用户名: 密码: 验证码:
小麦成株抗条锈病的组织学和细胞学研究及小麦非寄主抗蚕豆锈病的机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由小麦条锈菌(Puccinia. striiformis f. sp. tritici)引发的小麦条锈病是威胁我国小麦生产的最重要病害之一。成株抗病性(Adult plant resistance APR)具有持久抗病性的特点,表现为苗期感病,成株期抗病,其在生产上具有巨大的应用潜力。从组织学和细胞学角度开展小麦成株抗病性互作特征研究,将为进一步解析成株抗性的分子机理奠定基础和提供依据,对选育持久抗病品种和实现小麦条锈病的可持续控制具有重要的理论和实际意义。本研究以小麦兴资9104和小麦条锈菌32号小种(CYR32)为研究对象,通过不同叶位的连续接种进行表型鉴定;对兴资从感病到抗病过程转变的关键生育期与锈菌的互作进行系统的组织学分析;通过组织化学的方法对互作过程中活性氧的积累进行检测;通过细胞学方法对成株抗性表达过程中植物与病菌的超微结构特征进行观测,从而阐明兴资9104成株抗小麦条锈病的组织学和细胞学特征。本研究的主要结果如下:1、通过对兴资9104不同叶位连续接种实验表明,兴资9104对CYR32的成株抗病性从分蘖期开始表达,随着生长发育逐渐增强,孕穗期后表现出最强的抗病性;2、光镜观测表明,三种组合中病菌均于接种后12h进入植物叶组织而形成气孔下囊,然而苗期、分蘖期和孕穗期组合中的最早的吸器形成时间分别为接种后12h、18h和24h,表明病菌的吸器分化和形成在成株期组合中明显的延迟和受抑。接种后48h,三种组合中,病菌在菌丝分枝数、菌丝长度和吸器母细胞的数量上差异并不明显,但苗期组合中,病菌从接种后48h开始,大量分化形成次生菌丝,从而促进其菌落的形成;而孕穗期组合中多数侵染点的的次生菌丝出现于接种后96h,表明病菌次生菌丝的发育明显的被抑制或延迟,并导致菌落形成的减少。病菌的侵染和吸器的形成在分蘖期和孕穗期组合中伴有植物细胞的坏死,这种典型的过敏性坏死在两种组合中分别出现于接种后18h和36h,随后含坏死细胞的侵染点比率和坏死的面积逐渐增加。接种后120h,分蘖期组合中80%的侵染点含有坏死细胞,而至接种后144h,孕穗期组合中所有的侵染点均有细胞坏死出现,部分侵染点的病菌结构完全被坏死细胞所包围,导致其并无次生菌丝的形成及败育。表明植物细胞坏死对病菌的发育具有明显的抑制作用。3、活性氧的组织化学检测结果表明,分蘖期和孕穗期组合中,于接种后24h和36h分别形成O_2迸发高峰,大量的侵染点出现NBT (Nitroblue tetrazolium)着色的时间点与吸器母细胞与植物细胞接触形成吸器的时间点一致,而NBT着色的细胞仍然保持生存状态。因此,O_2迸发早于病菌入侵细胞的坏死。而分蘖期和孕穗期组合中,被侵染的植物叶片中H_2O_2积累具有相似的双时相特征。在分蘖期中,第一个H_2O_2迸发高峰出现于接种后24h,而第二个H_2O_2迸发高峰出现于接种后72-96h;孕穗期的组合中第一个H_2O_2迸发高峰,出现于接种后48h,而第二个H_2O_2迸发高峰出现于接种后120h。H_2O_2第一个迸发时相与吸器的形成以及随后入侵细胞的坏死的时间点相一致,而其第二个迸发时相明显的与次生菌丝的形成以及随后的侵染细胞的坏死密切相关。而苗期组合中,大多数侵染点中,病菌的侵染并没有诱导O_2-和H_2O_2的产生。因此,O_2-和H_2O_2的产生和积累与寄主细胞过敏性坏死有着密切关系,在成株抗病性表达中可能起着重要作用。4、透射电镜观测表明,兴资对条锈菌成株抗病性的典型的结构防卫反应包括显著的细胞壁相关的抗性、入侵细胞的大量坏死以及吸器鞘的形成,这些亚细胞水平的防卫结构与抑制病菌的生长、加速病菌的衰老、导致侵染结构的细胞死亡密切相关。
     非寄主抗病性(non-host resistance NHR)是整个植物物种,对特定的病菌物种的所有菌株所表现出的抗病性,是植物所表现出的最普遍的抗病形式,其具有持久抗性的特点,因此,在农业生产中具有广阔的应用前景。作为重要的农作物,小麦是柄锈菌属的寄主,长期遭到条锈菌、叶锈菌(P. triticina)和杆锈菌(P. graminis f. sp. tritici)的危害,但其对以与其亲缘关系较远的豆类植物作为寄主的单胞锈菌却保持抗病性,其中的非寄主抗病性的机制知之甚少。因此,本研究以小麦(Triticum aestivum)与蚕豆锈菌构成了一个新的研究体系,通过组织学和细胞学的研究,对病菌的发育进程和小麦的防卫反应进行观测;通过组织化学的方法检测互作过程中活性氧的迸发情况;通过实时定量PCR (quantitativeRT-PCR qRT-PCR)检测防卫相关基因和活性氧代谢相关基因的表达情况。本研究结果将揭示小麦对与其协同进化关系较远的豆类锈菌的非寄主抗病性的细胞学特征和分子基础,有助于对小麦抗锈性的全面理解。其主要研究结果如下:
     1、光镜观测表明蚕豆锈菌在小麦叶片上能有效的萌发形成芽管,但蚕豆锈菌在小麦叶片上的气孔侵入率显著下降,超过98%的芽管(萌发体)不能准确的定位气孔并于其上方形成附着胞而进入叶组织。少数萌发体能进入气孔形成侵染点,从而分化形成胞间菌丝和吸器母细胞,但大多数的吸器母细胞未能侵入叶肉细胞而形成吸器。接种后96h,侵染点中吸器的形成率不到4%。
     2、透射电镜观测表明病菌吸器母细胞的入侵诱导了植物细胞壁的加固和胞壁沉积物以及乳突的形成,入侵栓尽管能穿透细胞壁,但不能穿过乳突而于细胞内形成吸器。因此细胞壁相关的抗病性导致了病菌的败育,说明小麦对蚕豆锈菌的抗病性主要为吸器前抗性。尽管少数病菌的入侵栓能够穿透植物细胞的细胞壁而形成吸器,但光镜观测发现吸器被类似胼胝质的沉积物所包围,并发出强烈的自发荧光,这种吸器鞘状的结构可能限制吸器的发育和功能的发挥。同时吸器的形成并未激发植物过敏性坏死的形成,这与接种蚕豆锈菌后小麦叶片无任何症状的表型相一致。
     3、活性氧的组织化学检测结果表明,蚕豆锈菌的侵染诱导了小麦细胞中H_2O_2的积累,但无O_2形成。H_2O_2主要分布于与病菌接触的细胞壁、正对吸器母细胞的乳突结构和吸器鞘部位,这些形成于防卫结构中的H_2O_2,可能有助于通过交联而加固病菌接触部位的细胞壁和乳突以及吸器鞘结构,并进而阻止了病菌在小麦组织中的发育。
     4、qRT-PCR分析结果表明, TaPR1(病程相关蛋白1)、 TaPR2(-1,3-葡聚糖酶)、 TaPR3(几丁质酶)、 TaPR5(类甜蛋白)、 TaPAL (苯丙氨酸解氨酶), TaSOD (超氧化物歧化酶)、TaCAT (过氧化氢酶)和TaAPX (抗坏血酸-过氧化物酶)基因在互作中呈现出不同的表达特征,但所有基因于接种后12-48h之间呈现出一到多个上调表达的时间点,表明活性氧代谢相关基因和防卫相关的基因同样参与了小麦对蚕豆锈的非寄主抗病性,前者可能通过代谢调控活性氧的产生并避免活性氧的过量积累而激发细胞的坏死,后者参与小麦的非寄主抗病性则表明小麦对锈菌的非寄主抗病性和其基础抗性可能存在交叉和重叠。
Stripe rust of wheat, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the mostdamaging diseases of wheat in China. Adult plant resistance (APR) to stripe rust is knownto be an important component of some sources of durable resistance in wheat, thus has greatpractical potentials in wheat production. Characterization of APR to stripe rust at histologicaland cytological level will set the foundation for further elucidation the mechanism of APR atmolecular level, therfore, will be of greatly important for appropriate utilization of resistantcultivars and sustainable control of the disease. Thus the present study was conducted toelucidate the phenotype of XZ9104(XZ) relative to leaf position and different plant growthstages by Pst(CYR32) inoculation. In addition, histopathological analysis was undertaken tocharacterize the cellular interaction between Pst and XZ at seedling (GS12), tillering(GS21-22) and boot stages (GS43-49), which represent the expression of resistance transitionfrom susceptibility to resistance. Also, the accumulation of ROS (reactive oxygen species)and variation in resistance in this interaction were studied systematically using histochemicalmethods. Finally, transmission electron microscopy (TEM) was used to describeultrastructural changes during XZ and Pst interactions. Our study will character the APR inXZ to Pst at histological and cytological level. The main results are as follows:1. To elucidate the correlation of APR expression and plant development, the leaves invarious positions at different growth stages were inoculated simultaneously with Pst raceCYR32in the greenhouse. The study result indicated that APR was initiated as early astillering stage, increased gradually as plants grew, and most effective at the boot stage.2. The microscopical observation revealed that the time points of the appearance ofhaustorium formation in the infection sites of plant leaves in the seedling, tillering and bootstages were12,18and24hai, respectively, although the pathogen entered plant leaves andformed a substomatal vesicle at12hai in all stages. It indicated that haustorial formation wasretarded or inhibited in adult plants. The hypha branching and length of hypha as well asnumber of haustorial mother cell (HMC) in all growth stages were similar until48hai andwithout obvious difference between all growth stages. In the seedling-stage plants, after48hai, massive formation of secondary hyphae as Pst proliferated rapidly which subsequently confer the formation of small microcolony. In most of infection site, the secondary hyphaappeared at96hai in boot-stage plants. It indicated that the differentiation of secondaryhyphae was significantly inhibited, which decreased the development of microcolonies inplants of boot stage. One of the observable responses at the microscopic level was thenecrosis associated with the invaded plant cells coincided with the haustorial formation in thetillering and boot stages plants. The typical hypersensitive response (HR) was observed from18to36hai in leaves of plants in tillering and boot stages, respectively. With a longerincubation time, the percentage of infection sites with necrotic host cells and the necrotic areaincreased in inoculated leaves of plants in both tillering and boot stages, necrotic host cellswere observed in80%of the infection sites in the tillering plants by120hai and in100%ofthe infection sites of the boot-stage plants at144hai. At some infection site of adult plant,the infection unit were completely surrounded by the necrotic tissue which render the fungalabortion and lack of secondary hypha formation. It indicated that the death of host cellsmarkedly inhibited the development of hyphae.
