用户名: 密码: 验证码:
土壤水分对不同小麦品种水分利用特性和产量及品质的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
试验于2009~2010和2010~2011小麦生长季,在山东泰安山东农业大学实验农场进行。2009~2010生长季,小麦生育期间降水量为播种至冬前期34.2mm、冬前至拔节期43.1mm、拔节至开花期34.1mm、开花至成熟期37.7mm,总计149.1mm;以济麦22、泰山23和洲元9369为试验材料,设置6个土壤水分处理:不灌水(W0),拔节期和开花期0~140cm土层土壤相对含水量分别补灌至65%和60%(W1)、70%和60%(W2)、70%和65%(W3)、75%和65%(W4)、75%和70%(W5)。2010~2011生长季,小麦生育期间降水量为播种至冬前期2.7mm、冬前至拔节期28.7mm、拔节至开花期117.7mm、开花至成熟期22.9mm,总计172mm;以济麦22、泰山23、洲元9369和济麦20为试验材料,设置6个土壤水分处理:不灌水(W0’),拔节期和开花期0~140cm土层土壤相对含水量分别补灌至65%和70%(W1’)、70%和75%(W2’)、70%和80%(W3’)、75%和75%(W4’)、75%和80%(W5’)。研究了土壤水分对不同小麦品种耗水特性和产量及品质的影响,主要结果如下:
     1土壤水分对不同小麦品种耗水特性的影响
     1.1土壤水分对小麦耗水特性的影响
     两生长季,各供试品种不补灌处理总耗水量最低,总耗水量来源于降水和土壤贮水消耗量的比例最高,表明全生育期不补灌促进了小麦对土壤贮水的吸收利用。补灌处理间比较,2009~2010生长季,济麦22和泰山23W3和W4处理的总耗水量与W5处理无显著差异,显著高于W1、W2处理;土壤贮水消耗量及其占总耗水量的比例高于W5处理,灌水量及其占总耗水量的比例低于W5处理;开花至成熟期的阶段耗水量和日耗水量高于W1、W2处理。洲元9369W3处理的总耗水量与W4处理无差异,显著高于W1、W2处理;土壤贮水消耗量及其占总耗水量的比例高于W4、W5处理,灌水量及其占总耗水量的比例低于W4、W5处理;开花至成熟期的阶段耗水量和日耗水量高于W2、W4处理,与W5处理无显著差异。表明W3和W4处理比W5处理促进了济麦22和泰山23对土壤贮水和开花至成熟期阶段水分的吸收利用;W3处理比W4和W5处理促进了洲元9369对土壤贮水和开花至成熟期阶段水分的吸收利用。
     2010~2011生长季,各品种W4’处理的土壤贮水消耗量及其占总耗水量比例显著高于W3’、W5’处理,灌水量及其占总耗水量的比例显著低于W5’处理。济麦22和泰山23W4’处理总耗水量与W5’处理无显著差异,高于其他处理;济麦20和洲元9369W3’、W4’和W5’处理的总耗水量无显著差异,高于W0’、W1’、W2’处理。各品种W4’处理开花至成熟期阶段的耗水量和日耗水量高于W0’、W1’、W2’处理。表明W4’处理促进了各小麦品种对土壤贮水和开花至成熟阶段水分的吸收利用。
     1.2不同小麦品种耗水特性的差异
     2009~2010生长季,济麦22W1、W2、W3、W4处理的总耗水量、灌水量、土壤贮水消耗量及其占总耗水量的比例显著高于泰山23和洲元9369;开花至成熟期的阶段耗水量、日耗水量高于洲元9369,与泰山23无显著差异;W0、W1、W2、W3处理拔节至开花期的阶段耗水量、日耗水量高于洲元9369,与泰山23无显著差异。表明济麦22对不同来源水分利用能力强,对拔节至成熟期水分利用能力显著高于洲元9369,利于对水分的高效利用。
     2010~2011生长季,济麦22W0’、W2’和W4’处理的总耗水量、土壤贮水消耗量和灌水量及其占总耗水量的比例显著高于其他品种,降水量占总耗水量的比例较低;越冬至拔节阶段耗水量、日耗水量、耗水模系数显著高于其他品种;拔节至开花期阶段耗水量、日耗水量显著高于泰山23;W2’和W4’处理开花至成熟期的阶段耗水量显著高于济麦20和洲元9369,与泰山23无显著差异。表明济麦22总耗水量中来源于灌水和土壤贮水的比例较高,对不同来源水分的充分利用能力强;拔节至开花及开花至成熟阶段耗水量较高,对拔节后水分的利用能力高于其他品种。
     1.3不同降水年型小麦耗水特性的差异
     2009~2010生长季小麦生育期内总降水量149.1mm,各生育阶段分布较均匀,2010~2011生长季小麦生育期内总降水量172mm,各生育阶段分布不均匀。
     与2009~2010生长季比较,济麦22、泰山23和洲元93692010~2011生长季降水量占总耗水量的比例均显著增加,总耗水量、补灌水量、土壤供水量及其占总耗水量的比例显著降低。济麦22播种至越冬期和拔节至开花期的阶段耗水量、日耗水量和耗水模系数均显著降低,泰山23播种至越冬期、越冬至拔节期和拔节至开花期的阶段耗水量、日耗水量和耗水模系数均显著降低,洲元9369播种至越冬期和越冬至拔节期的阶段耗水量、日耗水量和耗水模系数显著降低。表明2010~2011生长季,播种至拔节降水31.4mm,拔节至开花期集中降水117.7mm条件下,各小麦品种对土壤贮水的吸收利用减弱,降低了补灌水量和总耗水量。不同品种各阶段耗水受不同降水年型的影响不同,越冬至拔节期降水仅31.4mm,泰山23和洲元9369播种至冬前和冬前至拔节阶段耗水量显著降低,济麦22冬前至拔节阶段耗水量较多,利于其对水分的高效利用;拔节至开花期降水117.7mm,济麦22和泰山23该阶段耗水量降低;各小麦品种两生长季开花至成熟期阶段耗水量无显著差异,均高于其他阶段耗水量,利于小麦对开花至成熟阶段水分的充分吸收利用,籽粒灌浆充分。
     2土壤水分对不同小麦品种碳代谢的影响
     2009~2010生长季,各品种W3、W4、W5处理花后30d旗叶净光合速率和最大光化学效率均高于W0、W1、W2处理;W4、W5处理花后10d、20d和30d旗叶实际光化学效率高于其他处理。济麦22和泰山23W4处理花后21d旗叶蔗糖含量高于W5处理,花后28d低于W3、W5处理;开花后干物质积累量高于其他处理。洲元9369W3处理花后21d旗叶蔗糖含量与W4、W5处理无显著差异,开花后干物质积累量与W4处理无显著差异,高于其他处理。表明济麦22和泰山23的W4处理、洲元9369的W3和W4处理灌浆中后期旗叶净光合速率、最大光化学速率和实际光化学速率较高,开花后干物质积累量最高,有利于光合产物积累和向籽粒中转运。
     2010~2011生长季,各品种W4’处理花后20d、30d旗叶净光合速率和花后30d实际光化学效率与W3’、W5’处理无显著差异,均高于W0’、W1’、W2’处理;花后30d旗叶最大光化学效率显著高于W0’。济麦22和泰山23的W4’处理花后14d旗叶蔗糖含量高于W3’、W5’处理,济麦20和洲元9369高于W5’处理;花后21d各品种均低于W3’、W5’处理;开花后干物质积累量高于其他处理。表明各品种W4’处理灌浆中后期旗叶光合速率、最大光化学速率和实际光化学速率较高,小麦开花后的干物质积累量最高,利于光合物质的积累和转运。
     3土壤水分对不同小麦品种氮代谢的影响
     2009~2010生长季,济麦22W4处理成熟期植株和籽粒氮素积累量高于W0、W1、W5处理,与W2、W3处理无差异;营养器官氮素向籽粒的转移量和转移率高于W3、W5处理。泰山23W4处理成熟期植株和籽粒氮素积累量高于W0、W1、W3处理;营养器官氮素向籽粒的转移量高于W0、W1处理,与W2、W3、W5处理无差异。洲元9369W3处理成熟期植株氮素积累量与各补灌处理间无差异;成熟期籽粒氮素积累量和营养器官氮素向籽粒的转移率高于W5处理,与W2、W4处理无显著差异。表明W4处理有利于济麦22、泰山23,W3处理有利于洲元9369开花后植株氮素积累和向籽粒转运。
     4土壤水分对不同小麦品种旗叶相对含水量和水势的影响
     2009~2010生长季,花后30d旗叶相对含水量和水势,济麦22和泰山23的W4处理高于W0、W1、W2处理,低于W5处理;洲元9369的W3、W4和W5处理无显著差异,高于W0、W1、W2处理。表明济麦22和泰山23的W4处理,洲元9369的W3、W4处理灌浆后期旗叶相对含水量和水势较高,有利于灌浆后期保持较高旗叶净光合速率。
     5土壤水分对不同小麦品种旗叶衰老特性和根系活力的影响
     5.1旗叶衰老特性
     2010~2011生长季,各品种W4’处理旗叶超氧物歧化酶(SOD)活性高于W0、W1处理,花后32d低于W5处理;花后28d和32d旗叶丙二醛含量与W3处理无差异,显著低于W0’、W1’、W2’处理,高于W5’处理。表明各品种W4’处理旗叶SOD活性较高,旗叶膜质过氧化水平较低,质膜受损程度低,有利于延缓旗叶衰老,灌浆期保持较高光合速率。
     5.2根系活力
     2009~2010生长季,济麦22和泰山23W4处理开花期根系活力高于W0、W1、W2、W3处理,灌浆期根系活力显著高于其他处理;洲元9369W3处理灌浆期根系活力与W4、W5处理无显著差异,显著高于W0、W1、W2处理。表明W4处理有利于济麦22和泰山23,W3、W4处理有利于洲元9369灌浆中后期对水分和养分的吸收利用。
     2010~2011生长季,济麦22和济麦20W4’处理开花期和灌浆期根系活力显著高于W0’、W1’、W2’、W3’处理;泰山23开花期与W2’、W3’处理无差异,灌浆期显著高于W3’、W5’处理;洲元9369开花期高于W0’、W1’、W2’、W3’处理,灌浆期与W3’、W5’处理无显著差异,均高于W0’、W1’、W2’处理。表明各品种W4’处理开花期和灌浆期根系活力较高,利于小麦在灌浆期对水分和养分的吸收利用。
     6土壤水分对不同小麦品种籽粒产量、水分利用效率和灌溉效益的影响
     6.1土壤水分对小麦籽粒产量、水分利用效率和灌溉效益的影响
     2009~2010生长季,济麦22和泰山23W4处理籽粒产量最高,水分利用效率与W2、W3、W5处理无差异,高于W0、W1处理;灌溉效益与W2处理无显著差异,高于W3和W5处理。洲元9369W3处理籽粒产量和水分利用效率与W4处理无显著差异,均高于W0、W1、W2处理,灌溉效益显著高于W4处理。表明本试验条件下,W4处理是济麦22和泰山23,W3处理是洲元9369分别获得高产高效的最优处理。
     2010~2011生长季,各品种W4’处理籽粒产量和水分利用效率最高,灌溉效益显著高于W3’、W5’处理,是各小麦品种获得高产高效的最优处理。
     6.2不同小麦品种籽粒产量和水分利用效率的差异
     2009~2010生长季,济麦22各处理的籽粒产量和W0、W1、W4处理的水分利用效率显著高于泰山23和洲元9369,泰山23W2、W3、W4、W5处理的籽粒产量和水分利用效率高于洲元9369。2010~2011生长季,济麦22各处理的籽粒产量和水分利用效率均最高,济麦20和泰山23次之,洲元9369最低。
