用户名: 密码: 验证码:
嗜盐紫色硫细菌耐盐机制与光合色素研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
紫色硫细菌是不产氧光合细菌中的一个生境独特的类群,大约出现在3.5Ga年前,是深入理解生命起源、自然界碳氮硫在物质循环中的作用、以及揭示不产氧光合作用机理的良好模型生物,在去除污染水体有机物、氮和磷以及有毒物质硫化物中也具有重要的应用价值。因该类群大多数种类生境特殊,较难获得纯培养物、菌种生长不良易于丢失,因此对其研究远不如紫色非硫细菌深入和广泛。
     奥氏酮(Okenone)类胡萝卜素是迄今发现的最古老的生物标志之一,已被用作研究地球进化和环境适应机制的一个有效工具,目前发现它仅出现在紫色硫细菌的15个种类中。本课题组从青岛东风盐场分离获得一株含有独特光合色素-奥氏酮的嗜盐紫色硫细菌Marichromatium sp.283-1。本文对该菌株的生物学特性、耐盐特性和耐盐机制、光合色素组份分析、环境因子对色素合成的影响、尤其是Okenone的特性和理化性质进行了系统研究,研究结果显示出Okenone类胡萝卜素性能稳定,耐热性、抗光性良好,高色价且色泽鲜艳,具有良好的特性,因此本文又进一步对Okenone的产量进行了优化。主要研究结果如下:
     1.生物学特性研究结果表明,紫色硫细菌Marichromatium sp.283-1对氧气敏感,最高能够耐受150g/L NaCl,1.8g/L Na2S.9H2O,7.7g/L NaNO2,能在pH6-9,温度15~45℃,光照强度100-8000Lux的范围内生长。不同的碳源、氮源、盐度、pH、光照、温度对菌体形态和胞内硫粒数量都有影响。高盐胁迫下细胞形态多样,体积增大,比表面积减小;在碱性和低温环境中细胞呈棒状而且体积较大,胞内积累较多的硫粒;高温下,细胞呈长杆状,体积变大,胞内积累较多硫粒。
     2. Marichromatiun sp.283-1是一株厌氧中度嗜盐紫色硫细菌,对其耐盐特性和耐盐机制进行了初步研究。结果表明随着盐度增加菌株283-1生长的延滞期延长,对Na+有专一依赖性,而对C1-依赖性较弱;它主要通过在胞内积累相容性溶质甜菜碱来对抗胞外渗透压力,胞内甜菜碱的含量随培养基NaCl浓度的增加而增加,2.0mol/L NaCl浓度时胞内甜菜碱含量可达到156.4mg/g细胞干重。外源添加甜菜碱可以明显提高菌株283-1耐盐生长的能力。因此,菌株283-1是通过胞内积累甜菜碱来调节细胞内外渗透压平衡,外源添加甜菜碱可以明显提高该菌株对盐的耐受能力。
     3.为了解决紫色硫细菌生物量普遍较低的问题,对其生长培养基进行了优化。采用单因子试验、Plackett-Burman设计、最陡爬坡试验及中心组合设计响应面分析,研究了乙酸钠、碳酸氢钠、氯化铵、硫化钠、硫酸镁和无机盐6个因子对菌株283-1生物量的影响。结果表明,乙酸钠和硫化钠是影响该菌株生物量的主要因素,并获得了最佳培养基配方。优化后菌株生长速率提高,延迟期缩短,生物量提高了6倍,并且结果与理论预测值相近。
     4.采用丙酮甲醇法提取菌体色素,通过UV-VIS、TLC、HPLC、MS和图像灰度分析等方法全面分析了该菌株的光合色素。结果表明:光照厌氧条件下,菌株283-1主要积累8种光合色素,包括BChl aGG、BChl aDHGG、BChl aTHGG和BChl ap4种细菌叶绿素,1种BPhe和OH-R.g-ketoⅠ、R.g-ketoⅢ和Okenone3种类胡萝卜素,其中细菌叶绿素BChl aP和类胡萝卜素Okenone含量最高,分别占总色素含量的39.6%和47.4%。同时建立了菌株283-1全色素的TLC和HPLC指纹图谱,这两种指纹图谱分析方法均能进行光合色素的快速分析,适合于紫色硫细菌Okenone系合成途径中和BChl a合成途径中主要积累色素组分和含量变化规律的研究。