     3. The result of histochemical location of ROS revealed that a high frequency of NBT(Nitroblue tetrazolium) stained cells showed O_2accumulation was detected at24hai ontillering stage plants and at36hai on boot-stage plants, respectively. The high frequency ofNBT stained cells coincided with the infection stage when contacts were established betweenthe HMCs and the mesophyll cells and haustoria began to form, and while the host cells withNBT staining remained alive. It indicated that the production of O_2preceded HR of infectedcells. The H_2O_2accumulations in infected leaves of plants in tillering and booting stages weresimilar and both showed a biphasic process. On tillering plants, The first and second peak ofH_2O_2generation in invaded host cells appeared at24hai and72-96hai, respectively. Whileon boot plants these peaks appeared at48hai and120hai, respectively. The first burst phaseof H_2O_2coincided with the beginning of haustorium formation and the subsequent HR ininvaded host cells, while the second phase of H_2O_2generation coincided with the formation ofsecondary hyphae and the increasing number of necrotic host cells surrounding the attackedcells. In the infected leaves of seedlings, in contrast, at most infection sites, the pathogeninfection didn’t induce obvious H_2O_2and O_2generation. The result suggested that, thegeneration and accumulation of O_2-and H_2O_2are closely associated with the HR of host cells,and which may play an important role in the expression of APR.
     4. The result of TEM study revealed that the typical APR reactions of XZ at the subcellularlevel included significant cell wall-related resistance, necrosis of penetrated host cells, and theformation of a haustorial sheath. These structural defense responses are believed tosignificantly inhibit the growth of Pst by accelerating the senescence of hyphae and cell death of infection structures.
     Non-host resistance (NHR), which is defined as resistance shown by all genotypes of aplant species against all genotypes of a given pathogen species, is the most common form ofdisease resistance exhibited by plants against the majority of potentially pathogenicmicroorganisms. NHR to cereal rusts has proved to be durable and appears to have greatpotential for engineering plant immunity. Little is known about the nature of this effectivedefense mechanism to the pathogen of remotely related plant species in important cropspecies, wheat, which can be damaged by several Puccinia species, P. striiformis f. sp. tritici,P. triticina and P. graminis f. sp. tritici, but is immune to all Uromyces species. Here weestablished a novel non-adapted pathosystem based on wheat (Triticum aestivum) and thebroad bean rust pathogen Uromyces fabae (Uf). We first investigated the reaction of a wheatcultivar to the infection by the broad bean rust pathogen using light and electron microscopes.Histochemical experiments were conducted to detect ROS generation in the non-hostpathosystem. Expression profiles of candidate genes related to basal resistance and oxidativestress in wheat leaves inoculated with Uf were assayed by quantitative RT-PCR (qRT-PCR).Our study will revealed the cytological and molecular basis of NHR in wheat against rustpathogen of remotely related plant species and lead to a comprehensive understanding ofresistance in wheat against rust fungi.
     1. In the wheat-Uf interaction, microscopic observations showed that urediospores germinatedefficiently on wheat leaves. However, over98%of the germ tubes failed to form appressoriaover stomata and developed substomatal vesicles inside wheat leaves. Therefore, stomapenetration was significantly reduced in Uf infection of wheat. For the few that invadedthrough stomata and formed the intercellular hypha and haustorial mother cell, the majority ofHMC failed to penetrate wheat mesophyll cells. At96hours after inoculation, less than4%ofthe Uf infection units that had entered the mesophyll tissue formed haustoria.
     2. The result of TEM study revealed that the Attempted penetration by haustorium mothercells induced the thickening of cell wall and the formation of papillae in plant cells, thepenetration peg emerging from the HMC appeared to puncture through the plant cell wall butfailed to penetrate through the papilla and form haustoria in wheat cells. Thus, it indicatedthat cell wall-related resistance arrested the development or growth of Uf penetration pegs andNHR of wheat to Uf is pre-haustorial. Although a few penetration pegs could breach the cellwall and periphery deposits and formed haustoria, the light microscopic observation revealedthat these haustoria formed by Uf in wheat cells were encased in callose-like deposits that hadstrong auto-fluorescence. Moreover, the formation of haustoria did not trigger thehypersensitive response in penetrated wheat cells, which was consistent with the macroscopic phenotype.
     2. The result of histochemical location of AOS revealed that in responses to Uf infection,accumulation of H_2O_2, but not O_2, was detected in wheat cells. H_2O_2was mainly detected incell wall in close contact with IH or HMCs, papillae subjacent to HMC, and depositsresponsible for haustorium encasement. The cross-link fueled by H_2O_2likely reinforces thecell wall at the sites in contact with fungal structures and strengthening papillae as well as theencasement of haustoria and results in the arrest of Uf growth in wheat.
     3. The putative TaPR1(pathogenesis-related protein1), TaPR2(-1,3-glucanase), TaPR3(chitinase), TaPR5(thaumatin-like), TaPAL (phenylalanine ammonia lyase), TaSOD(superoxide dismutase), TaCAT (catalase), and TaAPX (ascorbate-peroxidase) genes wereselected as candidate defense-related genes for assaying their expression levels during Ufinfection by qRT-PCR. Although they had different expression profiles, all of these eightgenes were up-regulated at one or more time-points between12-48hai. It revealed that thesedefense related genes also may contribute to preventing Uf infection of wheat, genes involvedin oxidative stress may regulate the ROS generation and avoid over-accumulation of ROS andeliciting HR, similar PR genes have been implicated in wheat resistance against both adaptedand non-adapted rust fungi may indicate that NHR and basal resistance to adapted pathogensmay involve the same or similar mechanisms in wheat.
