Journal of Soil Research,35:55-60.
    Tinker, P. B. H.& Nye, P. H.2000.Solute Transport in the Rhizosphere, Oxford University Press, New York, NY, USA.
    Tobar, R. M., AzcoA n, R.& Barea, J. M.1994.The improvement of plant N acquisition from an ammonium treated drought-stressed soil by the fungal symbiont in arbuscular mycorrhizae. Mycorrhiza 4:105-108.
    Toussaint J P, St-Amaud M, Charest C.2004. Nitrogen transfer and assimilation between the arbuscular mycorrhizal fungus Glomus intraradices Schenck&Smith and Ri T-DNA roots of Daucus carota L. in an in vitro compartmented system. Canadian Journal of Microbiology, 50:251-260
    Tu, C, Booker, F.L., Watson, D.M., Chen, X., Rufty, T.W., Shi, W.& Hu, S.J.2006. Mycorrhizal mediation of plant N acquisition and residue decomposition:impact of mineral N inputs. Global Change Biology,12:793-803.
    Vitousek, P. M.& Howarth, R. W.1991.Nitrogen limitation on land and in the sea:how can it occur? Biogeochemistry,13:87-115.
    Voets L, Goubau I, Olsson PA, Merckx R, Declerck S.2008. Absence of carbon transfer between Medicago truncatula plants linked by a mycorrhizal network, demonstrated in an experimental microcosm. FEMS Microbiology Ecology,65:350-360.
    Wardle, D.A., Bardgett, R.D., Klironomos, J.N., Setala, H., van der Putten,W.H.& Wall, D.H.2004. Ecological linkages between aboveground and belowground biota. Science,304:1629-1633.
    Wang B, Qiu YL.2006. Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza,16:299-363.
    Wilkinson DM.1998. The evolutionary ecology of mycorrhizal networks. OIKOS,82:407-410.
    Wright SF, Upadhyaya A.1998. A survey of soils for aggregate stability and glomatin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. Plant and Soil,198:97-107.
    Zhang P J, Li L Q, Pan G X.2006. Soil quality changes in land degradation as indicated by soil chemical, biochemical and microbiological p roperties in a karst area of southwest Guizhou, China. Environmental Geology,51:609-619.
    曹建华,袁道先,潘根兴.2003.岩溶生态系统中的士壤.地球科学进展18:37~44.
    陈成斌,陈家裘,俩世春,蒙炎成,2000,广西喀斯特石山区木豆种植适应性试验,亚热带植物科学,29:24-28
    邓艳,蒋忠诚,罗为群.2006.不同岩溶干旱胁迫下青冈栎水分生理对比研究.农业现代化研究27:238-240.
    杜有新,潘根兴,李恋卿,胡忠良,王新洲.2010.黔中喀斯特山区退化生态系统生物量结构与N、P分布格局及其循环特征.生态学报,10,30(23):6338-6347
    盖京苹.2003.我国北方部分地区丛枝菌根真菌的多样性及其生长效应研究.博士学位论文,中国农业大学
    李晓林.冯固.2001.从枝菌根生态生理.北京:华文出版社
    李晓林,姚青.2000.VA菌根与植物的矿质营养.自然科学进展,10:524-531
    李景阳,王朝富,樊廷章.2004.试论碳酸盐岩与喀斯特成士作用.中国岩溶,10:29-38.
    林波,刘庆,吴彦.森林凋落物研究进展.生态学杂杂志,23:60-64
    刘淑娟,张伟,王克林,陈洪松,舒世燕,谭卫宁.2011.桂西北喀斯特峰丛洼地表层土壤养分时空分异特征.生态学报,31:3036-3043
    刘玉国,刘长成,李国庆,魏雅芬,刘永刚,郭柯.2011.贵州喀斯特山地5种森林群落的枯落物储量及水文作用.林业科学,47:82-88.
    刘润进焦惠李岩李敏朱新产.2009.丛枝菌根真菌物种多样性研究进展,应用生态学报,20:2301-2307
    黄玉清,王晓英,陆树华.2006.岩溶石漠化治理优良先锋植物种类光合、蒸腾及水分利用效率的初步研究.广西植物,26:171-177.