     5.利用构建的指纹图谱研究了环境因子光照、温度和盐度对菌株色素合成的影响,结果表明:光照强度的变化主要影响类胡萝卜素和细菌叶绿素单位细胞的含量,对色素组份影响不明显;温度的对色素组份影响较大,低温(20℃)时,积累的类胡萝卜素主要是Okenone,TLC指纹图谱未检测到另外两种类胡萝卜素。在30℃,2000Lux时,细菌叶绿素和类胡萝卜素单位细胞含量最高;而在45℃,5000Lux时,细菌叶绿素和类胡萝卜素单位细胞含量最低。盐度变化不影响菌株的色素组份,但对各组分的相对含量影响较大。高盐(11%NaCl)下,BChl ap和BPhe的积累量明显增加,尤其是BChl ap的相对含量增加约70%;但是,OH-R.g-ketoI的积累量下调了40%。低盐(1%NaCl)下,BPhe和Okenone的相对含量明显上调。
     6. Okenone类胡萝卜素作为地球进化过程一种重要的生物标志物。菌株283-1胞内可积累大量的Okenone系类胡萝卜素。在紫色硫细菌Marichromatium sp.283-1光合色素组成分析的基础上,通过丙酮甲醇提取、皂化、TLC和HPLC分析、制备得到纯化的Okenone类胡萝卜素,并研究了光(包括紫外线)、温度、pH、金属离子、氧化剂、还原剂、自由基和食品添加剂等对Okenone类胡萝卜素稳定性的影响。结果表明,在暗处、1000Lux光照强度和4℃、30℃、50℃的条件下,Okenone具有很好的稳定性,有很高的耐光和耐热能力;强酸和强碱对Okenone破坏较大;对食品添加剂和多数金属离子稳定,但是Fe3+、Mg2+、Al3+和Cu2+的影响较大,尤其是Fe3+,因此,Okenone存放时应避免与这些物质接触。Okenone类胡萝卜素吸收光谱形状和精细结构受到有机溶剂极性的影响,当溶剂由非极性转变为极性时,其精细结构减弱或消失,吸收峰趋于平滑。Okenone在石油醚溶液中呈鲜艳的橙红色,色价为40000。Okenone对紫外辐射具有较强的吸收作用,因此它可通过牺牲自己起到防护作用。以[DPPH·]作为自由基检测试剂,测定了该类胡萝卜素清除[DPPH·]自由基能力,结果表明它具有抗氧化生物活性,EC50=0.022mg/mL。
     7.在优化了生物量的基础上,继续通过响应面分析法研究了培养基中5种无机盐和微量元素对菌株283-1Okenone类胡萝卜素积累的影响。结果表明:培养基中微量元素、碳酸氢钠和磷酸二氢钾显著影响Okenone类胡萝卜素在胞内的积累,通过Behnken Box试验设计,得到了最佳培养基配方。在优化培养基中,Okenone产量由原来的1.454mg/L提高到了2.926mg/L,提高了101.2%
Purple sulfur bacterium was one group of anoxygen photosynthetic bacteria living in the unique habitats and emerged on earth about3.5Ga years ago. It was an ideal model organism to study the origin of life, the role of the carbon, nitrogen and sulfur in material recycling, as well as anoxygenic photosynthesis mechanism. It played an important role in the removal of organic matter, nitrogen and phosphorus and the toxic sulfide in sewage. Compared with purple non-sulfur bacteria, its research was far less depth and extensive because of its special habitats, difficulty to obtain pure cultures and its low biomass.