引文
陈晓波,王冬梅,刘娟,王智.2002.接种叶锈菌的小麦叶片胞间洗脱液对叶肉细胞原生质体微丝骨架的影响.植物生理与分子生物学学报,28:344-350
    关春蕾,侯春燕,王冬梅.2006.影响Ca2+代谢和钙通道的药物对小麦受叶锈菌侵染后诱发的HR的作用.河北农业大学学报,29:4-8
    侯春燕,王冬梅,李小娟,韩胜芳,刘娟,王智炘.2002.细胞骨架解聚药物对小麦与叶锈菌互作诱发的细胞过敏性反应的影响植.植物病理学报,32:147-152
    黄雪玲,喻修道,屈志鹏,王晓杰,韩青梅,黄丽丽,康振生.2007.小麦成株抗条锈性抑制差减杂交文库构建及表达序列标签分析.农业生物技术学报,15:976-981
    蒋选利.2002.小麦与条锈菌(Puccinia striiformis west.)相互作用的超微结构、细胞化学和分子生物学研究.[博士学位论文].杨凌:西北农林科技大学
    康振生,黄丽丽,李振岐.1993a.小麦对条锈菌入侵反应的超微结构研究.西北农业学报,2:25-28
    康振生,李振岐, R罗林格等.1994a.小麦条锈菌生要结构中糖基种类的细胞化学定位研究.真菌学报,13:58-64
    康振生,李振岐,商鸿生等.1993b.小麦条锈菌胞间菌丝的超微结构和细胞化学研究.真菌学报,12:208-213
    康振生,李振岐,商鸿生等.1994b.小麦条诱菌吸器母细胞超微结构的研究.真菌学报,13:206-209
    康振生,李振岐,庄约兰等.1994c.小麦条锈菌吸器超微结构和细胞化学的研究.真菌学报,,13:52-57
    康振生.1990.小麦条锈菌及小麦秆锈菌超微结构和细胞化学的研究.[博士学位论文].杨凌:西北农业大学
    李振岐,曾士迈.2002.中国小麦锈病.北京:中国农业出版社
    李振岐,曾士迈中国小麦锈病2000
    刘红梅,刘太国,徐世昌,刘大群,陈万权.2006.小麦抗源兴资9104抗条锈性遗传研究初报.作物学报,32:1742-1745
    马青,商鸿生.2002.小麦与条锈病菌不亲和互作的超微结构.植物病理学报,32:306-311
    王瑶.1996.小麦对条锈病低反应型抗性的组织学和细胞学研究.[硕士学位论文]杨凌:西北农业大学
    张蓓,阎爱华,刘刚,刘猛,侯春燕,王冬.2010.胞内钙库对小麦叶锈菌侵染之过敏反应的影响.作物学报,36:833-839
    张岗,董艳玲,夏宁,张毅,王晓杰,屈志鹏,李依民,黄丽丽,康振生.2010.利用cDNA-AFLP技术分析小麦成株抗条锈性差异基因表达特征.作物学报,36:401-409
    张宏昌,韩青梅,王晨芳,黄丽丽,张庆勤,康振生.2008.小麦新抗源一粒葡抗条锈病的组织学和超微结构研究.植物病理学报,38:153-164
    赵杰,张宏昌,姚娟妮,黄丽丽,康振生.2011.中国小麦条锈菌转主寄主小檗的鉴定.菌物学报,30:895-900
    中国科学院“中国植物志”编辑委员会,2001.中国植物志.第29卷.北京:科学出版社:76-211
    Adhikari TB, Bai JF, Meinhardt SW, Gurung S, Myrfield M, Patel J, Ali S, Gudmestad NC, Rasmussen JB.2009. Tsn1-mediated host responses to ToxA from Pyrenophora tritici-repentis. Mol Plant–MicrobeInteract,22:1056-1068
    Agrios GN,2005. Plant Pathology,5th edn. San Diego, CA, USA: Elsevier-Academic Press
    Ali S, Leconte M, Walker AS, Enjalbert J, de Vallavieille-Pope C.2010. Reduction in the sex ability ofworldwide clonal populations of Puccinia striiformis f.sp. tritici. Fungal Genet Biol,47:828-838
    Allen EA, Hazen BE, Hoch HC, Kwon Y, Leinhos GME, Staples, RC, Stumpf MA, Terhune BT.1991.Appressorium formation in response to topographical signals by27rust species. Phytopathology,81:323-331
    An Q, Ehlers K, Kogel KH, van Bel AJ, Hückelhoven R.2006. Multivesicular compartments proliferate insusceptible and resistant MLA12-barley leaves in response to infection by the biotrophic powderymildew fungus. New Phytol.172:563-576
    Anderson JP, Gleason CA, Foley RC, Thrall PH, Burdon JB, Singh KB.2010. Plants versus pathogens: Anevolutionary arms race. Funct Plant Biol,37:499-512
    Asai T, Tena G, Plotnikova J, Willmann MR, Chiu WL, Gomez-Gomez L, Boller T, Ausubel FM, Sheen J.2002. MAP kinase signalling cascade in Arabidopsis innate immunity. Nature,415:977-983
    Ayliffe M, Devilla R, Mago R, White R, Talbot M, Pryor A, Leung H.2011. Non-host resistance of rice torust pathogens. Mol Plant-Microbe Interact,24:1143-1155
    Ayliffe M, Singh R, Lagudah E.2008. Durable resistance to wheat stem rust needed. Curr Opin Plant Biol,11:187-192
    Bailey BA, Dean JFD, Anderson JD.1990. An ethylene biosynthesis-inducing endoxylanase elicitselectrolyte leakage and necrosis in Nicotiana tabacum cv xanthi Leaves. Plant Physiol,94:1849-1854
    Balestrini R, Berta C, and Bonfante P.1991. The plant nucleus in mycorrhizal roots: positional andstructural modifications. Biol Cell,75:235-243
    Bansal, UK, Hayden MJ, Venkata BP, Khanna R, Saini RG, Bariana HS.2008. Genetic mapping of adultplant leaf rust resistance genes Lr48and Lr49in common wheat. Theor Appl Genet,117:307-312
    Bar M, Avni A.2009. EHD2inhibits ligand-induced endocytosis and signaling of the leucine-rich repeatreceptor-like protein LeEix2. Plant J,59:600-611
    Bar M, Sharfman M, Ron M, Avni A.2010. BAK1is required for the attenuation of ethylene-inducingxylanase (Eix)-induced defense responses by the decoy receptor LeEix1. Plant J,63:791-800
    Barcellos, AL, Roelfs AP, Moraes-Fernandes MIB.2000. Inheritance of adult plant leaf rust resistance inthe Brizilian wheat cultivar Toropi. Plant Dis,84:90-93
    Bargmann BO, Laxalt AM, Riet BT, Schouten E, Van Leeuwen W, Dekker HL, De Koster CG, Haring MA,Munnik T.2006. LePLDbeta1activation and relocalization in suspension-cultured tomato cells treatedwith xylanase. Plant J,45:358-368
    Bariana HS, McIntosh RA.1995. Genetics of adult plant stripe rust resistance in four Australian wheatsand the French cultivar ‘Hybridede-Bersee’. Plant Breed,114:485–491
    Barrett LG, Thrall PH, Dodds PN, van der Merwe M, Linde CC, Lawrence GJ, Burdon JJ.2009. Diversityand evolution of effector loci in natural populations of the plant pathogen Melampsora lini. Mol BiolEvol,26:2499-2513
    Basse, CW, Steinberg G.2004. Ustilago maydis, model system for analysis of the molecular basis of fungalpathogenicity. Mol. Plant Pathol,5:83-92
    Bednarek P, Pislewska-Bednarek M, Svatos A, Schneider B, Doubsky J, Mansurova M, et al.2009. Aglucosinolate metabolism pathway in living plant cells mediates broad-spectrum antifungal defense.Science,323:101-106
    Bhat RA, Miklis M, Schmelzer E, Schulze-Lefert P, Panstruga R.2005. Recruitment and interactiondynamics of plant penetration resistance components in a plasma membrane microdomain. Proc NatlAcad Sci USA,102:3135-3140
    Bhuiyan N, Selvaraj G, Wei YD, King J.2009. Gene expression profiling and silencing reveal thatmonolignol biosynthesis plays a critical role in penetration defence in wheat against powdery mildewinvasion. J Exp Bot,60:509-521
    Bolton, MD, Kolmer JA, Garvin DF.2008. Wheat leaf rust caused by Puccinia triticina. Mol Plant Pathol,9:563-575
    Boyd LA, Minchin PN.2001. Wheat mutants showing altered adult plant disease resistance. Euphytica,122:361-368
    Bozkurt TO, McGrann GRD, MacCormack R, Boyd LA, Akkaya MS.2010. Cellular and transcriptionalresponses of wheat during compatible and incompatible race-specific interactions with Pucciniastriiformis f. sp. tritici. Mol Plant Pathol,11:625-40
    Broers LHM, López-Atilano RM.1996. Effect of quantitative resistance in wheat on the development ofPuccinia striiformis during early stages of infection. Plant Dis,80:1265-1268
    Bushnell WR.1984. Structural and physiological alterations in susceptible host tissue. In: Bushnell WR,Roelfs AP (eds.). The Cereal Rusts, Volume1. Orlando:Academic Press:477-507
    Cantu D, Govindarajulu M, Kozik A, Wang MN, Chen XM, Kojima KK, Jurka J, Michelmore RW,Dubcovsky J et al.2011. Next Generation Sequencing Provides Rapid Access to the Genome ofPuccinia striiformis f. sp. tritici, the Causal Agent of Wheat Stripe Rust. PLoS ONE,6:224-230.doi:10.1371/journal.pone.0024230
    Catanzariti, AM, Dodds, PN, Lawrence, GJ, Ayliffe, MA, Ellis, JG.2006. Haustorially expressed secretedproteins from flax rust are highly enriched for avirulence elicitors. Plant Cell,18:243-256
    Chen CY, Heath MC.1994. Features of the rapid cell death induced in cowpea by the monokaryon of thecowpea rust fungus or the monokaryon-derived cultivar-specific elicitor of necrosis. Physiol Mol PlantPathol,44:157-170
    Chen SX, Schopfer P.1999. Hydroxyl-radical production in physiological reactions. Eur J Biochem,260:726-735
    Chen XM, Line RF.1995. Gene action in wheat cultivars for durable, high-temperature, adult-plantresistance and interaction with race-specific, seedling resistance to Puccinia striiformis.Phytopatholohy,85:567-572
    Chen XM.2005. Epidemiology and control of stripe rust [Puccinia striiformis f. sp. tritici] on wheat. CanJ Plant Pathol,27:314-337
    Chinchilla D, Bauer Z, Regenass M, Boller T, Felix G.2006. The Arabidopsis receptor kinase FLS2bindsflg22and determines the specificity of flagellin perception. Plant Cell,18:465-476
    Chong J, Harder DE, Rohringer R.1981. Ontogeny of mono-and dikaryotic rust haustoria: Cytochemistyand ultrastructural studies. Phytopathology,71:975-983
    Chong J, Harder DE, Rohringer R.1985. Cytochemical studies on Puccinia graminis f.sp tritici in acompatible wheat hos I. Walls of intercellular hyphal cells and haustorium mother cells. Can J Bot,63:1713-1724
    Chong J, Harder DE., Rohringer R.1986. Cytochemical studies on Puccinia graminis f.sp tritici in acompatible wheat host II. Haustorial mother cells at the host penetration site,haustorial walls, and theextra haustorial matrix. Can J Bot,64:2561-2575
    Chong J,Harder DE.1980. Ultrastructure of haustorium development in Puccinia coronata avenae.Ⅰ.Cytochemistry and electron proble X-ray analysis of the haustorial neck ring. Can J Bot,58:2496-2505
    Christopher-Kozjan R, Heath MC.2003. Cytological and pharmacological evidence that biotrophic fungitrigger different cell death execution processes in host and nonhost cells during the hypersensitiveresponse. Physiol Mol Plant Pathol,62:265-275