    何跃军,钟章成,刘济明.2007.AM真菌对构树幼苗物质代谢的影响.生态学报,27:5455-5462;
    何跃军,钟章成,刘济明.2007.构树幼苗N、P吸收对接种AM真菌的响应.生态学报,27:4840-4847;
    何跃军,钟章成,刘济明.2007.构树幼苗对接种AM真菌的生长响应.应用生态学报,18:2209-2213
    何跃军,钟章成.2011.喀斯特土壤上香樟幼苗接种不同AM真菌后的耐旱性效应.植物研究,31:513-517
    何跃军,钟章成,刘济明等.2005.喀斯特退化生态系统不同恢复阶段土壤酶活性研究,应用生态学报,16:1077-1081
    潘复静,张伟,王克林,何寻阳,梁士楚,韦国富2011.典型喀斯特峰丛洼地植被群落凋落物C:N:P生态化学计量特征生态学报,31,335-343.
    彭忠华,张明生,高翔等2005. RAPD标记对喀斯特高海拔山区地方玉米自交系遗传多样性研究,种子,24:20-23
    宋会兴彭远英钟章成.2008.旱生境中接种丛枝菌根真菌对三叶鬼针草(Bidens pilosa L.)光合特征的影响.生态学报,28:3744-3751.
    宋会兴彭远英钟章成.2007.干旱生境中VA菌根对宿主植物的影响及其机制.土壤通报,37: 787-791
    司彬,何丙辉,姚小华.2006.喀斯特石漠化形成原因及植被恢复途径探讨.江西农业大学学报,28(3):392-396
    韦小丽,,徐锡增,朱守谦.2005.水分胁迫下榆科3种幼苗生理生化指标的变化,南京林业大学学报,29:47-50
    韦小丽,朱守谦,徐锡增.2005.4个榆科树种水分参数随季节和年龄的变化规律,山地农业生物学报,24:17-21
    魏源,王世杰,刘秀明,黄天志.2011.不同喀斯特小生境中土壤丛枝菌根真菌的遗传多样性.植物生态学报,35:1083-1090.
    王世杰,季宏军,欧阳自远.1999.碳酸盐岩风化成土的初步研究.中国科学(D辑),29:441-449.
    韦启藩,陈鸿昭,吴志东.1983.广西弄岗自然保护区石灰土的地球化学特征.土壤学报,2030-41.
    吴沿友,蒋九余,帅世文等.1996.喀斯特适生模式植物—诸葛菜的研究和开发,见:彭汝明等主编,地质地球化学研究,贵阳:贵州人民出版社,118-122
    吴沿友,蒋九余,帅世文等.1997.诸葛菜的喀斯特适生性的无机营养机制探讨,中国油料,19:47-49。
    谢宗强,江明喜.1995三峡地区喀斯特灌丛植被特征及其合理利用.植物学通报,:85-89.
    闫明,钟章成.2007.铝胁迫对感染丛枝菌根真菌的樟树幼苗生长的影响.林业科学,43:59-65
    闫明;钟章成.2008.铝胁迫对接种丛枝菌根真菌樟树幼苗光合作用的影响.西北植物学报28:1816-1822
    俞国松,王世杰,容丽,冉景丞.2011,茂兰喀斯特森林主要演替群落的凋落物动态.植物生态学报35:1019-1028
    喻理飞,等.退化喀斯特森林自然恢复评价研究.林业科学,2000,36:12-19
    喻理飞,等.2003.退化喀斯特森林适应等级种组划分研究.见:朱守谦主编:喀斯特森林生态研究(Ⅲ).贵阳:贵州科技出版社,189-196
    喻理飞,等.2002.喀斯特森林不同种组的耐旱适应性.南京林业大学学报(自然科学版).16:19-22
    赵斌军,文启孝.1988.石灰性母质对土壤腐殖质组成和性质的影响.土壤学报,25:243-251.
    朱双燕,王克林,曾馥平,曾昭霞,宋同清.2009.广西喀斯特次生林地表碳库和养分库特征及季节动态.水土保持学报,23:237-242.
    周运超.2003.贵州喀斯特植被主要营养元素含量分析.山地农业生物学报1997,16:1]-16.
    朱守谦.2003.喀斯特森林生态研究(Ⅲ).贵阳:贵州科学技术出版社.
    周政贤.1987.茂兰喀斯特森林科学考察集.贵阳:贵州科学技术出版社.1-23.
    周运超,1997,贵州喀斯特植被主要营养元素含量分析,贵州农学院学报,16:11-16
    周厚高,谢义林,黎桦等.2002.广西喀斯特地区蜈蚣蕨居群的遗传多样性研究,广西植物:22:67-70
    Ames RN, Reid CPP, Porter LK et al.1983. Hyphal uptake and transport of nitrogen from t wo 15N-labelled sources by Glomus mosseae, a vesicular-arbuscular mycorrhizal fungus. New Phytologist,95:381-396.
    Bao S D.2000. Sil analysiss in agricultural chemistry. China Agriculture Press.