     Okenone carotenoid is one of the most ancient biomarkers discovered so far, and has been as an effective tool for the study of earth's evolution and environmental adaptation mechanism. Now15kinds of purple sulfur bacteria were found that they could product Okenone carotenoid. A halophilic purple sulfur bacteria Marichromatium sp.283-1was obtained by our group which contained the unique photosynthetic pigment Okenone from Qingdao Dongfeng saltworks. In this research, the biological characteristics, osmotolerant mechanism, the photosynthetic pigment composition analysis, effect of environmental factors on the synthesis of photosynthetic pigments and the separation, identification, preparation and physical and chemical properties, production optimization of the major carotenoid Okenone from the halophilic purple sulfur bacteria Marichromatium sp.283-1were studied.
     The main results were as follows:
     1. Results of biological characteristics showed that the strain283-1was sensitive to oxygen, and could grow at these condition of the highest15%NaCl,1.8g/LNa2S.9H2O,7.7g/L NaNO2, pH6-9, temperature from15to45℃, light intensity within the range of100~8000Lux. Therefore, it was anaerobic, halophilic, with tolerance of a high concentrations of sulphur, salt, alkali, NaNO2and fixing carbon. Carbon, nitrogen and salinity, pH, light, temperature had an effect on its morphology. On high salt stress conditions cell morphological diversity, increase volume, specific surface area decreased; in the alkaline environment cells was stick and a bigger volume. Under low temperature stress, the cells are rod-shaped, bigger volume, more intracellular accumulation of sulfur particles, under high temperature stress, the cells are long rod, bigger volume, more intracellular sulfur particles.
     2.Marichromatiun sp.283-1was a moderate halophilic photosynthetic purple sulfur bacterium and its osmotolerant property and mechanism were studied. The results shown that strain283-1could maximally tolerate2.3mol/L NaCl in improved purple sulfur bacterium medium. The growth of283-1specifically depended on anion Na+and anion Cl-was more suitable provide intracellular osmotic pressure than anion Br-.283-1accumulated betaine to equilibrate extracellulary osmotic pressure, while betaine, which was most important compatible solutes, increased with increasing of the NaCl concentration, reaching156.4mg/gby dry weight under a2.0mol/L NaCl concentration. Exogenous betaine was sufficient to promote the growth of283-1under high salinities and enhance its salinity tolerance.
     3.1n order to improve the biomass, medium composition of the strain283-1was optimized. Effects of the six factors CH3COONa, NaHCO3, NH4C1, Na2S.9H2O, MgSO4and Inorganic salt on the biomass were evaluated by using single-factor test, Plackett-Burman design, the steepest ascent experiment and central composite design combined with response surface analysis in this work. Results showed that sodium acetate and sodium sulfide were most significant factors and the optimal media were obtained. With the optimized media, the biomass improved6times compared with the control and the value was in agreement with the predicted.
     4. Pigments were extracted from cell pellets by acetone and methanol and its comprehensive analysis was carried out using UV-VIS absorption spectrophotometry, thin layer chromatography (TLC), HPLC and mass spectrometry (MS). The results were shown that under light and anaerobic conditions, eight kinds of photosynthetic pigments were obtained including four bacterochlorophylls, BChl aGG, BChl aDHGG, BChl aTHGG BChl aP and BPhe, and three carotenoids OH-Rg-ketoI the Rg-ketoⅢ and Okenone. BChlap and okenone were main components and their contents were39.6%and47.4%, respectively. And we developed two types of photopigment fingerprintings by TLC and HPLC. The fingerprintings analyses are suitable for rapid determination of photopigments of purple sulfur bacteria and have important application in control of regulation mechanism for photopigment synthesis.
     5. Effects of the environmental factors of light, temperature and salinity on pigment synthesis were studied using developed photopigment fingerprintings of TLC and HPLC. The results showed that different light intensity mainly affected the content of carotenoids and bacteriochlorophyll, while temperature had great influence on the pigment components. At20℃, accumulation of carotenoids only was Okenone, and TLC fingerprinting was not detected the other two carotenoids. At30℃and2000Lux contents of bacterochlorophyll and carotenoids were the highest. At45℃and5000Lux, contents of bacteriochlorophyll and carotenoids is the lowest. The salinity had almost effect on the pigment components, but a greater impact on the relative content of each component. At11%NaCl, accumulation of BChl aP and BPhe increased significantly, and especially more than70%increase of BChl aP. However, the accumulation of OH-Rg-ketoI was down more than40%. At1%NaCl, the relative content BPhe and Okenone both increased significantly.