    Clement JA, Butt TM, Beckett A.1993a. Characterization of the extracellular matrix produced in vitro byurediniospores and sporelings of Uromyces viciae-fabae. Mycol Res,97:594-602
    Clement JA, Martin SG, Porter R, Butt TM, Beckett A.1993b. Germination and the role of extracellularmatrix in adhesion of urediniospores of Uromyces viciae-fabae to synthetic surfaces. Mycol Res,97:585-593
    Clement JA, Porter R, Butt TM, Beckett A.1997. Characteristics of adhesion pads formed duringimbibition and germination of urediniospores of Uromyces viciae-fabae. Mycol Res,101:1445-1458
    Collins NC, Thordal-Christensen H, Lipka V, Bau S, Kombrink E, Qiu JL, et al.2003.SNARE-proteinmediated disease resistance at the plant cell wall. Nature,425:973-977
    Coram TE, Wang MN, Chen XM.2008. Transcriptome analysis of the wheat–Puccinia striiformis f. sptritici interaction. Mol Plant Pathol,9:157-169
    Croxdale JL.2000. Stomatal patterning in angiosperms. Am J Bot,87:1069-1080
    Dean, JFD, Gamble HR, Anderson JD.1989. The ethylene biosynthesis-inducing xylanase–its inductionin Trichoderma viride and certain plant-pathogens. Phytopathology,79:1071-1078
    Deising H, Frittrang AK, Kunz S, Mendgen K.1995a. Regulation of pectin methylesterase andpolygalacturonate lyase activity during differentiation of infection structures in Uromyces viciae-fabae.Microbiology,141:561-571
    Deising H, Nicholson RL, Haug M, Howard RJ, Mendgen K.1992. Adhesion pad formation and theinvolvement of cutinase and esterases in the attachment of uredospores to the host cuticle. Plant Cell,4:1101-1111
    Deising H, Rauscher M, Haug M, Heiler S.1995b. Differentiation and cell wall degrading enzymes in theobligately biotrophic rust fungus Uromyces viciae-fabae. Can J Bot,73: S624-S631
    Deising H, Siegrist J.1995. Chitin deacetylase activity of the rust Uromyces viciae-fabae is controlled byfungal morphogenesis. FEMS Microbiol Lett,127:207-211
    Deising HB, Werner S, Wernitz M.2000.The role of fungal appressoriain plant infection. Microbes Infect,2:1631-1641
    de Jonge R, van Esse HP, Kombrink A, Shinya T, Desaki Y, Bours R, van der Krol S, Shibuya N, JoostenMH, Thomma BP.2010. Conserved fungal LysM effector Ecp6prevents chitin-triggered immunity inplants. Science,329:953-955
    Develey-Riviere MP, Galiana E.2007. Resistance to pathogens and host developmental stage: amultifaceted relationship within the plant kingdom. New Phytol,175:405-416
    Dodds P.N, Lawrence GJ, Catanzariti AM, Teh T, Wang CI, Ayliffe MA, Kobe B, Ellis JG.2006. Directprotein interaction underlies gene-for-gene specificity and coevolution of the flax resistance genes andflax rust avirulence genes. Proc Natl Acad Sci USA,103:8888-8893
    Dodds PN, Lawrence GJ, Catanzariti AM, Ayliffe MA, Ellis JG.2004. The Melampsora lini AvrL567avirulence genes are expressed in haustoria and their products are recognized inside plant cells. PlantCell,16:755-768
    Dodds PN, Rathjen JP.2010. Plant immunity: towards an integrated view of plant–pathogen interactions.Nat Rev Genet,11:539-48
    Duan XY, Tellier A, Wan AM, Leconte M, Vallavieiille-Pope DC, Enjalbert J.2010. Puccinia striiformis f.sp. tritici presents high diversity and recombination in the over-summering zone of Gansu, China.Mycologia,102:44-53
    Duplessis S, Cuomo CA, Lin YC, Aertsd A, Tisseranta E, Veneault-Fourreya C, et al.2011. Obligatebiotrophy features unraveled by the genomic analysis of rust fungi. Proc Natl Acad Sci USA,108:9166-9171
    Dyck PL, Kerber ER.1985. Resistance of the race-specific type. In: Roelfs AP, Bushnell WR (ed) TheCereal Rusts, Vol II. Academic Press, London, pp469-500
    Ebbole DJ.2007. Magnaporthe as a model for understanding host–pathogen interactions. Annu RevPhytopathol,45:437-56
    Elbaz M, Avni A, Weil M.2002. Constitutive caspase-like machinery executes programmed cell death inplant cells. Cell Death Differ,9:726-733
    Emeran AA, Sillero JC, Niks RE, Rubiales D.2005Infection structures of host-specialized isolates ofUromyces viciae-fabae and of other species of Uromyces infecting leguminous crops. Plant Dis,89:17-22
    Feau N, Joly DL, Hamelin RC.2007. Poplar leaf rusts: model pathogens for a model tree. Can J Bot,85:1127–1135
    Felix G, Duran JD, Volko S, Boller T.1999. Plants have a sensitive perception system for the mostconserved domain of bacterial flagellin. Plant J.18:265-276
    Flor HH.1971. Current status of gene-for-gene concept. Ann Rev Phytopathol,9:275-296
    Freialdenhoven A, Peterhansel C, Kurth J, Kreuzaler F, Schulze-Lefert P.1996. Identification of genesrequired for the function of non-race-specific mlo resistance to powdery mildew in barley. Plant Cell,8:5-14
    Frittrang AK, Deising H, Mendgen K.1992. Characterization and partial purification of pectinesterase, adifferentiationspecific enzyme of Uromyces viciae-fabae. J Gen Microbiol,138:2213-2218
    Fu D, Uauy C, Distelfeld A, Blechl A, et al.2009. A kinase-START gene confers temperature-dependentresistance to wheat stripe rust. Science,323:1357–1360
    Galan JE, Wolf-Watz H.2006. Protein delivery into eukaryotic cells by type III secretion machines. Nature,444:567-573
    Gan PH, Rafiqi M, Ellis JG, Jones DA, Hardham AR, Dodds PN.2010. Lipid binding activities of flax rustAvrM and AvrL567effectors. Plant Signal Behav,5:1272-1275
    Gay JL, Salzberg A, Woods AM.1987. Dynamic experimental evidence for the plasma membrane ATPasedomain hypothesis of haustorial transport and for ionic coupling of the haustorium of Erysiphegrarninis to the host cell (Hordeum vulgare). New Phytol,107:541-548
    Goellner K, Loehrer M, Langenbach C, Conrath U, Koch E, Schaffrath U.2010. Phakopsora pachyrhizi,the causal agent of Asian soybean rust. Mol Plant Pathol,11:169-177
    Gómez-Gómez L, Boller T.2000. FLS2: an LRR receptor like kinase involved in the perception of thebacterial elicitor flagellin in Arabidopsis. Mol Cell,5:1003-1011
    Goodman RN, Novacky AJ.1994. The hyperensitive reaction in plants to pathogens. A resistancephenomenon. APS Press, St. Paul, Minnesota
    Hahn M, Mendgen K.1992. Isolation of ConA binding haustoria from different rust fungi and comparisonof their surface qualities. Protoplasma,170:95-103
    Hahn M, Mendgen K.1997. Characterization of in plantainduced rust genes isolated from ahaustorium-specific cDNA library. Mol Plant-Microbe Interact,10:427-437
    Hahn M, Mendgen K.2001. Signal and nutrient exchange at biotrophic plant-fungus interfaces. Curr OpinPlant Biol,4:322-327
    Hahn M, Neef U, Struck C, G¨ottfert M, Mendgen K.1997. A putative amino acid transporter isspecifically expressed in haustoria of the rust fungus Uromyces fabae. Mol Plant-Microbe Interact,10:438-445
    Halim VA, Hunger A, Macioszek V, Landgraf P, Nürnberger T, Scheel D, Rosah S.2004. The oligopeptideelicitor Pep-13induces salicylic acid-dependent and-independent defense reactions in potato. PhysiolMol Plant Pathol,64:311-318
    Harder DE, Chong J.1984. Structure and physiology of Haustoria. In: Bushnell WR, Roelfs AP (eds). TheCereal Rusts, vol. I. Orlando: Academic Press:431-476
    Harder DE, Chong J.1991. Rust haustoria. In: Mendgen K, Lessermann DE,(4s.).Eledron microscopy ofplantpathogens. Berlin-Heildeberg: Springer-Verlag:235-250
    Harder DE, Mendgen K.1982. Filipin-sterol complexes in bean rust-and oat crown rust-fungal/plantinteractions: freeze-etch electron microscopy Uromyces appendiculatus. Protoplasma,112:46-54
    Harder DE, Rohringer R, Samborski DJ, et al.1978. Electron microscopy of susceptible and resistantnear-isogenic (sr6/Sr6) lines of wheat infected by puccinia graminis f.sp.tritici Ι. The host-pathogeninterface in the compatible (sr6/Sr6) interaction. Can J Bot,67:2955-2966
    Hardham AR, Blackman LM.2010. Molecular cytology of Phytophthora-plant interactions. AustralasPlant Pathol39:29-35
    Hardham AR, Jones DA, Takemoto D.2007. Cytoskeleton and cell wall function in penetration resistance.Curr Opin Plant Biol,10:342-348
    Hardham AR.2007. Cell biology of fungal and Oomycete infection of plants. In: Howard RJ, Gow NAR(eds) The Mycota VIII. Biology of the Fungal Cell.2nd edn. Springer-Verlag, Berlin-Heidelberg, pp251-290
    Heath M C.1998. Apoptosis, programmed cell death and the hypersensitive response. Eur J Plant Pathol,104:117-124
    Heath MC, Nimchuk ZL, Xu H.1997. Plant nuclear migrations as indicators of critical interactionsbetween resistant or susceptible cowpea epidermal cells and invasion hyphae of the cowpea rust fungus.New Phytol,135:689-700
    Heath MC, Skalamera D.1997. Cellular interactions between plants and biotrophic fungal parasites. AdvBot Res,24:195-225