     济麦22籽粒产量最高、水分利用效率较高,是本试验条件下高产高水分利用效率品种;泰山23和济麦20籽粒产量和水分利用效率较高,是本试验条件下高产较高水分利用效率品种;洲元9369籽粒产量和水分利用效率较低,是本试验条件下较低产低水分利用效率品种。
     7土壤水分对不同小麦品种籽粒品质的影响
     2009~2010生长季,各品种W3处理籽粒蛋白质含量、湿面筋含量、面团稳定时间高于W4、W5处理,蛋白质产量高于W0、W1处理,是各品种品质较优处理。2010~2011生长季,济麦22W3’、W4’处理和泰山23W3’、W5’处理湿面筋含量较高,面团稳定时间最长,品质较优;济麦20W2’、W4’处理和洲元9369W2’、W3’处理湿面筋含量最高,面团稳定时间最长,品质最优。
     综合籽粒产量、水分利用效率、灌溉效益和品质,2009~2010生长季,拔节期和开花期0~140cm土层土壤相对含水量分别补灌至75%、65%的W4处理是济麦22和泰山23高产高效的处理,分别补灌至70%、65%的W3处理为洲元9369高产优质高效处理。2010~2011生长季,拔节期和开花期0~140cm土层土壤相对含水量均补灌至75%的W4’处理是济麦22、泰山23和洲元9369高产高效处理,是济麦20高产优质高效处理。
     品种间比较,济麦22籽粒产量和水分利用效率显著高于其他品种,是高产高效品种。济麦20籽粒产量和水分利用效率较高,蛋白质含量与洲元9369无显著差异,显著高于济麦22和泰山23,蛋白质产量最高,面团稳定时间最长,品质最优,是本试验条件下高产优质高效品种。
The experiment was carried out in Shandong Agricultural University Experimental Farm.In2009~2010wheat growing season, during the growing period, the precipitation was34.2mm (sowing to pre-wintering),43.1mm(pre-wintering to jointing stage),34.1mm(jointing stage to anthesis),37.7mm(anthesis to maturity stage) and total was149.1mm. Threewheat cultivars were used including jimai22、taishan23and zhouyuan9369. Six treatmentsapplied in the experiment were with no irrigation during the whole growth stage(W0), the rthe relative soil moisture contents of0~140cm soil layers were65%and60%(W1),70%and60%(W2),70%and65%(W3),75%and65%(W4),75%and70%(W5) in jointing stage andanthesis. In2010~2011wheat growing season, during the growing period, the precipitationwas2.7mm (sowing to pre-wintering),28.7mm(pre-wintering to jointing stage),117.7mm(jointing stage to anthesis stage),22.9mm(anthesis stage to maturity stage) and total was172mm. Four wheat cultivars were used including jimai22, jimai20, taishan23and zhouyuan9369.Six treatments applied in the experiment were with no irrigation during the whole growthstage (W0’), t the relative soil moisture contents of0~140cm soil layers were65%and70%(W1’),70%and75%(W2’),70%and80%(W3’),75%and75%(W4’),75%and80%(W5’) in jointing stage and anthesis. The effect of soil-moisture on water consumptioncharacteristics, grain yield and quality on different wheat cultivars was studied by usingrandomized block design. The results as follow:
     1. Effects of soil-moisture on water consumption characteristics in different wheatcultivars
     1.1Effects of soil-moisture on water consumption characteristics
     In the two seasons, for a single species, total water consumption amount of W0was thelowest, but the rates of the precipitation and soil-moisture to total water consumption amountwere the highest. It indicated that the wheat consumed more soil moisture in the whole growthstage than others. Compared among the supplemental irrigation based on measured soilmoisture treatments, in2009~2010wheat growing season, for jimai22and taishan23, thetotal water consumption amount of W4was significantly higher than that of W1and W2.Thesoil-moisture consumption amount and the proportion of soil water consumption amount tototal water consumption amount of W4was significantly higher than that of w5. During anthesis to maturity, the total water consumption amount and daily water consumption amountof W4were higher than that of w1and w2. For zhouyuan9369, the total water consumptionamount of w3was no difference compared with w4, but higher than that of w1and w2. Theirrigation amount and the proportion of irrigation amount to total water consumption amountwere lower than w4and w5; the soil-moisture consumption amount and the proportion ofsoil water consumption amount to total water consumption amount were higher than that ofW4and W5. The total water consumption amount at stage from anthesis to maturity and dailywater consumption amount were higher than that of W2and W4. For jimai22and taishan23,the results above suggested that W4in favor of wheat using different sources of water of0~140cm soil layer. The total water consumption amount at stage from anthesis to maturityand anthesis to maturity, daily water consumption amount and water consumption percentagewere higher than others. And it made the wheat to use water efficiently. For W3ofzhouyuan9369, the wheat consumed more soil-moisture than W5. The water consumptionamount at stage from jointing stage to anthesis and anthesis to maturity, daily waterconsumption amount and water consumption percentage were higher than others. And it madethe wheat to use water came from soil-moisture efficiently. It indicated that W3and W4promoted the soil-moisture use efficiency and water use efficiency at stage from anthesis tomaturity of jimai22and taishan23; W3promoted the soil-moisture use efficiency and wateruse efficiency at stage from anthesis to maturity of zhouyuan9369.