     6.On the basis of photosynthetic pigment composition analysis, we obtain the purified Okenone carotenoid by the acetone methanol extract, saponification, TLC and HPLC analysis. Effect of light (including ultraviolet), temperature, pH, metal ions, oxidizing agents, reducing agents, free radicals, and food additives and so on was researched on Okenone stability. The results showed that under the dark or1000Lux, and4℃,30℃and50℃conditions, Okenone had good stability, high lightfastness and heat capacity. Strong acids and bases destroyed Okenone largely. Food additives and metal ion effected little on Okenone stability, while Fe3+, Mg2+, Al3+and Cu2+, especially Fe3+effected the stability. Therefore Okenone should be stored to avoid of contacting with these substances. The shape and fine structure of Okenone carotenoid absorption spectral was influenced by the polarity of organic solvent, the fine structure weakened or disappeared and the absorption peaks smoothed when it was in the polarity solvent. Okenone solution had a strong absorption of ultraviolet radiation, so it could be by sacrificing itself to play a protective role.[DPPH·] as a radical detection reagent could be used as determination of ability of okenone clearing [DPPH·] radical scavenging, the results showed that Okenone had the anti-oxidation biological activity and EC50=0.022mg/mL.
     7. Based on the optimized biomass, effects of five kinds of inorganic salts and trace elements on Okenone production was researched by the plackett Burman design and the response surface analysis. The results showed that trace elements, sodium bicarbonate and potassium dihydrogen phosphate had the significant impact on Okenone production. The optimal medium was obtained by the Box-Benhnken design. In optimal medium, the Okenone production was from1.454mg/L to2.926mg/L, and an increase of101.2%.
引文
[1]杨素萍,林志华,崔小华,等.不产氧光合细菌的分类学进展[J].微生物学报,2008,48(11):1562-1566.
    [2]Brocks J J, Love G D, Summons R E, et al. Biomarker evidence for green and purple sulphur bacteria in a stratified Palaeoproterozoic sea [J]. Nature,2005,437 (7060): 866-870.
    [3]Griffin B M, Schott J, Schink B. Nitrite, an electron donor for anoxygenic photosynthesis [J]. Science,2007,316 (5833):1870.
    [4]Brocks J J, Schaeffer P. Okenane, a biomarker for purple sulfur bacteria (Chromatiaceae), and other new carotenoid derivatives from the 1640 Ma Barney Creek Formation[J]. Geochimica et Cosmochimica Acta,2008,72(5):1396-1414.
    [5]袁盈波,潘志崇,张德民.一株光合细菌的分离及其硫化物的处理效果[J].宁波大学学报(理工版),2010,23(2):1-5.
    [6]David R B, Richard W C. Bergey's Manual of Systematic Bacteriology.2nd ed. Vol.1. New York:Springer,2001.
    [7]Imhoff J F, Suling J, Petri R. Phylogenetic relationships among the Chromatiaceae, their taxonomic reclassification and description of the new genera Allochronatium, Halochromatium, Isochr omatium, Marichromatium, Thiococcus, Thiohalocapsa and Thermochromatium[J]. International Journal of Systematic Bacteriology,1998,48(4): 1129-1143.
    [8]Don J B, Noel R K, James TS. Bergey's Manual of Systematic Bacteriology.2nd ed. Vol.2. New York:Springer,2005.
    [9]Kapf C, Pfennig N. Capacity of Chromatiaceae for chemotrophic growth. Specifi c respiration rates of Thiocystis violacea and Chromatium vinosum[J]. Archives of Microbiology.1980,127(2):125-135.
    [10]Pfennig N. Ecology of phototrophic purple and green sulfur bacteria. In:Schlegel HG and Bowien B[M]. Autotrophic Bacteria, Heidelberg,Springer-Verlag,1998,97-116.
    [11]Pfennig N. General physiology and ecology of photosynthetic bacteria. In:Clayton RK and Sistrom WR[M]. The Photosynthetic Bacteria, New York, Plenum Press,1978,3-18.