    Heath MC.1974. Light and electron microscope studies of the interactions of host and non-host plants withcowpea rust-Uromyces phaseoli var. vignae. Physiol Plant Pathol,4:403-408
    Heath MC.1976Ultrastructural and functional similarity of the haustorial neckband of rust fungi and theCasparian strip of vascular plants. Can J Bot,54:2484-2489
    Heath MC.1977. A comparative study of non-host interactions with rust fungi. Physiol plant pathol,10:73-76
    Heath MC.1979. Partial characterization of the electron-opaque deposits formed in the non-host plant,French bean after cowpea rust infection. Physiol Plant Pathol,15:141-144
    Heath MC.1981. Resistance of plants to rust infection. Phytopathology,71:971-974
    Heath MC.1997. Signalling between pathogenic rust fungi and resistant or susceptible host plants. Ann Bot,80:713-720
    Heath MC.1998. Involvement of reactive oxygen species in the response of resistant (hypersensitive) orsusceptible cowpeas to the cowpea rust fungus. New Phytol,138,251-263
    Heath MC.2000a. Advances in imaging the cell biology of plant–microbe interactions. Annu RevPhytopathol,38:443-459
    Heath MC.2000b. Hypersensitive response-related death. Plant Mol Biol,44:321-334
    Heath MC.2000c. Nonhost resistance and nonspecific plant defences. Curr Opin Plant Biol,3:315-319
    Heath, MC, Heath, IB.1971. Ultrastructure of an immune and a susceptible reaction of cowpea leaves torust infection. Physiol Plant Pathol1:277-287
    Heath, MC.1990. Influence of carbohydrates on the induction of haustoria of the cowpea rust fungus invitro. Exp Mycol,14:84-88
    Heiler S, Mendgen K, Deising H.1993. Cellulolytic enzymes of the obligated biotrophic rust fungusUromyces viciae-fabae are regulated differentiation-specifically. Mycol Res,97:77-85
    Herrera-Foessel SA, Lagudah ES, Huerta-Espino J, Hayden M, Bariana HS, Singh RP.2011. Newslow-rusting leaf rust and stripe rust resistance gene Lr67and Yr46in wheat are pleiotropic or closelylinked. Theor Appl Genet,122:239-249
    Hoch HC, Staples RC, Whitehead B, Comeau J, Wolf ED.1987. Signaling for growth orientation and celldifferentiation by surface topography in Uromyces. Science,235:1659-1662
    Hogenhout SA, Van der Hoorn RA, Terauchi R, Kamoun S.2009. Emerging concepts in effector biologyof plant-associated organisms. Mol Plant Microbe Interact,22:115-122
    Hood, ME, Shew, HD.1996. Applications of KOH-742aniline blue fluorescence in the study of plantfungal interactions. Phytopathology,86:704-708
    Hoogkamp TJH, Chen WQ, Niks RE.1998. Specificity of prehaustorial resistance to Puccinia hordei andto two inappropriate rust fungi in barley. Phytopathology,88:856-861
    Hu GG, Rijkenberg FHJ.1998. Development of early infection structures of Puccinia recondita f.sp. triticiin non-host cereal species. J Phytopathology,146:1-10
    Hückelhoven R, Dechert C, KogelL KH.2001. Non-host resistance of barley is associated with a hydrogenperoxide burst at sites of attempted penetration by wheat powdery mildew fungus. Mol Plant Pathol,2:199-205
    Hückelhoven R, Kogel KH.2003. Reactive oxygen intermediates in plant microbe interactions: Who iswho in powdery mildew resistance? Planta,216:891-902
    Hückelhoven R, Panstruga R.2011. Cell biology of the plant–powdery mildew interaction. Curr Opin PlantBiol,14:738-746
    Hückelhoven R.2007. Cell wall-associated mechanisms of disease resistance and susceptibility. Annu RevPhytopathol,45:101-127
    Hulber SH, Bai J, Fellers JP, Pacheco MG, Bowden RL.2007. Gene expression patterns in near isogeniclines for wheat rust resistance gene Lr34/Yr18. Phytopathology,97:1083-1093
    Jafary H, Albertazzi G, Marcel TC, Niks RE.2008. High diversity of genes for nonhost resistance of barleyto heterologous rust fungi. Genetics,178:2327-2339
    Jagger LJ, Newell C, Berry ST, MacCormack R, Boyd LA.2011. Histopathology provides a phenotype bywhich to characterize stripe rust resistance genes in wheat. Plant Pathol,60:640–648
    Jin Y, Szabo L, Carson M.2010. Century-old mystery of Puccinia striiformis life history solved with theidentification of Berberis spp. as an alternate host. Phytopathology,100:432–435
    Jin Y.2011. Role of Berberis spp. as alternate hosts in generating new races of Puccinia graminis and P.striiformis. Euphytica,179:105-108
    Johnson R.1981. Durable resistance, definition of genetic control, and attainment in plant breeding.Phytopathology,71:567-567
    Johnson R.1988. Durable resistance to yellow (stripe) rust in wheat and its implications in plant breeding.In: Simmonds, NW and Rajaram, S (ed) Breeding Strategies for Resistance to the Rusts of Wheat.Mexico City: CYMMIT:63–75
    Jones JDG, Dangl JL.2006. The plant immune system. Nature,444:323-329
    Joseph ME, Hering TF.1997. Effects of environment on spore germination and infection by broad bean rust(Uromyces viciae-fabae). J Agric Sci,128:73-78
    Kale SD, Gu B, Capelluto DG, Dou D, Feldman E, Rumore A, et al.2010. External lipid PI3P mediatesentry of eukaryotic pathogen effectors into plant and animal host cells. Cell,142:284-295
    Kaku H, Nishizawa Y, Ishii-Minami N, Akimoto-Tomiyama C, Dohmae N, Takio K, Minami E, Shibuya N.2006. Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor.Proc Natl Acad Sci USA,103:11086-11091
    Kamoun S.2006. A catalogue of the effector secretome of plant pathogenic oomycetes. Annu RevPhytopathol,44:41-60
    Kang Z, Huang L, Buchenauer H.2002. Ultrastructural changes and localization of lignin and callose incompatible and incompatible interactions between wheat and Puccinia striiformis. J Plant Dis Prot,109:25-37
    Kang Z, Zhao J, Han D, Zhang H, Wang X, Wang C, Han Q, Guo J, Huang L.2010. Status of wheat rustresearch and control in China. BGRI2010Technical Workshop,30–31May2010, St Petersburg,Russia, pp1-21
    Kang ZS, Wang Y, Huang LL, Wei GR, Zhao J.2003a. Histology and ultrastructure of incompatiblecombination between Puccinia striiformis and wheat cultivars with low reaction type resistance. AgricSci China,2:1102-1113
    Kang ZS, Huang LL, Buchenauer H.2003b. Subcellular localization of chitinase and β-1,3–glucanase incompatible and incompatible interaction between wheat and puccinia striiformis f. sp. tritici. J PlantDis Protect,110:170-183
    Kapooria RG, Mendgen K.1985. Infection structures and their surface changes during differentiation inUromyces fabae. J Phytopathol,113:317-323
    Kelley BS, Lee SJ, Damasceno CM, Chakravarthy S, Kim BD, Martin GB, Rose JK.2010. A secretedeffector protein (SNE1) from Phytophthora infestans is a broadly acting suppressor of programmed celldeath. Plant J,62:357-366
    Kemen E, Kemen AC, Rafiqi M, Hempel U, Mendgen K, Hahn M, Voegele RT.2005. Identification of aprotein from rust fungi transferred from haustoria into infected plant cells. Mol Plant Microbe Interact,18:1130-1139
    Kobayashi I, Kobayashi Y, Hardham AR.1994. Dynamic reorganization of microtubules andmicrofilaments in flax cells during the resistance response to flax rust infection. Planta,195:237-247
    Kobayashi I, Kobayashi Y, Hardham AR.1997. Inhibition of Rust-induced Hypersensitive Response inFlax Cells by the Microtubule Inhibitor Oryzalin. Aust J Plant Physiol,24:733-740
    Koeck M, Hardham AR, Dodds PN.2011.The role of effectors of biotrophic and hemibiotrophic fungi ininfection. Cell Microbiol,13:1849-1857
    Koh S, Andre A, Edwards H, Ehrhardt S, Somerville S.2005. Arabidopsis thaliana subcellular responses tocompatible Erysiphe cichoracearum infections. Plant J,44:516-529
    Kolmer, JA, Ordonez ME, Groth JV.2009. The rust fungi. In: Encyclopedia of Life Sciences (ELS). JohnWileyb&Sons, Ltd: Chichester. DOI:10.1002/9780470015902.a0021264
    Kourtis N, Tavernarakis N.2009. Autophagy and cell death in model organisms. Cell Death Differ,16:21-30
    Kovtun Y, Chiu W-L, Tena G, Sheen J.2000. Functional analysis of oxidative stress-activatedmitogen-activated protein kinase cascade in plants. Proc Natl Acad Sci USA,97:2940-2945
    Krattinger SG, Lagudah ES, Spielmeyer W, Singh RP, Huerta-Espino J, McFadden H, Bossolini E, SelterLL Keller B.2009. A putative ABC transporter confers durable resistance to multiple fungal pathogensin wheat. Science,323:1360-1363
    Kus JV, Zaton K, Sarkar R, Cameron RK.2002. Age-related resistance in Arabidopsis is a developmentallyregulated defense response to Pseudomonas syringae. Plant Cell,14:479-490
    Kwon C, Neu C, Pajonk S, Yun HS, Lipka U, Humphry M, et al.2008. Co-option of a default secretorypathway for plant immune responses. Nature,451:835-840