     In2010~2011wheat growing season, for a single species, the total water consumptionamount of W4’which obtained the highest grain yield was higher than that of W1’,W2’,W3’,and the consumption amount of soil-moisture was higher than that of W3’and W5’. Forjimai22, jimai20and zhouyuan9369, the water consumption amount at stage from anthesis tomaturity and daily water consumption amount of W4’ were higher than that of W1’ and W2’,but lower than that of W3’and W5’. For all of the cultivars the water consumption amount anddaily water consumption amount of W4’ were higher than that of W0’, W1’ and W2’. Itindicated that W3’ promoted the soil-moisture use efficiency and water use efficiency at stagefrom anthesis to maturity of all wheat cultivars.
     1.2Differences of water consumption characteristics of different wheat cultivars
     In2009~2010wheat growing season, compared regime W1、W2、W3、W4, the totalwater consumption amount, irrigation amount, soil moisture content consumption amount andit’s ratio to total water consumption amount of jimai22were significantly higher than that oftaishan23and zhouyuan9369. The water consumption amount at stage from pre-wintering to jointing, water consumption amount per day and water consumption percentage were higherthan those of zhouyuan9369, but no difference between taishan23and jimai22. For W0、W1、W2、W3, the water consumption amount at stage from jointing to anthesis, water consumptionamount per day were higher than those of zhouyuan9369, but no difference between taishan23and jimai22. The water consumption amount at stage from anthesis to maturity, waterconsumption amount per day were higher than those of zhouyuan9369, but no differencebetween taishan23and jimai22. It indicated that the capability of jimai22of using water ofdifferent resources was high. And the capability of using water was higher than that ofzhouyuan9369during jointing-maturity, which promoted the water use efficiency.
     In2010~2011wheat growing season, for W0’,W2’ and w4’, the total waterconsumption amount, soil moisture content consumption amount, irrigation amount and it’sratio to total water consumption amount of jimai22were higher than other three cultivars. Theratio of precipitation to total water consumption amount was low. The water consumptionamount at stage from pre-wintering to jointing, water consumption amount per day and waterconsumption percentage of jimai22were significantly higher than those of other threecultivars’. The water consumption amounts at stage from jointing to anthesis of jimai22weresignificantly higher than those of taishan23. For W2’ and w4’, the water consumption amountat stage from anthesis to maturity was significantly higher than that of jimai20andzhouyuan9369, but no difference between taishan23.The results suggested that the ratio ofirrigation and soil storage water to total water consumption amount of jimai22was high,which promoted the use of water from different sources. The water consumption amounts atstage from jointing to anthesis and anthesis to maturity of jimai22were higher than others’.Both of them increased the water use efficiency in jointing and filling stage and the capabilityof using water after jointing was higher than that of other cultivars’.
     1.3Differences of water consumption characteristics in different precipitation pattern
     In2009~2010wheat growing season, the total precipitation amount which distributedevenly was149.1mm. In2010~2011wheat growing season, the total precipitation amountwhich distributed unevenly was172mm.
     Compared with2009~2010wheat growing season, in2010~2011wheat growingseason, the ratio of precipitation amount to total water consumption amount ofjimai22,taishan23and zhouyuan9369increased significantly. The total water consumptionamount, irrigation amount, soil water consumption amount and it’s ratio to total waterconsumption amount decreased significantly. The water consumption amounts at stage from sowing to pre-wintering and jointing to anthesis, water consumption amount per day andwater consumption percentage of jimai22decreased significantly. The water consumptionamounts at stage from sowing to pre-wintering, pre-wintering to jointing and jointing toanthesis, water consumption amount per day and water consumption percentage of taishan23decreased significantly. The water consumption amounts at stage from sowing topre-wintering, pre-wintering to jointing, and water consumption amount per day and waterconsumption percentage of zhouyuan9369decreased significantly. The results suggested that,in2010~2011wheat growing season, when the precipitation amount was31.4mm atpre-wintering to jointing and was117.7mm at jointing to anthesis, soil water consumptionamount, supplemental irrigation amount and total water consumption amount decreased. Theeffect of precipitation pattern on water consumption was different. The precipitation amoutwas31.4mm, and the precipitation amount what inhibited the plant growth weakened thecapability of use soil moister, and decreased the stage water consumption amount of taishan23and zhouyuan9369. And it which was benefit for wheat to consume water increased thecapability of soil moister absorption and stage water consumption amount of jimai22. Whenthe precipitation amount was117.7mm at jointing to anthesis, the relative soil water contentincreased and the stage water consumption amount of taishan23and jimai22lowered. Therewas no difference in stage water consumption amount in the two seasons at anthesis-maturity,which was benefit for water absorption and grain filling.
     2. Effects of soil moisture on carbon metabolism in different wheat cultivars
     In2009~2010wheat growing season, the photosynthetic rate of flag leaf and maximumphotochemical efficiencies of flag leaf (Fv/Fm) at30d after anthesis of W4had no significantdifference compared with W3,W5, but were higher than W0,W1,W2. The actualphotochemical efficiencies of flag leaf (ΦPSII)at10d,20d,30d after anthesis was the highestamong all treatments except W5. For jimai22and taishan23, the sucrose content of flag leaf at21d after anthesis had no significant difference compared with W3, but were higher than W5;and at21d after anthesis, were lower than W3,W5. The dry matter that stored in vegetativeorgans transported to grains was lower than W0,W1,W2. The dry matter assimilated amountafter anthesis and contribution to kernel was the highest among all treatments. Forzhouyuan9369, the sucrose content of flag leaf of W3at21d after anthesis had no significantdifference compared with W3, W5. The dry matter assimilated amount after anthesis of W3was the highest among all treatments except W4. Those indicated that W4for jimai22andtaishan23and W3, W4for zhouyuan9369, the photosynthetic rate of flag leaf and maximum photochemical efficiencies of flag leaf (Fv/Fm) and actual photochemical efficiencies of flagleaf (ΦPSII) were high at late grain filling stages. The dry matter assimilated amount afteranthesis was the highest among all treatments and contribution to kernel was high. It wasencouraged to higher photosynthetic matter accumulation and transportation.
     In2010~2011wheat growing season, for a single species, both of the photosyntheticrate of flag leaf at20d and30d after anthesis and the actual photochemical efficiencies of flagleaf (ΦPSII)at30d after anthesis of W4’had no significant difference compared with W3’,W5’;were higher than W0’,W1’,W2’. The maximum photochemical efficiencies of flag leaf(Fv/Fm) at30d after anthesis was only higher than W0’. For jimai22and taishan23, thesucrose content of flag leaf at14d after anthesis of W4’ was higher than W3’and W5’. Forjimai20and zhouyuan9369, the sucrose content of flag leaf at14d after anthesis of W4’ wasonly higher than W5’. The sucrose content of flag leaf at21d after anthesis of W4’ for all thewheat cultivars was lower than W3’and W5’. Those indicated that the photosynthetic rate offlag leaf, maximum photochemical efficiencies of flag leaf (Fv/Fm) and actual photochemicalefficiencies of flag leaf (ΦPSII) of W4’ were high. The dry matter assimilated amount afteranthesis was the highest among all treatments and the contribution to kernel was high. It wasencouraged to higher photosynthetic matter accumulation and transportation.
     3Effects of soil moisture on nitrogen metabolism in different wheat cultivars
     In2009~2010wheat growing season, for jimai22, the plant and grain nitrogenaccumulation amounts in maturity stage were higher than W0, W1, W5. Nitrogen stored invegetative organs transportation mounts and ratio of W4in maturity stage were higher thanW3, W5. For taishan23, the plant nitrogen accumulation amounts in maturity stage of W4were higher than W0, W1, W3. Nitrogen stored in vegetative organs transportation mounts ofW4were higher than W0、W1, had no significant difference compared with W2, W3, W5. Forzhouyuan9369, grain nitrogen accumulation amounts and the ratio of nitrogen stored invegetative organs transportation in maturity stage were higher than W5. Those indicated thatW3and W4encouraged nitrogen accumulation and transportation of jimai22,taishan23andzhouyuan9369, respectively.