    Bago B, Vierheilig H, Piche'Y et al..1996. Nitrate depletion and pH changes induced by the extraradical mycelium of the arbuscular mycorrhizal fungus Glomus intraradices grown in monoxenic culture. New Phytologist,133:273-280.
    Ericsson T.1995. Growth and shoot-root ratio of seedlings in relation to nutrient availability. Plant and Soil,169:205-214.
    Ehrenfeld, J.G., Ravit, B.& Elgersma, K.2005. Feedback in the plant-soil system. Annual Reviews of Environment and Resources,30:75-115.
    Hawkins HJ, George E.1999. Effect of plant nitrogen status on the contribution of arbuscular mycorrhizal hyphae to plant nitrogen uptake. Physiologia Plantarum,105:694-700.
    Hu S, Chapin FS Ⅲ, Firestone MK et al..2001. Nitrogen limitation of microbial decomposition in a grassland under elevated CO2. Nature,409,188-191.
    Jakobsen I., L.K. Abbott and A.D. Robson.1992. External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L 1 Spread of hyphae and phosphorus inflow into roots. New Phytologist.120:371-380.
    Johansen A, Jakobsen I, Jensen ES.1992. Hyphal transport of 15N-labelled nitrogen by a vesicular-arbuscular mycorrhizal fungus and its effect on depletion of inorganic soil N. New Phytologist,122:281-288.
    Lin B, Liu Q, Wu Y.2004. Advances in the studies of forest litter. Chinese Journal of Ecology 23: 60-64
    Mazzarino MJ, Bertiller MB, Sain C, et al.1998. Soil nitrogen dynamics in northeastern Patagonia steppe under different precipitation regimes. Plant&Soil,202:125-131.
    Miller RM, Jastrow JD.1990. Hierarchy of root and mycorrhizal fungal interactions with soil aggregation. Soil Biology and Biochemistry,22,579-584.
    Nakano A, Takahashi K, Kimura M.2001. Effect of host shoot clipping on carbon and nitrogen sources for arbuscular mycorrhizal fungi. Mycorrhiza,10:287-293.
    Nannipieri P, Grego S, Ceccanti B.1990.Ecological significance of the biological activity in soil.In:Bollag JM, Stotzky G.(eds.), Soil viochemistry, vol.6. Marcel Dekker, New York, NY,U.S.A.,pp.293-355
    Nina Wurzburger and Ronald L. Hendrick.2009. Plant litter chemistry and mycorrhizal roots promote a nitrogen feedback in a temperate forest, Journal of Ecology,97:528-536.
    Hawkins, H.J., Johansen, A.& George, E.2000. Uptake and transport of organic and inorganic nitrogen by arbuscular mycorrhizal fungi. Plant and Soil,226:275-285.
    Hodge. A., Helgason. T,Fitter. A.H.2010. Nutritional ecology of arbuscular mycorrhizal fungi. Fungal Ecology,3:267-273
    Hodge, A., Campbell, C.D.& Fitter, A.H.2001. An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature,413:297-299.
    Oren R, Ellsworth DS, Johnsen KH et al..2001. Soil fertility limts carbon sequestration by forest ecosystems in a CO2-enriched atmosphere. Nature,411:469-472.
    Rillig MC.2004. Arbuscular mycorrhizae and terrestrial ecosystem processes. Ecology Letters,7: 740-754.
    Rillig MC, Wright SF, Nichols KA et al..2001. Large contribution of arbuscular mycorrhizal fungi to soil carbon pools in tropical forest soils. Plant and Soil,233:167-177.
    Read DJ, Perez-Moreno J.2003. Mycorrhizas and nutrient cycling in ecosystems-a journey towards relevance? New Phytologist,157:A15-A92.
    Smith, S.E.& Read, D.J.1997. Mycorrhizal Symbiosis. Academic Press, SanDiego, CA.
    Smith, S. E.& Read, D. J.2008.Mycorrhizal Symbiosis, Academic, London.
    St. John, T. V., Coleman, D. C.& Reid, C. P. P.1983. Association of vesicular-arbuscular mycorrhizal hyphae with soil organic particles. Ecology,64:957-959.
    Tisdall JM, Smith SE, Rengasamy P.1997. Aggregation of soil by fungal hyphae. Australian Journal of Soil Research,35:55-60.
    Treseder KK, AllenMF.2000. Mycorrhizal fungi have a potential role in soil carbon storage under elevated C02 and nitrogen deposition. New Phytologist,147:189-200.
    Tu, C., Booker, F.L., Watson, D.M., Chen, X., Rufty, T.W., Shi, W.& Hu, S.J.2006. Mycorrhizal mediation of plant N acquisition and residue decomposition:impact of mineral N inputs. Global Change Biology,12:793-803.