    Kyiashchenko I.2011. Taxonomic and phylogenetic study of rust fungi forming aecia on Berberis spp.[Master’s thesis]. in Sweden: Swedish University of Agricultural Sciences
    Laisk A, Oja V, Kull K.1980. Statistical distribution of stomatal apertures of Vicia faba and Hordeumvulgare and the Spannungsphase of stomatal opening. J Exp Bot,31:49-58
    Lamb C, Dixon RA.1997. The oxidative burst in plant disease resistance. Annu Rev Plant Physiol PlantMol Biol,48:251-275
    Lawrence GJ, Dodds PN, Ellis JG.2007. Rust of flax and linseed caused by Melampsora lini. Mol PlantPathol,8:349-364
    Leckie CP, Callow JA, and Green JR.1995. Reorganisation of the endoplasmic reticulum in pea leafepidermal cells infected by powdery mildew fungus Erysiphe pisi. New Phytol,131:211-222
    Leonard KJ, Szabo LJ.2005. Stem rust of small grains and grasses caused by Puccinia graminis. Mol PlantPathol,6:99-111
    Lin KC, Bushnell WR, Szabo LJ, Smith AG.1996. Isolation and expression of a host response gene familyencoding thaumatin-like proteins in incompatible oat-stem rust fungus interactions. Mol Plant-MicrobeInteract,9:511-522
    Line RF, Chen, XM.1995. Successes in breeding for and managing durable resistance to wheat rusts. PlantDis,79:1254-1255
    Line RF, Qayoum A.1992. Virulence, aggressiveness, evolution, and distribution of races of Pucciniastriiformis (the cause of stripe rust of wheat) in North America,1968–87. US Dep Agric Agric ResServ Tech Bull1788
    Lipka U, Fuchs, R, Lipka V.2008. Arabidopsis non-host resistance to powdery mildews. Curr Opin PlantBiol,11:404-411
    Lipka V, Dittgen J, Bednarek P, Bhat R, Wiermer M, Stein M, et al.2005. Pre-and postinvasion defensesboth contribute to nonhost resistance in Arabidopsis. Science,310:1180-1183
    Littlefield LI, Heath MC.1979. Ultrastructure of rust fungi. Academic Press, New York
    Liu G, Hou CY, Wang DM.2010. Calcium influx is required for the initiation of the hypersensitiveresponse of Triticum aestivum to Puccinia recondite f. sp.tritici Physiol Mol Plant Pathol,74:267-273
    Liu HM, Liu TG, Xu SC, Liu DQ, Chen WQ.2006. Inheritance of yellow rust resistance in an elite wheatgermplasm Xingzi9104. Acta Agron Sin,32:1742-1745
    Liu TL, Ye WW, Ru YY, Yang XY, Gu B, Tao K, Lu S, Dong SM, Zheng XB, Shan WX, Wang YC, DouDL.2011. Two Host Cytoplasmic Effectors Are Required for Pathogenesis of Phytophthora sojae bySuppression of Host Defenses. Plant Physiol,155:490-501
    Livak KJ, Schmittgen TD.2001. Analysis of relative gene expression data using real-time quantitative PCRand the2-ΔΔCT method. Methods,25:402-408
    Loehrer M, Langenbach C, Goellner K, Conrath U, Schaffrath U.2008. Characterization of nonhostresistance of Arabidopsis to the Asian soybean rust. Mol Plant-Microbe Interact,21:1421-1430
    Lowe I, Cantu D, Dubcovsky J.2011. Durable resistance to the wheat rusts: integrating systems biologyand traditional phenotype-based research methods to guide the deployment of resistance genes.Euphytica,179:69-79. DOI10.1007/s10681-010-0311-z
    Ma H, Singh RP.1996. Expression of adult plant resistance to stripe rust at different growth stages ofwheat. Plant Dis,80:375–379
    Ma W, Berkowitz GA.2007. The grateful dead: calcium and cell death in plant innate immunity. CellMicrobiol,9:2571-2585
    Mackey D, McFall1AJ.2006. MAMPs and MIMPs: proposed classifications for inducers of innateimmunity. Mol Microbiol,61:1365-1371
    Maier W, Begerow D, Wei M, Oberwinkler F.2003. Phylogeny of the rust fungi: an approach usingnuclear large subunit ribosomal DNA sequences. Can J Bot81:12-23
    Mallard S, Negre S, Pouya S, Gaudet D, Lu ZX, Dedryver F.2008. Adult plant resistance-related geneexpression in ‘Camp Remy’ wheat inoculated with Puccinia striiformis. Mol Plant Pathol,9:213-225
    Manning VA, Ciuffetti LM.2005. Localization of Ptr ToxA produced by Pyrenophora tritici-repentisreveals protein import into wheat mesophyll cells. Plant Cell,17:3203-3212
    Manning VA, Hamilton SM, Karplus PA, Ciuffetti LM.2008. The Arg-Gly-Asp-containing,solvent-exposed loop of Ptr ToxA is required for internalization. Mol Plant-Microbe Interact,21:315-325
    Mares DJ, Cousen S.1977. The interaction of yellow rust (Puccinia striiformis) with winter wheat cultivarsshowing adult plant resistance: macroscopic and microscopic events associated with the resistancereaction. Physiol Plant Pathol,10:257-74
    Mares DJ.1979. Microscopic study of the development of yellow rust (Puccinia striiformis) in a wheatcultivar showing adult plant resistance. Physiol Plant Pathol,15:289-96
    Mauch F, Mauch-Mani B, Boller, T.1988. Antifungal hydrolases in pea tissue. II. Inhibition of fungalgrowth by combinations of chitinase and β-1,3-glucanase. Plant Physiol,88:936-942
    Mboup M, Leconte M, Gautier A, Wan AM, Chen W, de Vallavieille-Pope C, Enjalbert J.2009. Evidenceof genetic recombination in wheat yellow rust populations of a Chinese oversummering area. FungalGenet Biol,46:299-307
    McIntosh RA, Wellings CR, Park RF.1995. Wheat Rusts: An Atlas of Resistance Genes. CSIROPublications, Melbourne
    McNeal FH, Konzak CF, Smith EP, Tate W, Russel TS.1971. A uniform system for recording andprocessing cereal research data. USDA Agric Res Serv,42:34-121
    Melichar JPE, Berry S, Newell C, MacCormack R, Boyd LA.2008. QTL identification andmicrophenotype characterization of the developmentally regulated yellow rust resistance. Theor ApplGenet,117:391-399
    Mellersh DG, Heath MC.2001. Plasma membrane–cell wall adhesion is required for expression of plantdefense responses during fungal penetration. plant cell,13:413-424
    Mellersh DG, Heath MC.2003. An investigation into the involvement of defense signaling pathways incomponents of the nonhost resistance of Arabidopsis thaliana to rust fungi also reveals a model systemfor studying rust fungal compatibility. Mol Plant-Microbe Interact,16:398-404
    Mendgen K, Hahn M.2002. Plant infection and the establishment of fungal biotrophy. Trends Plant Sci,7:352-356
    Mendgen K, Struck C, Voegele RT, Hahn M.2000. Biotrophy and rust haustoria. Physiol Mol Plant Pathol,56:141-145
    Meyer D, Pajonk S, Micali C, O’Connell R, Schulze-Lefert P.2009. Extracellular transport and integrationof plant secretory proteins into pathogen-induced cell wall compartments. Plant J,57:986-999
    Micali CO, Neumann U, Grunewald D, Panstruga R, O’Connell R.2011. Biogenesis of a specializedplantfungal interface during host cell internalization of Golovinomyces orontii haustoria. CellMicrobiol,13:210-226
    Millett BP, Mollov DS, Iorizzo M, Carputo D, and Bradeen JM.2009. Changes in disease resistancephenotypes associated with plant physiological age are not caused by variation in R gene transcriptabundance. Mol Plant-Microbe Interact,22:362-368
    Milus EA, Kristensen K, Hovm ller MS.2009. Evidence for increased aggressiveness in a recentwidespread strain of Puccinia striiformis f. sp. Tritici causing stripe rust of wheat. Phytopathology,99:89-94
    Misas-Villamil JC, van der Hoorn RA.2008. Enzyme-inhibitor interactions at the plant-pathogen interface.Curr Opin Plant Biol,11:380-388
    Misteii T, Spector DL.1998. Cellular organization of gene expression. Curr Opin Cell Biol,10:323-331
    Mittler R.2002. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci,7:405-410
    Moldenhauer J, Moerschbacher BM, van der Westhuizen AJ.2006. Histological investigation of stripe rust(Puccinia striiformis f. sp. tritici) development in resistant and susceptible wheat cultivars. PlantPathol,55:469-74
    Moldenhauer J, Pretorius ZA, Moerschbacher BM, Prins R, van der Westhuizen AJ.2008. Histopathologyand PR-protein markers provide insight into adult plant resistance to stripe rust of wheat. Mol PlantPathol,9:561-569
    Montillet JL, Chamnongpol S, Rusterucci C, Dat J, van de Cotte B, Agnel JP, Battesti C, Inzé D, VanBreusegem F, Triantaphylides C.2005. Fatty acid hydroperoxides and H2O2in the execution ofhypersensitive cell death in tobacco leaves. Plant Physiol,138:1516-1526
    Morgounov A, Tufan HA, Sharma R, Akin B, Bagci A, Braun Hans-Joachim, Kaya Y, Keser M, Payne TS,Sonder K, McIntosh R.2012. Global incidence of wheat rusts and powdery mildew during1969–2010and durability of resistance of winter wheat variety Bezostaya1. Eur J Plant Pathol,132:323-340DOI10.1007/s10658-011-9879-y
    Mou Z, Fan W, Dong X.2003. Inducers of plant systemic acquired resistance regulate NPR1functionthrough redox changes. Cell,113:935-944
    Mur LAJ, Kenton P, Lloyd AJ, Ougham H, Prats E.2008. The hypersensitive response; the centenary isupon us but how much do we know? J Exp Bot,59:501-520
    Mysore KS, Ryu CM.2004. Nonhost resistance: how much do we know? Trends Plant Sci,9:97-104