     4Effects of soil moisture content on relative water content and water potential of flagleaf in different wheat cultivars
     In2009~2010wheat growing season, for jimai22and taishan23, the water content andwater potential of flag leaf at30d after anthesis of W4were lower than W5, but higher thanW0, W1, W2. For zhouyuan9369, the water content and water potential of flag leaf at30d after anthesis of W4were higher than W0, W1and W2. It indicated that water content andwater potential of flag leaf of W4for jimai22and taishan23, and W3, W4for zhouyuan9369were high at grain filling stages, which kept the photosynthetic rate of flag leaf high.
     5Effects of soil moisture content on flag leaf senescence and root activity in differentwheat cultivars
     5.1Flag leaf senescence after anthesis in different wheat cultivars
     In2010~2011wheat growing season, for a single species, flag leaf SOD activity ofW4’was higher than W0’ and W1’ during the growing period, but was lower than W5’ at30dafter anthesis. And the MDA content had no significant difference among the treatments. Butit that higher than W5’was significantly lower than W0’, W1’ and W2’. The results aboveindicated that, under the condition of this experiment, flag leaf SOD activity of W4’was high,which was beneficial to delay the senescence of flag leaf and kept the photosynthetic rate offlag leaf high.
     5.2root activity in different wheat cultivars
     In2009~2010wheat growing season, the root activity decreased gradually during thegrowing period. The root activity at anthesis stage of W4was higher than that of W0, W1, W2and W3. And it was higher than that of W5at grain filling stages. The results indicated that,under the condition of this experiment, treatment W4was favorable for jimai22andtaishan23, and W3, W4was favorable for zhouyuan9369to enhance water and nutrients useefficiency.
     In2010~2011wheat growing season, for jimai22and jimai20, the root activity ofW4’at anthesis and grain filling stages was higher than that of W0’, W1’, W2’ and W3’. Fortaishan23it was higher than that of W3’and W5’at grain filling stage. For zhouyuan9369, itwas higher than that of W0’, W1’, W2’and W3’ at anthesis, and was higher than that of W0’,W1’and W2’at grain filling stage. The results indicated that treatment W4’ increased the rootactivity at anthesis and grain filling stage, which was favorable for enhancing water andnutrients use efficiency.
     6Effects of soil water content on grain yield and water use efficiency
     6.1Effects of soil water content on grain yield and water use efficiency
     In2009~2010wheat growing season, for jimai22andtaishan23, the grain yield was thehighest. And water use efficiency of W4was higher than that of W0and W1. The irrigationbenefit (IB) of W4was higher than that of W3and W5. For zhouyuam9369, the grain yieldand water use efficiency of W3had no significant difference compared with W4, but were higher than that of W0, W1and W2. The irrigation benefit (IB) of W3was higher than that ofW4. The results indicated that treatment W4of jimai22and taishan23and W3ofzhouyuan9369was considered optimal supplemental irrigation treatment.
     In2010~2011wheat growing season, for all of the cultivars, the grain yield and wateruse efficiency of W4’was the highest among all treatments. The irrigation benefit (IB) ofW4’was higher than those of W3’and W5’. W4’ was considered optimal supplementalirrigation treatment.
     6.2Difference of the grain yield and water use efficiency in different wheat cultivars
     In2009~2010wheat growing season, for jimai22, the grain yield of all treatments andwater use efficiency of W0, W1and W4were significantly higher than those of taishan23andzhouyuan9369. Under the condition of W2, W3, W4and W5, the grain yield and water useefficiency of taishan23were higher than those of zhouyuan9369. In2010~2011wheatgrowing season, both of the grain yield and water use efficiency of jimai22were the highestamong all the wheat cultivars, the second was those of jimai20and taishan23, and the lastwas zhouyuan9369.
     It was said that, under the two experimental conditions, both of the grain yield and wateruse efficiency of jimai22were the highest among all the wheat cultivars. So jimai22was thehighest yield and water use efficiency wheat cultivar. The second was jimai20and taishan23,and the last was zhouyuan9369.
     7Effects of soil moisture on grain quality in different wheat cultivars
     In2009~2010wheat growing season, the grain protein content of W3had no significantdifference compared with W4and W5. And the grain protein yield was higher than that of W0and W1. The quality was high. So W3was considered optimal supplemental irrigationtreatment. In2010~2011wheat growing season, the dough stability time of jimai22forW3’and W4’and of taiahan23for W3’and W5’was the longest. The dough stability time ofjimai20for W2’and W4’and of zhouyuan9369for W2’and W3’ was the longest.
     Comprehensive consideration of grain yield, irrigation benefit, quality and water useefficiency, in2009~2010wheat growing season, W4which the relative soil moisture contentwas75%at jointing stage and65%at anthesis stage for jimai22and taishan23was consideredthe optimal supplemental irrigation treatment. For zhouyuan9369, W3which the relative soilmoisture content was70%at jointing stage and65%at anthesis stage was considered optimalsupplemental irrigation treatment. In2010~2011wheat growing season, treatment W4’whichthe relative soil moisture content was75%at jointing stage and65%at anthesis stage was the best treatment which obtained the high yield and efficiency treatment for jimai22,taishan23and zhouyuan9369, and was the best treatment which obtained the high yield and efficiency,good quality for jimai20.
     Compared among the cultivars, jimai22which grain yield and water use efficiency weresignificantly higher than those of jimai20, taishan23and zhouyuan9369was considered as thehighest yield and high efficiency wheat cultivars. Jimai20which grain yield and water useefficiency were significantly higher than those of taishan23and zhouyuan9369and obtainedthe highest protein yield, longest dough stability time and best grain quality was considered asthe good quality, high grain yield and high efficiency wheat cultivars.
引文
蔡焕杰,康绍忠,张振华,柴红敏,胡笑涛,王健.作物调亏灌溉的适宜时间与调亏程度的研[J].农业工程学报,2000,16(3):24-27
    曹广才,王绍忠.小麦品质生态[M].北京:中国科学技术出版社,1994,89-92.
    曹宏鑫,王世敬,戴晓华.土壤基础肥力和肥水运筹对春小麦产量和品质及植株氮素状况的影响[J].麦类作物学报,2003,23(2):52-56
    陈玉民,孙景生,肖俊夫.节水灌溉的土壤水分控制标准问题研究[J].灌溉排水,1997,16(1):24-28.
    程宪国,汪德水,张美荣,周涌,金轲.不同土壤水分条件对冬小麦生长及养分吸收的影响[J].中国农业科学,1996,29(4):67–74.
    褚鹏飞,王东,张永丽,王小燕,王西芝,于振文.灌水时期和灌水量对小麦耗水特性、籽粒产量及蛋白质组分含量的影响[J].中国农业科学,2009,42(4):1306-1315.
    戴廷波,赵辉,荆奇,姜东,曹卫星.灌浆期高温和水分逆境对冬小麦籽粒蛋白质和淀粉含量的影响[J].生态学报,2006,26(11):3670-3676.
    董宝娣,张正斌,刘孟雨,张依章,李全起,石磊,周永田.小麦不同品种的水分利用特性及对灌溉制度的响应[J].农业工程学报,2007,23(9):27-33
    杜守宇,马自清,高新华,吴建龙,黄治国,安云;王亚军,侯晓宁,张力.冬麦灌水次数对产量的影响[J].宁夏农林科技,2003,4:38-39
    段爱旺,孙景生,刘钰.北方地区主要农作物灌溉用水定额[M].中国农业科学技术出版社,2004.8.
    段文学,于振文,张永丽,王东.测墒补灌对不同穗型小麦品种耗水特性和干物质积累与分配的影响[J].植物生态学报,2010,34(12):1424-1432.
    樊廷录,马明生,王淑英,李尚中,赵刚.限量灌溉不同品种冬小麦茎可溶性糖与产量和水分利用率的关系[J].中国农业科学,2010,43(12):2428–2434
    范雪梅,姜东,戴廷波,荆奇,曹卫星.不同水分条件下氮素供应对小麦植株氮代谢及籽粒蛋白质积累的影响[J].生态学杂志,2006,25(2):149-154.