    [12]Pfennig N. Photosynthetic bacteria[J]. Annual Review of Microbiology,1967,21: 285-324.
    [13]Brune D C. Sulfur compounds as photosynthetic electron donors. In:Blankenship RE, Madigan MT and Bauer CE [M]. Anoxygenic Photosynthetic Bacteria. Dordrecht Kluwer Academic Publishers,1995,847-870.
    [14]Madigan M T. Microbiology, physiology, and ecologyof phototrophic bacteria. In: AJB Zehnder[M]. Biology of Anaerobic Microorganisms. New York, John Wiley & Sons,1988,39-111.
    [15]Truper H G, Fischer U. Anaerobic oxidation of sulphur compounds as electron donors for bacterial photosynthesis[J]. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences,1982,298:529-542
    [16]Ehrenreich A, Widdel F. Anaerobic oxidation of ferrous iron by purple bacteria, a new type of phototrophic metabolism. Applied and Environmental Microbiology,1994,60(12):4517-4526.
    [17]Sojka G A. Metabolism of nonaromatic organic compounds. In:Clayton RK and Sistrom WR[M]. The Photosynthetic Bacteria. New York, Plenum Press,1978,707-718.
    [18]Truper H G. Sulfur metabolism. In:Clayton RK and Sistrom WR (eds) [M]. The Photosynthetic Bacteria. New York, Plenum Press,1978,677-690.
    [19]Madigan M T. Chromatium tepidum sp. nov., a thermophilic photosynthetic bacterium of the family Chromatiaceae[J]. International Journal of Systematic Bacteriology.1986,36:222-227.
    [20]Truper H G. Versatility of carbon metabolism in phototrophic bacteria. In:Dalton H [M].Microbial Growth on C1 Compounds. London, Heyden,1981,116-121.
    [21]Kapf C and Pfennig N. Capacity of Chromatiaceae for chemotrophic growth. Specifi c respiration rates of Thiocystis violacea and Chromatium vinosum[J]. Archives of Microbiology.1980,127:125-135.
    [22]Kondratieva E N, Zhukov V G, Ivanovsky RN, et al. The capacity of phototrophic sulfur bacterium Thiocapsa roseopersicina for chemosynthesis[J]. Archives of Microbiology.1976,108:287-292.
    [23]Van Gemerden H. On the ATP generation by Chromatium in darkness[J]. Archiv fur Mikrobiologie,1968,64:118-124.
    [24]Raymond J, Zhaxybayeva O, Gogarten JP, et al. Evolution of photosynthetic prokaryotes:A maximumLikelihood mapping approach[J]. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences,2003 358: 223-230.
    [25]刘如林.光合细菌及其应用[M].北京:中国农业科技出版,1991.
    [26]Saum S H,Sydow J F, Palm P. Biochemical and molecular characterization of the biosynthesis of glutamine and glutamate, two major compatible solutes in the moderately halophilic bacterium Halobacillus halophilus[J]. Journal of Bacteriology, 2006,188 (19):6808-6815.
    [27]Galinski E A. Osmoadaption in bacteria[J], Advances in Microbial Physiology,1995, 37:273-328.
    [28]Venstosa A, Nieto J J. Biology of moderately halophilic aerobic bacteria[J]. Microbiology and Molecular Biology.1998,62(2):504-544.
    [29]Franzmann P D,Wehmeyer U. E. Halomonadceae fam.nov,a new family of the class Proteobacteria to accommodate the genera Halomonas and Deleya[J]. Systematic And Applied Microbiology,1988,16-19.
    [30]赵百锁,杨礼富,王磊,等.中度嗜盐菌相容性溶质机制的研究进展[J].微生物学报,2007,47(5):937-941.
    [31]Ke B. Photosynthesis:photobiochemistry and photobiophysics[M]. Netherlands, Springer 2001.
    [32]Suzuki H, Hirano Y, Kimura Y. Purification, characterization and crystallization of the core complex from thermophilic purple sulfur bacterium Thermochromatium tepidum[J].Biochimica et Biophysica Acta-Bioenergetics,2007,1767(8):1057-1063.