    Nanda1AK, Andrio E, Marino D, Pauly N, Dunand C.2010. Reactive oxygen species duringplant-microorganism early interactions. J Integr Plant Biol,52:195-204
    Niks RE, Dekens RG.1991. Prehaustorial and posthaustorial resistance to wheat leaf rust in diploid wheatseedlings. Phytopathology,81:847-851
    Niks RE, Marcel TC.2009. Non-host and basal resistance: how to explain specificity? New Phytol,182:817-828
    Niks RE.1983a. Comparative histology of partial resistance and the nonhost reaction to leaf rust pathogensin barley and wheat seedlings. Phytopathology,73:60-64
    Niks RE.1983b. Haustorium formation by puccinia hordei in leaves of hypersensitive, partially resistant,and nonhost plant genotypes. Phytopathology,73:64-66
    Nürnberger T, Brunner F, Kemmerling B, Piater L.2004. Innate immunity in plants and animals: strikingsimilarities and obvious differences. Immunol Rev198:249-66
    Nürnberger T, Nennstiel D, Jabs T, Sacks WR, Hahlbrock K, Scheel D.1994. High affinity binding of afungal oligopeptide elicitor to parsley plasma membranes triggers multiple defense responses. Cell,78:449-60
    O’Connell RJ, Panstruga R.2006. Tête à tête inside a plant cell: establishing compatibility between plantsand biotrophic fungi and oomycetes. New Phytol,171:699-718
    Orczyk W, Dmochowska-Boguta M, Czembor HJ, Nadolska-Orczyk A.2010. Spatiotemporal patterns ofoxidative burst and micronecrosis in resistance of wheat to brown rust infection. Plant Pathol,59:567-575
    Panter SN, Jones DA.2002. Age-related resistance to plant pathogens. Adv Bot Res,38:251-80
    Papadopoulou K, Melton RE, Leggett M, Daniels MJ, Osbourn AE.1999. Compromised disease resistancein saponin-decient plants. Proc Natl Acad Sci USA,96:12923-12928
    Poethig RS.1990. Phase change and regulation of shoot morphogenesis in plants. Science,250:923-929
    Postel S, Kemmerling B.2009. Plant systems for recognition of pathogen-associated molecular patterns.Seminars in Cell&Developmental Biology,20:1025-1031
    Pritsch C, Muehlbauer GJ, Bushnell WR, Somers DA, Vance CP.2000. Fungal development and inductionof defense response genes during early infection of wheat spikes by Fusarium graminearum. MolPlant-Microbe Interact,13:159–169
    Rafiqi M, Gan PHP, Ravensdale M, Lawrence GJ, Ellis JG, Jones DA, Hardhama AR, Dodd PN.2010.Internalization of flax rust avirulence proteins into flax and tobacco cells can occur in the absence ofthe pathogen. Plant Cell,22:2017-2032
    Ramburan, VP, Pretorius, ZA, Louw, JH, Boyd, LA, Smith, PH, Boshoff, WHP, Prins, R.2004. A geneticanalysis of adult plant resistance to stripe rust in the wheat cultivar Kariega. Theor Appl Genet,108:1426–1433
    Rauscher M, Mendgen K, Deising H.1995. Extracellular proteases of the rust fungus Uromycesviciae-fabae. Exp Mycol,19:26-34
    Rodrigues P, Garrood JM, Shen QH, Smith PH, Boyd LA.2004. The genetics of non-host diseaseresistance in wheat to barley yellow rust. Theor Appl Genet,109:425-432
    Rohringer R, Chong J, Gillespie R, et al.1989. Gold-conjugated arabinogalactan-protein and other lectinsas ultrastructural probes for the wheat/stem rust complex. Histochem Cell Biol,91:383-393
    Ron M, Avni A.2004. The receptor for the fungal elicitor ethyleneinducing xylanase is a member of aresistance-like gene family in tomato. Plant Cell,16:1604-1615
    Ron M, Kantety R, Martin GB, Avidan N, Eshed Y, Zamir D, Avni A.2000. High-resolution linkageanalysis and physical characterization of the EIX-responding locus in tomato. Theor Appl Genet,100:184-189
    Rosewarne GM, Singh RP, Huerta-Espino J, William HM, Bouchet S, Cloutier S, McFadden H, LagudahES.2006. Leaf tip necrosis, molecular markers and1-proteasome subunits associated with the slowrusting resistance genes Lr46/Yr29. Theor Appl Genet,112:500-508
    Rubiales D, Niks RE.1995. Characterization of Lr34, a major gene conferring nonhypersensitive resistanceto wheat leaf rust. Plant Dis,79:1208-1212
    Sarma GN, Manning VA, Ciuffetti LM, Karplus PA.2005. Structure of Ptr ToxA: An RGD-containinghost-selective toxin from Pyrenophora tritici-repentis. Plant Cell,17:3190-3202
    Saunders DGO, Win J, Cano LM, Szabo LJ, Kamoun S, et al.2012. Using Hierarchical Clustering ofSecreted Protein Families to Classify and Rank Candidate Effectors of Rust Fungi. PLoS ONE,7:e29847. doi:10.1371/journal.pone.0029847
    Sawhney, RN, Sharm JB, Sharma DN.1992. Genetic diversity for adult plant resistance to leaf rust(Puccinia recondita) in near-isogenic lines and in Indian wheats. Plant Breed,109:248-254
    Schaffrath U, Freydl E, Dudler R.1997. Evidence for different signaling pathways activated by inducers ofacquired resistance in wheat. Mol Plant-Microbe Interact,10:779-783
    Schweizer P.2007. Nonhost resistance of plants to powdery mildew-New opportunities to unravel themystery. Physiol Mol Plant Pathol,70:3-7
    Shafiei R, Hang C, Kang JG, Loake GJ.2007. Identification of loci controlling non-host disease resistancein Arabidopsis against the leaf rust pathogen Puccinia triticina. Mol Plant Pathol,8:773-784
    Shetty NP, Jorgensen HJL, Jensen JD, Collinge DB, Shetty HS,2008. Roles of reactive oxygen species ininteractions between plants and pathogens. Eur J Plant Physiol,121:267–80
    Shimada C, Lipka V, O’Connell R, Okuno T, Schulze-Lefert P, Takano Y.2006. Nonhost resistance inArabidopsis-Colletotrichum interactions acts at the cell periphery and requires actin filament function.Mol Plant Microbe Interact,19:270-279
    Sillero JC, Rubiales D.2002. Histological characterization of resistance to Uromyces viciae-fabae in fababean. Phytopathology,92:294-299
    Singh, RP.1992. Genetic association of leaf rust resistance gene Lr34with adult plant resistance to striperust in bread wheat. Phytopathology,82:835-838
    Skalamera D, Heath MC.1995. Changes in the plant endomombrane system assoiated with callose sythesisduring the interaction between cowpea (Vigna unguiculata) and the cowpea rust fungus (Uromycesvignae). Can J Bot,73:1731-1738
    Skalamera D, Heath MC.1997. Callose deposition during the interaction between cowpea (Vignaunguiculata) and the monokaryotic stage of the cowpea rust fungus (Uromyces vignae). New Phytol,136:511-524
    Skalamera D, Heath MC.1998. Changes in the cytoskeleton accompanying infection-induced nuclearmovements and the hypersensitive response in plant cells invaded by rust fungi. Plant J,16:191-200
    Sohn J, Voegele RT, Mendgen K, Hahn M.2000. High level activation of vitamin B1biosynthesis genes inhaustoria of the rust fungus Uromyces fabae. Mol Plant-Microbe Interact,13:629-636
    Song XH, Ma Q, Hao XY, Li HL.2012. Roles of the actin cytoskeleton and an actin-binding protein inwheat resistance against Puccinia striiformis f. sp. Tritici. Protoplasma,249:99-106
    Southerton SG, Deverall BJ.1990. Histochemical and chemical evidence for lignin accumulation duringthe expression of resistance to leaf rust fungi in wheat. Physiol Mol Plant Pathol,36:483-494
    Stakman EC.1915. Relation between Puccina graminis and plants highly resistant to its attack. J Agric Res,4:193-199
    Staples RC.2000. Research on the rust fungi during the twentieth century. Annu Rev Phytopathol,38:49-69
    Staples RC.2001. Nutrients for a rust fungus: The role of haustoria. Trends Plant Sci,6:496-498
    Stein M, Dittgen J, Sanchez-Rodriguez C, Hou BH, Molina A, Schulze-Lefert P, Lipka V, Somerville S.2006. Arabidopsis PEN3/PDR8, an ATP cassette transporter, contributes to nonhost resistance toinappropriate pathogens that enter by direct penetration. Plant Cell,18:731-746
    Struck C, Ernst M, Hahn M.2002. Characterization of a developmentally regulated amino acid transporter(AAT1p) of the rust fungus Uromyces fabae. Mol Plant Pathol,3:23-30
    Struck C, Hahn M, Mendgen K.1996. Plasma membrane H+-ATPase activity in spores, germ tubes, andhaustoria of the rust fungus Uromyces viciae-fabae. Fungal Genet Biol,20:30-35
    Struck C, Müller E, Martin H, Lohaus G.2004. The Uromyces fabae UfAAT3gene encodes a generalamino acid permease that prefers uptake of in planta scarce amino acids. Mol Plant Pathol,5:183-189
    Struck C, Siebels C, Rommel O,Wernitz M, Hahn M.1998. The plasma membrane H1-ATPase from thebiotrophic rust fungus Uromyces fabae: molecular characterization of the gene (PMA1) and functionalexpression of the enzyme in yeast. Mol Plant-Microbe Interact,11:458-465
    Stubbs RW.1988. Pathogenicity analysis of yellow (stripe) rust of wheat and its significance in a globalcontext. In ‘Breeding strategies for resistance to the rusts of wheat’.(Eds NW Simmonds, S Rajaram)pp.23–38.(CIMMYT: Mexico, D.F.)