    范雪梅,姜东,戴廷波,荆奇,曹卫星.花后干旱和渍水下氮素供应对小麦旗叶衰老和粒重的影响[J].土壤学报,2005,42(5):875-879.
    范雪梅,姜东,戴廷波,荆奇,曹卫星.花后干旱或渍水逆境下氮素对小麦籽粒产量和品质的影响[J].植物生态学报,2006,30(1):71-77
    方文松,刘荣花,邓天宏.冬小麦生长发育的适宜土壤含水量[J].中国农业气象,2010,31(增1):73-76.
    房全孝,陈雨海.节水灌溉条件下冬小麦耗水规律及其生态基础研究[J].华北农学报,2003,18(3):18-22.
    冯伟,郭天财,李晓,朱云集,曹卫.不同降雨年型下水分处理对大穗型小麦品种籽粒灌浆及产量的影响[J].水土保持学报,2005,19(1):192-195,199.
    郭天财,冯伟,赵会杰,王化岑,王永华,夏国军,马冬云.水氮运筹对干旱年型冬小麦旗叶生理性状及产量的交互效应[J].应用生态学报,2004,15(3):453-457
    郭相平,康绍忠,索丽生.苗期调亏处理对玉米根系生长影响的试验研究[J].灌溉排水,2001,20(1):25-27
    韩占江,于振文,王东,张永丽,许振柱.测墒补灌对冬小麦氮素积累与转运及籽粒产量的影响[J].生态学报,2011,31(6):1631-1640.
    何照范.粮油籽粒品质及其分析技术[M].北京:中国农业出版社,1985.
    侯有良,钟改荣, O’Brien L.普通小麦营养器官氮素和果聚糖的运转[J].中国农业科学,2002,1(9):988-993(in Chinese)
    黄明镜,晋凡生,池宝亮,陈奇恩.地膜覆盖条件下旱地冬小麦的耗水特征[J].干旱地区农业研究,1999,17(2):20-23
    贾绍凤,何希吾,夏军.中国水资源安全问题及对策[J].中国科学院院刊,2004,19(5):347-351
    姜东,李永庚,余松烈,孔兰静.高产小麦营养器官临时贮存物质积运及其对粒重的贡献[J].作物学报,2003,29(1):31-36
    姜东,谢祝捷,曹卫星,戴廷波,荆奇.花后干旱和渍水对冬小麦光合特性和物质运转的影响[J].作物学报,2004,30(2):175-182.
    景蕊莲.作物抗旱节水研究进展[J].中国农业科技导报,2007,9(1):1-5
    居辉,兰霞,李建民,周殿玺,苏宝林.不同灌溉制度下冬小麦产量效应与耗水特征研究[J].中国农业大学学报,2000,5(5):23-29.
    居辉,王璞,周殿玺,兰林旺.不同灌溉时期的冬小麦土壤水分变化动态[J].麦类作物学报,2005,25(3):76-80
    孔箐锌,张海林,宋振伟,陈阜.不同灌溉水平对冬小麦耗水构成及利用效率的影响[J].干旱地区农业研究,2009,7(4):37-41.
    兰涛,姜东,谢祝捷,戴廷波,荆奇,曹卫星.花后土壤干旱和渍水对不同专用小麦籽粒品质的影响[J].水土保持学报,2004,18(1):193-196.
    雷川华,吴运卿.我国水资源现状、问题与对策研究[J].节水灌溉,2007,4:41-43
    李彩霞,马三力.小麦的需水规律[J].农业与技术,2005,25(4):68-69
    李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000.
    李红梅,李志宏,韩湘玲.冬小麦降水年型与补水灌溉动态管理[J].灌溉排水,2001,20(1):60-64
    李鲁华,李世清,翟军海,史俊通.小麦根系与土壤水分胁迫关系的研究进展[J].西北植物学报.2001,21(1):1-7
    李世娟,周殿玺,诸叶平,李建民,兰林旺.水分和氮肥运筹对小麦氮素吸收分配的影响[J].华北农学报,2002,17(1):69–75.
    李守谦,谢忠奎,兰念军,雷波,马忠明.干旱地区春小麦耗水量和节水措施的探讨[J].高原气象,1993,12(2):209-216.
    李雁鸣,张立言,李振国.春季肥水运筹对冬小麦籽粒产量和品质的影响[D].河北农业大学学报,1996,19(1):1-6
    李雁鸣,王焕忠,段巍巍,张建平,张立言.冬小麦品种河农859和河农326的光合性能与子粒产量对水分的反应.河北农业大学学报,2001,24(1):1-4,12
    李英枫,张薇.水分胁迫对不同筋型小麦籽粒品质性状的影响[J].植物生理科学.2007,2(1):115-117
    李中存,亓新华,余松烈.冬小麦耗水规律特征的研究[J].干旱地区农业研究,1992,10(1):68-71
    梁银丽,康绍忠.节水灌溉对冬小麦光合速率和产量的影响J].西北农业大学学报,1998,26(4):16–19
    刘新宇,张丽娟,袁丽金,巨晓棠,文宏达.耕层水氮调控对小麦利用土壤深层累积硝态氮的影响[J].中国农业科学,2010,43(17):3564-3571.
    刘彦军.灌水量灌水时间对麦田耗水量及小麦产量的影响[J].河北农业科学,2003,7(2):6-11.
    刘颖秋.黄淮海流域水危机与水资源可持续利用[J].科技导报,2002(7):51-54
    刘增进,李宝萍,李远华,崔远来.冬小麦水分利用效率与最优灌溉制度的研究.农业工程学报,2004,20(4):58–63.
    柳芳,王传海,申双和,姚克敏.土壤水分对小麦开花及结实的影响[J].南京气象学院学报,2002,25(5):671-676
    吕凤荣,季书勤,赵淑章.灌水次数和时期对小麦产量的影响[J].河南农业科学,2000,10:5-6
    吕丽华,胡玉昆,李雁鸣,王璞.灌水方式对不同小麦品种水分利用效率和产量的影响[J].麦类作物学报,2007,27(1):88-92.
    马东辉,王月福,周华,孙虎.氮肥和花后土壤含水量对小麦干物质积累、转运及产量的影响[J].麦类作物学报,2007,27(5):847-852
    马瑞昆,贾秀领,蹇家利,王学臣.前期控水条件下冬小麦的根系和群体光合作用特点[J].麦类作物字报,2001,21(2):88-91
    马新明,熊淑萍,李琳,张娟娟,何建国.土壤水分对不同专用小麦后期光合特性及产量的影响[J].应用生态学报,2005,16(1):83-87.
    马元喜.不同土壤中小麦根系生长动态的研究[J].作物学报,1987,13(1)37-44.
    马允吉.关于田间耗水最的几点认识[J].溉灌排水,1982,1(2):42-51
    马忠明.河西灌区节水灌溉的适宜土壤水分指标研究[J].甘肃农业科技,1998,(12):30-31.
    孟维伟,张永丽,马兴华,石玉,于振文.灌溉量和灌溉时期对小麦耗水特性和旗叶光合作用及产量的影响[J].作物学报,2009,35(10):1884-1892
    孟兆江,贾大林,刘安能,庞鸿宾,王和洲,陈金平.调亏灌溉对冬小麦生理机制及水分利用效率的影响[J].农业工程学报,2003,19(4):66-69
    牟会荣,姜东,戴廷波,张传辉,荆奇,曹卫星.遮光对小麦籽粒淀粉品质和花前贮存非结构碳水化合物转运的影响[J].应用生态学报,2009,20(4):805-810.
    潘庆民,于振文,王月福.小麦开花后旗叶中蔗糖合成与籽粒中蔗糖降解[J].植物生理与分子生物学学报,2002,28(3):235-240.
    亓新华,于振文,刘芳,田奇卓,许玉敏.中高产麦田水分变化规律及其节水灌溉方案的研究[J].山东农业大学学报,1993,24(1):55-62
    任鸿瑞,罗毅.鲁西北平原冬小麦和夏玉米耗水量的实验研究[J].灌溉排水学报,2004,23(4):37-39
    单长卷.土壤干旱对冬小麦水分生理和生物量分配的影响[J].麦类作物学报,2006,26(2):127–129.
    山仑,康绍忠,吴普特.中国节水农业[M].中国农业出版社,2004:229–230.