    [33]Freer A, Prince S, Sauer K. Pigment-pigment interactions and energy transfer in the antenna complex of the photosynthetic bacterium Rhodopseudomonas acidophila[J]. Structure,1996,4(4):449-462.
    [34]Van Grondelle R, Novoderezhkin V. Dynamics of excitation energy transfer in the LH1 and LH2 light-harvesting complexes of photosynthetic bacteria[J]. Biochemistry, 2001,40(50):15057-15068.
    [35]Scheuring S, Sturgis J N. Chromatic adaptation of photosynthetic membranes[J]. Science,2005,309(5733):484.
    [36]Bahatyrova S, Frese R N, Siebert C. The native architecture of a photosynthetic membrane[J]. Nature,2004,430(7003):1058-1062.
    [37]Eraso J M, Kaplan S. Regulation of gene expression by PrrA in Rhodobacter sphaeroides 2.4.1:role of polyamines and DNA topology[J]. Journal of Bacteriology, 2009,191(13):4341.
    [38]Gomelsky L, Moskvin O V, Stenzel R A. Hierarchical regulation of photosynthesis gene expression by the oxygen-responsive PrrBA and AppA-PpsR systems of Rhodobacter sphaeroides[J]. Journal of Bacteriology,2008,190(24):8106.
    [39]Bauer C. Regulation of photosystem synthesis in Rhodobacter capsulatus[J]. Discoveries in Photosynthesis,2005:1017-1024.
    [40]Masuda S, Bauer C E. AppA is a blue light photoreceptor that antirepresses photosynthesis gene expression in Rhodobacter sphaeroides[J]. Cell,2002,110(5): 613-623.
    [41]Okamura M, Steiner L, Feher G. Characterization of reaction centers from photosynthetic bacteria. I. Subunit structure of the protein mediating the primary photochemistry in Rhodopseudomonas spheroides R-26[J]. Biochemistry,1974,13(7): 1394-1403.
    [42]Polivka T, Frank H. Molecular factors controlling photosynthetic light harvesting by carotenoids[J]. Accounts of Chemical Research,2010,43(8):1125-1134.
    [43]Fraser N J, Hashimoto H, Cogdell R J. Carotenoids and bacterial photosynthesis:The story so far[J]. Photosynthesis Research,2001,70(3):249-256.
    [44]Takaichi S. Carotenoids and carotenogenesis in anoxygenic photosynthetic bacteria[J]. The photochemistry of Carotenoids,2004,8:39-69.
    [45]Koblizek M, Beja O, Bidigare R. Isolation and characterization of Erythrobacter sp. strains from the upper ocean[J]. Archives of Microbiology.2003,180(5):327-338.
    [46]Yurkov V V, Beatty J T. Aerobic anoxygenic phototrophic bacteria[J]. Microbiology and Molecular Biology Reviews,1998,62(3):695.
    [47]Beatty J T. On the natural selection and evolution of the aerobic phototrophic bacteria[J]. Discoveries in Photosynthesis.2005:1099-1104.
    [48]Overmann J. The family Chlorobiaceae[J]. The Prokaryotes,2006,7:359-378.
    [49]Maresca J A, Romberger S P, Bryant D A. Isorenieratene biosynthesis in green sulfur bacteria requires the cooperative actions of two carotenoid cyclases[J]. Journal of Bacteriology.2008,190(19):6384.
    [50]Gich F, Garcia-Gil J, Overmann J. Previously unknown and phylogenetically diverse members of the green nonsulfur bacteria are indigenous to freshwater lakes[J]. Archives of Microbiology.2001,177(1):1-10.
    [51]Sattley W M, Blankenship R E. Insights into heliobacterial photosynthesis and physiology from the genome of Heliobacterium modesticaldum[J]. Photosynthesis Research.2010,104(2):113-122.
    [52]Takaichi S, Inoue K, Akaike M. The major carotenoid in all known species of heliobacteria is the C30 carotenoid 4,4'-diaponeurosporene, not neurosporene[J]. Archives of microbiology.1997,168(4):277-281.