    Tisdall JM, Smith SE, Rengasamy P.1997. Aggregation of soil by fungal hyphae. Australian Journal of Soil Research,35:55-60.
    Tanaka Y, Yano K.2005. Nitrogen delivery to maize via mycorrhizal hyphae depends on the form of N supplied. Plant, Cell and Environment,28:1247-1254.
    Treseder KK, Allen MF. 2002. Direct nitrogen and phosphorus limitation of arbuscular mycorrhizal fungi:a model and field test. New Phytologist,155:507-515.
    Wardle, D.A., Bardgett, R.D., Klironomos, J.N., Setala, H., van der Putten,W.H.& Wall, D.H.2004. Ecological linkages between aboveground and belowground biota. Science.304:1629-1633.
    Wright SF, Upadhyaya A.1998. A survey of soils for aggregate stability and glomatin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. Plant and Soil,198:97-107.
    Zak DR, Pregitzer KS, King JS.2000. Elevated atmospheric CO2,fine roots and the response of soil microorganisms:a review and hypothesis. New Phytologist,147:201-222.
    Zhang P J, Li L Q, Pan G X.2006. Soil quality changes in land degradation as indicated by soil chemical, biochemical and microbiological p roperties in a karst area of southwest Guizhou, China. Environmental Geology,51:609-619.
    鲍士旦主编,2000.土壤农化分析(第三版),中国农业出版社.
    关松荫.1986.土壤酶及其研究方法.农业出版社.
    李侠,张俊伶.2009.丛枝菌根根外菌丝对铵态氮和硝态氮吸收能力的比较.植物营养与肥料学报,15:683-689.
    周焱;徐宪根;王丰;阮宏华;汪家社;方燕鸿;吴焰玉;徐自坤.2009.武夷山不同海拔梯度土壤微生
    物生物量、微生物呼吸及其商值(qMB,qCO2).生态学杂志,28:265-269
    傅华,裴世芳,张洪荣.2005.贺兰山西坡不同海拔梯度草地土壤氮特征.草业学报,14:50-56.
    曹建华,袁道先,潘根兴.2003.岩溶生态系统中的土壤.地求科学进展18:37-44.
    王世杰,季宏军,欧阳自远.1999.碳酸盐岩风化成土作用的初步研究.中国科学(D辑),29441-449.
    Azcon R, Ruiz-Lozano JM, Rodnguez R.2001. Differential contribution of arbuscular mycorrhizal fungi to plant nitrate uptake (15N) under increasing N supply to the soil. Canadian Journal of Botany,79:1175-1180.
    Aziz T, Habte M.1989. Influence of inorganic-N on mycorrhizal activity, nodulation, and growth of Leucaena leucocephala in an oxisol subjected to simulated erosion. Communications in Soil Science and Plant Analysis,20:239-251.
    Brundrett MC.2002. Coevolution of roots and mycorrhizas of land plants. New PhytoX, 154:275-304.
    Buwalda JG, Goh KM.1982. Host-fungus competition for carbon as a cause of growth depressions in vesicular-arbuscular mycorrhizal ryegrass. Soil Biology and Biochemistry,14:103-106.
    Chapin FS III, Matson PA, Mooney HA.2002. Principles of Terrestrial Ecosystem Ecology. Springer-Verlag, New York, NY,USA.
    Corkidi L,Rowland DL,Johnson NC,et al.2002.Nitrogen fertilization alters the functioning of arbuscular mycorrhizas at two semiarid grasslands.Plant and Soil,240:299-310
    Dhillion SS, Ampornpan L.1992. The influence of inorganic nutrient fertilization on the growth, nutrient composition and vesicular-arbuscular mycorrhizal colonization of pretransplant rice (Oryza sativa L.) plasnts. Biology and Fertility of Soils,13:85-91.
    Egerton-Warburton LM, Allen EB.2000. Shifts in arbuscular mycorrhizal communities along an anthropogenic nitrogen deposition gradient. Ecological Applications,10:484-496.
    Ehrenfeld, J.G., Ravit, B.& Elgersma, K.2005. Feedback in the plant-soil system. Annual Reviews of Environment and Resources,30:75-115.
    Hodge A, Campbell CD, Fitter AH.2001. An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature,413,297-299.
    Hodge A, Helgason T., Fitter A.H.2010,Nutritional ecology of arbuscular mycorrhizal fungi. Fungal Ecology,3:267-23
    Jakobsen I., L.K. Abbott and A.D. Robson.1992. External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L 1 Spread of hyphae and phosphorus inflow into roots. New Phytologist.120:371-380.