    山仑.利用以色列节水经验发展中国节水农业[J].水土保持研究,1999,13(4):117-120
    山仑.逆境生物学研究如何为发展我国旱地农业服务[J].河南农业大学学报(自然科学版),2003,33(3):1-3
    申孝军,孙景生,张寄阳,李明思.非充分灌溉条件下冬小麦耗水规律研究[J].人民黄河,2007,29(11):68-70
    石岩,林琪,位东斌,李忠军,李华.不同灌水处理冬小麦耗水规律与节水灌溉方案确立[J].干旱地区农业研究,1996,14(4):7-11,33
    史国安,郭香凤,刘素云,陈明灿,付国占,李友军.灌浆期干旱对小麦旗叶衰老和籽粒产量的影响[J].西北农业学报,1999,8(2):26-29.
    水利部水资源司.我国水资源开发利用业绩与前景[J].水文.1999(5):11-16
    隋鹏,张海林,许翠,高旺盛.节水抗旱与喜水肥型小麦品种土壤水分消耗特性的比较研究[J].干旱地区农业研究,2005,23(4):26–31.
    孙宏勇,刘昌明,张永强,张喜英.微型蒸发器测定土壤蒸发的试验研究[J].水利学报,2004,(8):114-118.
    孙宏勇,张永强,张喜英,毛学森,裴东,高丽娟.华北平原冬小麦生长对水分胁迫的响应[J].华北农学报,2003,18(3):23-26
    孙旭生,林琪,李玲燕,赵长星,刘义国.补灌对旱地小麦花后旗叶和籽粒氮代谢及产量的影响[J].麦类作物学报,2010,30(1):106-110.
    谭维娜,戴廷波,荆奇,曹卫星,姜东.花后渍水对小麦旗叶光合特性及产量的影响[J].麦类作物学报,2007,27(2):314–317
    王宝英,张学.农作物高产的适宜土壤水分指标研究[J].灌溉排水,1996,15(3):35-39
    王晨阳,郭天财,彭羽,朱云集,马冬云,张灿军.花后灌水对小麦籽粒品质性状及产量的影响[J].作物学报,2004,30(10):1031-1035
    王晨阳,马元喜.不同土壤水分条件下小麦根系生态生理效应的研究[J].华北农学报,1992,7(4):1-8
    王德梅,于振文.灌水量和灌水时期对小麦耗水特性和产量的影响[J].应用生态学报,2008,19(9):1965-1970
    王家仁,郭风洪,孙茂真,崔若亮,郭春荣,边萍,付光永.冬小麦调亏灌溉节水高效技术指标试验初报[J].灌溉排水学报,2004,23(1):36-40
    王力坚.非充分灌溉理论应用研究[J].地下水,2002,24(4):224-225
    王立秋,靳占忠,曹敬山,王占宇.水肥因子对小麦籽粒及面包烘烤品质的影响[J].中国农业科学,1997,30(3):67-73.
    王淑芬,张喜英,裴冬.不同供水条件对冬小麦根系分布、产量及水分利用效率的影响[J].农业工程学报,2006,22(2):27-32
    王维,蔡一霞,张建华,杨建昌,朱庆森.适度土壤干旱对贪青小麦茎贮藏碳水化合物向籽粒运转的调节[J].作物学报,2005,31(3):289-296.
    王文静,王国杰,王永华.小麦灌浆期蔗糖代谢关键酶活性变化及其与籽粒淀粉积累的关系[J].作物学报,2007,33(7):1122-1128.
    王辛未.农田灌溉节水途径的分析[J].灌溉排水,1986,5(3):24-28
    王育红,姚宇卿,吕军杰.豫西旱地冬小麦农田耗水特征及调控措施的研究[J].中国农学通报,2001,17(5):27-29
    王月福,姜东,于振文,曹卫星.氮素水平对小麦籽粒产量和蛋白质含量的影响及其生理基础[J].中国农业科学,2003,36(5):513-520
    王在阳.小麦需水规律及节水灌溉初探[J].陕西农业科学,1992,1:38-40.
    王征宏,邓西平,刘立生,赵紫萍.土壤干旱对小麦茎秆贮藏物质积累与再转运的影响[J].灌溉排水学报,2009,28(4):48-51
    王志敏,王璞,李绪厚,李建民,鲁来清.冬小麦节水省肥高产简化栽培理论与技术[J].中国农业科技导报,2006,8(5):38-44
    王志敏,王树安,苏宝林.小麦茎秆贮藏物质的积累与再运转[J].北京农业大学学报,1994,20(4):369-374.
    魏爱丽,王志敏.小麦茎秆贮藏物质对籽粒灌浆的影响[J].中国农学通报,2001,17(2):53-56.
    吴金芝,黄明,李友军,陈明灿,付国占.灌溉对弱筋小麦豫麦50籽粒淀粉积累及其相关酶活性的影响[J].麦类作物学报,2009,29(5):872-877.
    肖俊夫,刘战东,段爱旺,刘祖贵.新乡地区冬小麦耗水量与产量关系研究[J].河南农业科学,2009,(1):55-59
    谢贤群.农田生态系统水分循环与作物水分关系研究[J].中国生态农业学报,2001,9(1):9-12.
    谢忠奎,王亚军,兰念军,祁旭升.黑河地区土壤及小麦体内水分动态观测分析,高原气象[J].2000,19(8):385-390.
    熊福生,高煜珠,詹勇昌,李国锋.植物叶片蔗糖、淀粉积累与其降解酶活性关系研究[J].作物学报,1994,20:52-58
    熊淑萍,王小纯,马新明,赵鹏,王璐,程振云.土壤含水量对豫麦34花后GS同工酶及籽粒产量与蛋白质含量的影响[J].作物学报,2011,
    许振柱,于振文,王东,张永丽.灌溉条件对小麦籽粒蛋白质组分积累及其品质的影响[J].作物学报,2003,29(5):682-687
    许振柱,于振文,张永丽.土壤水分对小麦籽粒淀粉合成和积累特性的影响[J].作物学报,2003,29(4):595-600.
    闫学梅,于振文,张永丽,王东.不同小麦品种耗水特性和籽粒产量的差异[J].应用生态学报,2011,22(3):694–700
    杨世丽,贾秀领,张凤路,马瑞昆,孟祥法,李爱华.水氮耦合对小麦叶片硝酸还原酶活性、植株吸氮量及产量的影响[J].华北农学报,2008,23(4):124-129.
    杨书运,严平,梅雪英,孙秀邦.土壤水分亏缺对冬小麦根系的影响[J].麦类作物学报,2007,27(2):309–313.
    杨晓亚,于振文,许振柱.灌水量和灌水时期对小麦耗水特性和氮素积累分配的影响[J].生态学报,2009,29(2):846-853.
    姚大年,李保云,梁荣奇,刘广田.小麦品种面粉粘度性状及其在面条品质评价中的作用[J].中国农业大学学报,2000,5(3):25-29.
    姚凤娟,贺明荣,李飞,许亮亮,黄传华,邱牧.花后灌水次数对强筋小麦籽粒产量和品质的影响[J].应用生态学报,2008,19(12):2627-2631
    姚凤娟,贺明荣,贾殿勇,代兴龙,曹倩.花后灌溉对小麦籽粒贮藏蛋白聚合程度和面团流变学特性的影响[J].植物生态学报,2010,34(3):271-278
    於新建.植物生理学实验手册[M].上海植物生理学会编.科学技术出版社,1985.
    于振文,岳寿松,沈成国,张炜,余松烈.高产低定额灌溉对冬小麦旗叶衰老的影响[J].作物学报,1995,4(7):503-508.
    于振文,王月福,王东,等.优质专用小麦品种及栽培[M].中国农业出版社,2001
    袁朝兴,丁静.水分胁迫对棉花叶片中IAA含量、IAA氧化酶和过氧化物酶活性的影响[J].植物生理学报,1990,16:179-180
    翟丙年,李生秀.冬小麦水氮配合关键期和亏缺敏感期的确定[J].中国农业科学,2005,38(6):1188-1195.
    翟唯青.黑龙江易旱地区冬小麦耗水与麦田土壤水分变化[J].北京农业大学学报,1988,14(2):167-174.