    [53]Romer S, Fraser PD. Recent advances in carotenoid biosynthesis, regulation and manipulation[J]. Planta.2005,221(3):305-308.
    [54]Polivka T, Frank HA. Molecular factors controlling photosynthetic light harvesting by carotenoids[J]. Accounts of Chemical Research,2010,43(8):1135-1134.
    [55]Takaichi S. Distribution and biosynthesis of carotenoids [J]. The Purple Phototrophic Bacteria.2008:97-117.
    [56]Niedzwiedzki D M, Kobayashi M, Blankenship R E. Triplet excited state spectra and dynamics of carotenoids from the thermophilic purple photosynthetic bacterium Thermochromatium tepidum[J]. Photosynthesis Research.2011,107(2):1-10.
    [57]Stepanenko I, Kompanetz V, Makhneva Z. Two-photon excitation spectroscopy of carotenoid-containing and carotenoid-depleted LH2 complexes from purple bacteria[J]. The Journal of Physical Chemistry B,2009,113(34):11720-11723.
    [58]Lin S, Katilius E, Ilagan R P. Mechanism of carotenoid singlet excited state energy transfer in modified bacterial reaction centers[J]. The Journal of Physical Chemistry B,2006,110(31):15556-15563.
    [59]Nakagawa K, Sakai S, Kondo M. Structural forming of photosynthetic polypeptide supramolecule complexes and functional analysis of carotenoids in these complexes[J]. Kobunshi Ronbunshu.2010,67(10):1127-1136.
    [60]Sozer O, Komenda J, Ughy B. Involvement of carotenoids in the synthesis and assembly of protein subunits of photosynthetic reaction centers of Synechocystis sp. PCC 6803[J]. Plant and Cell Physiology.2010,51(5):823-835.
    [61]Willows R D, Kriegel A M. Biosynthesis of bacteriochlorophylls in purple bacteria[J]. The Purple Phototrophic Bacteria.2008,2:57-79.
    [62]Michalski T, Hunt J, Bowman M. Bacteriopheophytin g:Properties and some speculations on a possible primary role for bacteriochlorophylls b and g in the biosynthesis of chlorophylls[J]. Proceedings of the National Academy of Sciences, 1987,84(9):2570.
    [63]Frigaard N U, Maqueo Chew A G, Maresca J. Bacteriochlorophyll biosynthesis in green bacteria[J]. Chlorophylls and Bacteriochlorophylls.2006,25:201-221.
    [64]Mizoguchi T, Harada J, Tamiaki H. Structural determination of dihydro-and tetrahydrogeranylgeranyl groups at the 17-propionate of bacteriochlorophylls-a[J]. FEBS letters,2006,580(28-29):6644-6648.
    [65]Harada J, Mizoguchi T, Yoshida S. Composition and localization of bacteriochlorophyll a intermediates in the purple photosynthetic bacterium Rhodopseudomonas sp. Rits[J]. Photosynthesis Research.2008,95(2):213-221.
    [66]Bullough P A, Qian P, Hunter C N. Reaction Center-Light-Harvesting Core Complexes of Purple Bacteria[J]. The Purple Phototrophic Bacteria.2008:155-179.
    [67]Balaban T S, Bhise A D, Bringmann G. Mimics of the Self-Assembling Chlorosomal Bacteriochlorophylls:Regio- and Stereoselective Synthesis and Stereoanalysis of Acyl(1-hydroxyalkyl)porphyrins[J]. Journal of the American Chemical Society. 2009,131(40):14480-14492.
    [68]Preise D, Oren R, Glinert I. Systemic antitumor protection by vascular-targeted photodynamic therapy involves cellular and humoral immunity [J]. Cancer Immunology, Immunotherapy.2009,58(1):71-84.
    [69]Goldshaid L, Rubinstein E, Brandis A. Novel design principles enable specific targeting of imaging and therapeutic agents to necrotic domains in breast tumors [J]. Breast Cancer Research.2010,12(3):2-18.