    Kernaghan G.2005. Mycorrhizal diversity:cause and effect? Pedobiologia,49,511-520.
    Monika Welc, Else BunemannA, Emmanuel Frossard, Jan Jansa.2010. A Enzymatic activities in the rhizosphere of different plants at a glacier forefield, World Congress of Soil Science, Soil Solutions for a Changing World
    Nakano A, Takahashi K, Kimura M.2001. Effect of host shoot clipping on carbon and nitrogen sources for arbuscular mycorrhizal fungi. Mycorrhiza,10:287-293.
    Rillig MC, Wright SF, Nichols KA et al.2001. Large contribution of arbuscular mycorrhizal fungi to soil carbon pools in tropical forest soils. Plant and Soil,233:167-177.
    Smith FA, Jakobsen I, Smith SE.2000. Spatial differences in acquisition of soil phosphate between two arbuscular mycorrhizal fungi in symbiosis with Medicago truncatula. New Phytologist,147: 357-366.
    Smith S E, Read DJ.1997. Mycorrhizal Symbiosis. Academic Press,San Diego, CA, USA.
    Smith, S. E.& Read, D. J.2008.Mycorrhizal Symbiosis, Academic, London.
    Treseder KK.2004. A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies. New Phytologist,164:347-355.
    Treseder KK, Allen MF.2002. Direct nitrogen and phosphorus limitation of arbuscular mycorrhizal fungi:a model and field test. New Phytologist,155:507-515.
    Van der Heijden MGA, Klironomos JN, Ursic M et al.1998. Mycorrhizal fungal diversity determines plant biodiversity,ecosystem variability and productivity. Nature,396:69-72.
    Van der Heijden MGA, Wiemken A, Sanders IR.2003. Different arbuscular mycorrhizal fungi alter coexistence and resource distribution between co-occurring plant. New Phytologist,157:569-578.
    Wang B, Qiu YL.2006. Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza,16:299-363.
    鲍十旦主编.2000.土壤农化分析(第三版),中国农业出版社
    关松荫.1986.土壤酶及其研究方法.农业出版社.
    何跃军,钟章成,刘济明.2007.构树幼苗N、P吸收对接种AM真菌的响应.生态学报,27: 4840-4847
    何跃军,钟章成,刘济明.2008.构树幼苗对接种AM真菌的生长响应.应用生态学报,18:2209-2213
    李晓林.2000.丛枝菌根及其应用.北京:中国科学技术出版社
    李侠,张俊伶.2009.丛枝菌根根外菌丝对铵态氮和硝态氮吸收能力的比较.植物营养与肥料学报15:683-689.
    魏源,王世杰,刘秀明,黄天志.2011,不同喀斯特小生境中土壤丛枝菌根真菌的遗传多样性.植物生态学报,35:1083-1090
    阎秀峰,王琴.2002,接种外生菌根对辽东栎幼苗生长的影响.植物生态学报,26: 701-707
    喻理飞,等.2002,喀斯特森林不同种组的耐旱适应性.南京林业久大学学报(自然科学版).16:19-22
    周焱;徐宪根;王丰;阮宏华;汪家社;方燕鸿;吴焰玉;徐自坤.2009,武夷山不同海拔梯度土壤微生物生物量、微生物呼吸及其商值(qMB,qCO2).生态杂志,28:265-26
    朱守谦.2003.喀斯特森林生态研究(Ⅲ).贵州科学技术出版社,贵阳.
    Aarle I M V, Rouhier H and Sai t o M.2002, Phosphatase activities of arbuscular mycorrhizal intraradical and extraradical mycelium and their relation to phosphorus availability.Mycological Research,106:1224-1229.
    D.L.Joues and P.R.Darrah.1993. Iflux and efflux of amino acids from Zea mays L. roots and their implications for N nutrition and the rhizosphere. Plant and Soil,155-156:87-90.
    F.S.Chapin, L.Moilanen and K.Kielland.1993. Preferential use of organic nitrogen for growth by a non-mycorrhizal arctic sedge. Nature,361:150-153.
    N.Majerowicz, G.B.Kerbauy and C.C.Nievola.2000. Growth and metabolism of Catasetum fimbriatum (orchidaceae) grown with different nitrogen sources. Environ. Exper. Bot.,44: 195-206.
    M.Yamagata and N.Ae.1999. Direct acquisition of organic nitrogen by crops. Japan Agricultura Research Quarterly,33:15-21.
    Wu LH, Mo LY, Fan ZL, et al.2005. Absorption of glycine by three agricultural species under sterile sand culture conditions. Pedosphere,15:286-292

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700