    曾广伟,林琪,姜雯,刘义国,李玲燕.不同土壤水分条件下施磷量对小麦干物质积累及耗水规律的影响[J].麦类作物学报,2009,29(5):849-854
    张建华,杨文元.川中丘陵区小麦耗水及其与产量的关系[J].西北农业学报,1995,8(2):11-18.
    张利,范文良,吴仁顿,王金珍,高艳萍.冬小麦耗水规律及最佳灌水量研究[J].河北农业科学,1994,2:5-7
    张利.水浇地冬小麦耗水规律研究[J].土壤通报,1994,25(1):149-151.
    张利平,夏军,胡志芳.中国水资源状况与水资源安全问题分析[J].长江流域资源与环境.2009(2):116-120
    张强,戴其根,张洪程,许轲,霍中洋,黄严帅,葛鑫.氮肥用量对中筋专用小麦品质的影响[J].安徽农业科学,2004,32(2):299-301
    张胜全,方保停,张英华,周顺利,王志敏.冬小麦节水栽培三种灌溉模式的水氮利用与产量形成[J].作物学报,2009,35(11):2045–2054.
    张喜英,由懋正,王新元.冬小麦调亏灌溉制度田间试验研究初报[J].生态农业研究,1998,6(3):33-36
    张旭东,柯晓新,杨兴国,万信.甘肃河东小麦需水规律及其分布特征[J].干旱地区农业研究,1999,17(1):39-44.
    张永科.旱地冬小麦耗水规律的试验研究[J].干旱地区农业研究,1989,3:54-65
    张永平,王志敏,王璞,赵明.冬小麦节水高产栽培群体光合特征[J].中国农业科学,2003,36(10):1143–1149
    张岳.中国水资源与可持续发展[J].中国农村水利水电,1998,5:3-6
    张忠学,吴文良.冬小麦节水增产灌溉模式试验研究[J].灌溉排水,2001,20(3):20-24
    张忠学,于贵瑞.不同灌水处理对冬小麦生长及水分利用效率的影响[J].灌溉排水学报,2003,22(2):1-4
    赵广才,常旭虹,刘利华,杨玉双,李振华,周双月,郭庆侠,刘月洁.不同灌水处理对强筋小麦籽粒产量和蛋白质组分含量的影响[J].作物学报,2007,33(11):1828-1833.
    赵广才,何中虎,刘利华,杨玉双,张艳,李振华,张文彪.肥水调控对强筋小麦中优9507品质与产量协同提高的研究[J].中国农业科学,2004,37(3):351-356
    赵辉,戴廷波,姜东,荆奇,曹卫星.高温下干旱和渍水对冬小麦花后旗叶光合特性和物质转运的影响[J].应用生态学报,2007,18(2):333-338.
    赵聚宝,梅旭荣,薛军红,钟兆站,张天佑.秸秆覆盖对旱地作物水份利用效率的影响[J].中国农业科学,1996,29(2),59-60.
    赵鹏,熊淑萍,李琳,马新明.土壤水分对不同筋力型小麦花后旗叶氮素同化酶活性和籽粒蛋白质含量的影响[J].麦类作物学报,2009,29(3):447-452.
    赵全志,黄丕生,凌启鸿.水稻群体光合速率和茎鞘贮藏物质与产量关系的研究[J].中国农业科学,2001,34(3):304-310.
    赵长星,马东辉,王月福,林琪,吴钢,邵宏波, Cheruth Abdul JALEEL.施氮量和花后土壤含水量对优质强筋小麦产量和品质的影响[J].生态学报,2008,28(9):4396-4404
    赵长星,马东辉,王月福,林琪.施氮量和花后土壤含水量对小麦旗叶衰老及粒重的影响[J].应用生态学报,2008,19(11):2388-2393.
    郑成岩,于振文,马兴华,王西芝,白洪立.高产小麦耗水特性及干物质的积累与分配[J].作物学报,2008,34(8):1450-1458
    郑成岩,于振文,王西芝,武同华.灌水量和时期对高产小麦氮素积累、分配和转运及土壤硝态氮含量的影响[J].植物营养与肥料学报2009,15(6):1324-1332
    周凌云.封丘地区小麦耗水量与水分利用率研究[J].应用生态学报,1995,6(l):57-61.
    朱成立,邵孝侯,彭世彰,俞双恩,郝树荣.冬小麦水分胁迫效应及节水高效灌溉指标体系[J].中国农村水利水电,2003,(11):22—24.
    Angadi S V,Entz M. Root system and water use patterns of different height sunflowercultivars [J].Agronomy Journal,2002,94:136-145.
    B. Ehdaie, G. A. Alloush, M. A. Madore, and J. G. Waines. Genotypic variation for stemreserves and mobilization in wheat: Ⅰ.Post-anthesis changes in internode dry matter.Crop Science,2006,46:735-746
    Barber J S. Factors influencing the grain yield and quality in irrigated wheat [J]. J.Agric.Sci,1987,109:19-26.
    Behera S K, Panda R K. Effect of fertilization and irrigation schedule on water and fertilizersolute transport for wheat crop in a sub–humid sub–tropical region [J]. Agric. Ecosyst.Environ,2009,130:141–155.
    Bonnett G D, Incoll D. The potential pre-anthesis and post-anthesis contributions of steminternodes to grain yield in crops of winter barley [J]. Annals of Botany,1993,69:219-225
    Clothier B, Green S. Root-zone processes and the efficient use of irrigation water [J].Agricultural Water Management,1994,25:1-12.
    Constable,G. A and Hearn,A. B. Irrigation for crops in a sub-humid environment [J]. Irig.Sci.,1981,3:17-28
    Doorenbos J, Praitt W O. Crop water requirement. FAO Irrigation and Drainage paper. FAO,1977,24.
    Douglas C,Tsung M K,Frederick C. Enzymes of sucrose and hexose metabolism indeveloping kernels of two inbreds of Maize [J]. Plant Physiology,1988,86:1013-1019.
    Dreccer M F, Van Herwaarden A F, Chapman S C. Grain number and grain weight in wheatlines contrasting for stem water soluble carbohydrate concentration [J]. Field CropsResearch,2009,112(1):43-54
    Duffus C M. Control of starch biosynthesis in developing cereal grain [J]. Biochem SocietyTransactions,1992,20:13-18
    Duivenboodew N V, Pala M, Studer C, Bielders C L, Beukes D J. Cropping systems and cropcomplementarity in dryland agriculture to increase soil water use efficiency: a review [J].Netherlands Journal of Agricultural Science,2000,48:213-236.
    Earl H J. Stomata and non-stomatal restrictions to carbon assimilation in soybean (GLycinemax) lines differing in water use efficiency [J]. Environment and Experimental Botany,2002,48:237-246
    Evans LT. Some physiological aspects of evolution of wheat [J].Aust J Biol Sci,1970,23:725-741
    Garabet S,Wood M,Ryan J. Nitrogen and water effects on wheat yield in aMediterranean–type climate I. Growth,water–use and nitrogen accumulation [J]. FieldCrops Res.,1998,57:309–318.
    Gupta N K,Gupta S,Kumar A. Effect of water stress on physiological attributes and theirrelationship with growth and yield of wheat cultivars at different stages [J]. Journal ofAgronomy and Crop Science,2001,186:55-62.
    Hilld,D.1983. Advances in Irrigation. Academic Press.
    Jenner C F, Rathjen A J. Factors regulating the accumulation of starch in ripening wheatgrains [J]. Australian Journal of Plant Physiology,1975,2:311-322
    Kramer P J, Turner N C. Adaptation of plants to water and high temperature stress. JohnWiley&Sons [J]. New York Chichester Brisbane Toronto,1980:7
    Kuchenbuch R O,Barber S A. Yearly variation of root distribution with depth in relation tonutrient uptake and corn yield [J].Communications in Soil Science and PlantAnalysis,1987,18:225-263
    Laura Ercoli, Leonardo Lulli, Marco Mariotti, Alessandro Masoni, Iduna Arduini.Post–anthesis dry matter and nitrogen dynamics in durum wheat as affected by nitrogensupply and soil water availability [J]. Eur. J. Agron.,2008,28(2):138–147.
    Li F M, Liu X L, Guo A H. Effects of early soil moisture distribution on the dry matterpartition between root and shoot of winter wheat [J]. Agricultural Water Management,2001,49:163-171.