    Takemoto D, Jones DA, Hardham AR.2003. GFPtagging of cell components reveals the dynamics ofsubcellular re-organization in response to infection of Arabidopsis by oomycete pathogens. Plant J,33:775-792
    Terhune BT, Allen EA, Hoch HC, Wergin WP, Erbe EF.1991. Stomatal ontogeny and morphology inPhaseolus vulgaris in relation to infection structure initiation by Uromyces appendiculatus. Can J Bot,69:477-484
    Terhune BT, Bojko RJ, Hoch HC.1993. Deformation of stomatal guard cell lips and microfabricatedartificial topographies during appressorium formation. Exp Mycol,17:70-78
    Thoma I, Loeffler C, Sinha AK, Gupta M, Krischke M, Steffan B, Roitsch T, Mueller MJ.2003.Cyclopentenone isoprostanes induced by reactive oxygen species trigger defense gene activation andphytoalexin accumulation in plants. Plant J,34:363-375
    Thomma, BPHJ, van Esse HP, Crous, PW, de Wit PJGM.2005. Cladosporium fulvum (syn. Passalorafulva), a highly specialized plant pathogen as a model for functional studies on plant pathogenicMycosphaerellaceae. Mol Plant Pathol.6:379-393
    Thordal-Christensen H, Zhang Z, Wei Y, Collinge DB.1997. Subcellular localization of H2O2in plants.H2O2accumulation in papillae and hypersensitive response during the barley-powdery mildewinteraction. Plant J,11,1187–94
    Thordal-Christensen H.2003. Fresh insight into processes of nonhost resistance. Curr Opin Plant Biol,6:351-357
    Torres MA, Jones JDG, Dangl JL.2006. Reactive oxygen species signaling in response to pathogens. PlantPhysiol,141:373-378
    Tsuba M, Katagiri C, Takeuchi Y, Takada Y, Yamaoka N.2002. Chemical factors of the leaf surfaceinvolved in the morphogenesis of Blumeria graminis. Physiol Mol Plant Pathol,60:51-57
    Tufan HA, McGrann GRD, Magusin A, Morel JB, Miché L, Boyd LA.2009. Wheat Blast: histopathologyand transcriptome reprogramming in response to adapted and non-adapted Magnaporthe isolates. NewPhytol,184:473–484
    Van Loon, LC, Van Strien, EA.1999The families of pathogenesis-related proteins, their activities, andcomparative analysis of PR-1type proteins. Physiol Mol Plant Pathol,55:85-97
    Voegele RT, Hahn M, Mendgen K.2009. The Uredinales: cytology, biochemistry, and molecular biology. In:Deising HB, Esser K. Plant relationships,2nd edn. The Mycota, vol5. Berlin: Springer:69-98
    Voegele RT, Mendgen KW.2011. Nutrient uptake in rust fungi: how sweet is parasitic life?Euphytica,179:41-55DOI10.1007/s10681-011-0358-5
    Voegele RT, Struck C, Hahn M, Mendgen K.2001. The role of haustoria in sugar supply during infectionof broad bean by the rust fungus Uromyces fabae. Proc Natl Acad Sci USA,98:8133-8138
    Voegele RT.2006. Uromyces fabae: development, metabolism, and interactions with its host Vicia faba.FEMS Microbiol Lett,259:165-173
    Wan AM, Chen XM, He ZH.2007. Wheat stripe rust in China. Aust J Agric Res,58:605-619
    Wan AM, Zhao ZH, Chen XM, He ZH, Jin SL, Jia QZ, Yao G, Yang JX, Wang BT, Li GB, Bi YQ, Yuan ZY.2004. Wheat stripe rust epidemic and virulence of Puccinia striiformis f. sp. tritici in China in2002.Plant Dis,88:896-904
    Wang CF, Huang LL, Buchenauer H, Han QM, Zhang HC, Kang ZS.2007. Histochemical studies of theaccumulation of reactive oxygen species(O2and H2O2) in the incompatible and compatible interactionof wheat-Puccinia striiformis f.sp. tritici. Physiol Mol Plant Pathol,71:230-239
    Wang W, Wen Y, Berkey R, Xiao S.2009a. Specific targeting of the Arabidopsis resistance protein RPW8.2to the interfacial membrane encasing the fungal haustorium renders broad-spectrum resistance topowdery mildew. Plant Cell,21:2898-2913
    Wang XJ, Tang CL, Zhang G, Li YC, Wang CF, Liu B, et al.2009b. cDNA-AFLP analysis revealsdifferential gene expression in compatible interaction of wheat challenged with Puccinia striiformis f.sp. tritici. BMC Genomics,10:289
    Wang XJ, Tang CL, Zhang HC, Xu JR, Liu Bo, LV J, Han DJ, Huang LL, Kang ZS.2011. TaDAD2, anegative regular of PCD, is important for the interaction between wheat and the stripe rust fungus. MolPlant Microbe Interact,24:79-90
    Wellings C.2011. Global status of stripe rust: a review of historical and current threats. Euphytica,179:129-141
    Whalen MC.2005. Host defence in a developmental context. Mol Plant Pathol,6:347-360
    Whetten R, Sederoff R.1995. Lignin biosynthesis. Plant Cell,7:1001-1013
    William HM, Singh RP, Huerta-Espino J, Ortiz-Islas S, Hoisington D.2003. Molecular marker mapping ofleaf rust resistance gene Lr46and its association with stripe rust resistance gene Yr29in wheat.Phytopathology,93:153-159
    Wojtaszek P.1997. Oxidative burst: an early plant response to pathogen infection. Biochem J,322:681-692
    Woods AM, Beckett A.1987. Wall structure and ornamentation of the urediniospores of Uromycesviciae-fabae. Can J Bot65:2007-2016
    Wynn WK, Staples RC.1981. Tropisms of fungi in host recognition. In: Staples RC and Toenniessen GA(eds) Plant Disease Control: Resistance and Susceptibility. New York: Wiley
    Xu H, Heath MC.1998. Role of calcium in signal transduction during the hypersensitive response causedby basidiospore derived infection of the cowpea rust fungus. Plant Cell,10:585-598
    Yin CT, Hulbert S.2011. Prospects for functional analysis of effectors from cereal rust fungi. Euphytica,179:57-67. DOI:10.1007/s10681-010-0285-x
    Yu XM, Wang XJ, Wang CF, Chen XM, Qu ZP, Yu XD, et al.2010. Wheat defense genes in fungal(Puccinia striiformis) infection. Funct Integr Genomics,10:227-239
    Zadoks JC, Chang TT, Konzak CF.1974. A decimal code for the growth stages of cereals. Weed Res,14:415-21
    Zhang G, Dong YL, Zhang Y, Li YM, Wang XJ, Han QM, Guo J, Huang LL, Kang ZS.2009. Cloning andCharacterization of a Novel Hypersensitive-induced Reaction Gene from Wheat Infected by StripeRust Pathogen. J Phytopathol,157:722-728
    Zhang HC, Wang CF, Cheng YL, Wang XJ, Li F, Han QM, Xu JR, Chen XM, Huang LL, Wei GR, KangZS.2011. Histological and molecular studies of the non-host interaction between wheat and Uromycesfabae. Planta234:979–991Zipfel C, Robatzek S, Navarro L, Oakeley E, Jones JDG, Felix G, Boller T.2004. Bacterial disease
    resistance in Arabidopsis through flagellin perception. Nature,428:764-767Zipfel C.2008. Pattern-recognition receptors in plant innate immunity. Curr Opin Immunol,20:10-16Ziyaev, ZM, Sharma RC, Nazari K, Morgounov A, Amanov AA, Ziyadullaev ZF, et al.2011. Improvingwheat stripe rust resistance in Central Asia and the Caucasus. Euphytica,179:197-207

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700