    Malik A I, Colmer T D, Lambers H, Setter T L, Schortemeyer M. Short–term waterlogginghas long–term effects on the growth and physiology of wheat [J]. New Phytologist,2002,153:225-236.
    Olszewski J, Pszczótkowska A, Kulik T, Fordoński G, Ptodzień K, Okorski A, Wasielewska J.Rate of photosynthesis and transpiration of winter wheat leaves and ears under waterdeficit conditions [J]. Polish Journal of Natural Sciences,2008,23(2):326-335.
    Oweis T, Zhang H, Pala M. Water use efficiency of rainfed and irrigation bread wheat in aMediterranean environment.[J]. Agronomy Journal,2000,92:231-238.
    Ozturk A, Aydin F.Effect of water stress at various growth stages on some qualitycharacteristics of winter wheat [J]. Journal of Agronomy and Crop Science,2004,190:93-99
    Panda R K, Behera S K, Kashyap P S. Effective management of irrigation water for wheatunder stressed conditions [J]. Agric Water Manage,2003,63:37-56
    Panozzo JF, Eagles HA, Wootton M. Changes in protein composition during graindevelopment in wheat [J]. Australian Journal of Agricultural Research,(2001)52,485–493.
    Payero J O,Tarkalson D D,Irmak S, Davison D,Petersen J L. Effect of irrigation amountsapplied with subsurface drip irrigation on corn evapotranspiration, yield, water useefficiency, and dry matter production in a semiarid climate [J]. Agricultural watermanagement,2008,95:895-908.
    Pheloung P C, Siddique K M. Gibberellins and reproductive development in seed plants [J].Annual Review of Plant Physiology,1985,36:517-568
    Qiu G Y, Wang L M, He X H, Zhang X Y, Chen S Y, Chen J, Yang Y H. Water use efficiencyand evapotranspiration of winter wheat and its response to irrigation regime in the northChina plain [J]. Agricultural and Forest Meteorology,2008,148:1848-1859.
    Rahman S., Kosar-Hashemi,B., Samuel M.S., Hill A., Abbot D.C., Skerritt J.H., Preiss J.Appels R. and Morell M.K. The major proteins of wheat endosperm starch granules[J].Australian Journal of Plant Physiology,1995,22:793-803.
    Rasse D P, Smucker A. Root recolonization of previous root channels in corn and alfalfarotations [J]. Plant and Soi1,1998,204:203-212
    Rawson H M, Evans L T. The contribution of stem reserves to grain development in a rangeof wheat cultivars of different height [J]. Australian Journal of Agricultural Research,1971,22:851-86
    Rehman S, Khalil S K, Rehman A, Amanullah, Khan A Z, Shah N H. Micro-watershedenhances rain water use efficiency, phenology and productivityof wheat under rainfedcondition [J]. Soil Tillage Research,2009,104:82-87.
    SandeepSingh, GurpreetSingh, PrabhjeetSingh, NarpinderSingh. Effect of water stress atdierent stages of grain development on the characteristics of starch and protein of dierentwheat varieties [J], Food Chemistry,2008,108:130-139.
    Seligman N G,Sinclair T R. Global environment change and simulated forage quality of wheatII. Water and nitrogen stress [J]. Field Crops Res.,1995,40:29–37.
    Setter T L, Anderson W K, Asseng S,et al. Review of the impact of high shoot carbohydrateconcentrations on maintenance of high yields in wheat exposed to environmental stressduring grain filling//N agarajan S,Singh G,Tyagi B S. Wheat Research Needs Beyond2000AD. New Delhi,London: Narosa Publishers,1998:237-255
    Shah N H, Paulsen G M. Interaction of drought and high temperature on photosynthesis andgrain–filling of wheat [J]. Plant and Soil,2003,257:219-226.
    Shan L. Water use efficiency of plant and agricultural water of the semiarid region [J]. PlantPhysiology Communications,1994,30(1):61-66.
    Sharma B R, Chaudhary T N. Wheat root growth, grain yield and water uptake as influencedby water regime and depth of nitrogen placement in a sand soil [J].Agriculture WaterManagement,1983,6:365-373
    Siddique K H M, Belford R K, Tennant D. Root: shoot ratios of old and modern, all andsemi–dwarf wheats in a mediterranean environment [J]. Plant and Soil,1990,121:89–98.
    Sinclair T. R, Pinter Jr P. J, Kimball B A, Adamsen F J, LaMorte R L, Wall G W, Hunsaker DJ, Adam N, Brooks T J, Garcia R L. Leaf nitrogen concentration of wheat subjected toelevated [CO2] and either water or N deficits [J]. Agric. Ecosyst. Environ.,2000,79:53–60.
    Stitt M, Quick W P. Photosynthetic carbon partitioning: its regulation and possibilities formanipulation [J]. Physiologia Plantarum,1989,77:633-641
    Sun H Y, Liu C M, Zhang X Y, Shen Y J, Zhang Y Q. Effects of irrigation on water balance,yield and WUE of winter wheat in the North China Plain [J]. Agricultural WaterManagement,2006,85:211-218
    Tan W, Liu J, Dai T, Jing Q, Cao W, Jiang D. Alterations in photosynthesis and antioxidantenzyme activity in winter wheat subjected to post–anthesis water–logging [J].Photosynthetica,2008,46(1):21-27.
    Tsai-Mei Ou-Lee, Setter T L. Enzymes of increased temperature in apical regions of maizeears on starch-synthesis enzymes and accumulation of sugars and starch [J]. PlantPhysiology,1985,79:852-855.
    Van Herwaarden A F,Richards R A,Farquhar G D,et al.‘Haying-off’ the negative grain yieldresponse of dryland wheat to nitrogen fertiliser: Ⅲ. The influence of water deficit andheat shock [J]. Australian Journal of Agricultural Research,1998,49:1095-1110
    Wagner W, Keller F,Wiemken A. Fructan metabolism in cereals: Induction in leaves andcompartmentation in protoplasts and vacuoles [J]. Zeitschrift fur Pflanzenphysiologie,1983,112:359-372
    Wang C-Y, Ma Y-X, Zhou S-M, Zhu Y-J, Li J-X, Wang H-C. Effect of water logging on themetabolism of active oxygen and the physiological activities of wheat root systems [J].Acta Agronomica Sinica.1996,22(6):712-719
    Wardlaw I F, Willenbrink J. Carbonhydrate storage and mobilization by the culm of wheatbetween heading and grain maturity:The relation to sucrose synthase andsucrose-phosphate synthase [J]. Austrila Journal of Plant Physiology,1994,21:251-271.
    Wardlaw I F. The early stages of grain development in wheat: Response to water stress in asingle variety [J]. Australian Journal of Biological Sciences,1971,24:1047-1055
    Winzeler M,Dubois D,Nosberger J. Absence of fructan degradation during fructanaccumulation in wheat stems. Journal of Plant Physiology [J],1990,136:324-329
    Xie zhujie, Jiang dong, Cao weixing, et al. Effects of post-anthesis soil water status on theactivities of key regulatory enzymes of starch and protein accumulation in wheat grains[J]. Journal of Plant Physiology and Molecular Biology,2003,29(4):309-316
    Xu Z Z, Yu Z W. Nitrogen metabolism in flag leaf and grain of wheat in response to irrigationregimes [J]. J Plant Nutr Soil Sci,2006,169:118–126
    Xu Z Z,Yu Z W,Wang D,Zhang Y L. Nitrogen accumulation and translocation for winterwheat under different irrigation regimes [J]. Journal of Agronomy&CropScience,2005,191:439-449.
    Zhang X,Pei D,Chen S,Sun H,Yang Y. Performance of double-cropped winter wheat–summermaize under minimum irrigation in the North China Plain [J].Agronomy Journal,2006,98:1620-1626.
    Zhang X Y, Chen S Y, Liu M Y, Pei D, Sun H Y. Improved water use efficiency associatedwith cultivars and agronomic management in the North China Plain [J]. American Societyof Agronomy,2005,97:783-790
    Zhang X Y, Chen S Y, Sun H Y, Wang Y M, Shao L W. Water use efficiency and associatedtraits in winter wheat cultivars in the North China Plain [J]. Agricultural WaterManagement,2010,97:1117-1125.
    Zhao X C, Batey I L, Sharp P J.A Single genetic locus associated with starch granule proteinsand noodle quality in wheat [J]. Journal of Cereal Science,1998,27:7-13

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700