    [70]Granzhan A, Penzkofer A, Hauska G. Photo-degradation of bacteriochlorophyll c in intact cells and extracts from Chlorobium tepidum[J]. Journal of Photochemistry and Photobiology A:Chemistry.2004,165(1):75-89.
    [71]王曼,季峻峰,陈骏,等.沉积物中细菌叶绿素的环境指示意义[J].高校地质学报,2007,13(1):23-29.
    [72]Scherz A, Goldshaid L, Salomon Y. RGD-(bacterio) chlorophyll conjugates for photodynamic therapy and Imaging of Necrotic tumors. Patent, Patent number: PCT/IL2009/000228.2009.
    [73]Scherz A, Brandis A, Mazor O. Water-soluble anionic bacteriochlorophyll derivatives and their uses. Patent,Patent number:PCT/IL2003/000973.2011.
    [74]Wixom R L. The Trails of Research in Chromatography[J]. Chromatography.2010: 61-99.
    [75]Qian P, Saiki K, Mizoguchi T. Time-dependent Changes in the Carotenoid Composition and Preferential Binding of Spirilloxanthin to the Reaction Center and Anhydrorhodovibrin to the LH1 Antenna Complex in Rhodobium marinum[J]. Photochemistry and Photobiology.2001,74(3):444-452.
    [76]Takaichi S, Jung D O, Madigan M T. Accumulation of unusual carotenoids in the spheroidene pathway, demethylspheroidene and demethylspheroidenone, in an alkaliphilic purple nonsulfur bacterium Rhodobaca bogoriensis[J]. Photosynthesis Research,2001,67(3):207-214.
    [77]Dzido T H, Berezkin V G. The discovery of thin-layer chromatography by N.A. Izmailov and M.S. Shraiber [J]. Journal of Planar Chromatography-Modern TLC, 2008,21(6):399-403.
    [78]Mizoguchi T, Isaji M, Harada J. Identification of 3,4-didehydrorhodopin as major carotenoid in Rhodopseudomonas species[J]. Photochemical & Photobiological Sciences.2008,7(4):492-497.
    [79]Kakitani Y, Fujii R, Hayakawa Y. Selective binding of carotenoids with a shorter conjugated chain to the LH2 antenna complex and those with a longer conjugated chain to the reaction center from Rubrivivax gelatinosus[J]. Biochemistry, 2007,46(24):7302-7313.
    [80]Harada J, Mizoguchi T, Yoshida S. Composition and localization of bacteriochlorophyll a intermediates in the purple photosynthetic bacterium Rhodopseudomonas sp. Rits[J]. Photosynthesis Research.2008,95(2):213-221.
    [81]Mizoguchi T, Harada J, Tamiaki H. Structural determination of dihydro-and tetrahydrogeranylgeranyl groups at the 17-propionate of bacteriochlorophylls-a[J]. Febs Letters,2006,580(28-29):6644-6648.
    [82]王业勤,李勤生.天然类胡萝卜素一研究进展生产应用[M].北京:中国医药科技出版社.1997.
    [83]Namsaraev Z B. Application of extinction coefficients for quantification of chlorophylls and bacteriochlorophylls[J]. Microbiology,2009,78(6):794-797.
    [84]Zarzycki P K, Slaczka M M, Zarzycka M B. Application of micro-thin-layer chromatography as a simple fractionation tool for fast screening of raw extracts derived from complex biological; pharmaceutical and environmental samples[J]. Analytica Chimica Acta.2011,688(2):168-174.
    [85]Ramirez J, Gutierrez H, Gschaedler A. Optimization of astaxanthin production by Phaffia rhodozyma through factorial design and response surface methodology. Journal of Biotechnology.2001,88(3),259-268.
    [86]Liu Y S, Wu J Y. Optimization of cell growth and carotenoid production of Xanthophyllomyces dendrorhous through statistical experiment design. Biochemical Engineering Journal.2007,36(2),182-189.
    [87]Bhosale P. Environmental and cultural stimulants in the production of carotenoids from microorganisms[J]. Journal of Applied Microbiology and Biotechnology,2004, 63:351-361.
    [88]Fbregas J.Domnguez A, Maseda A, et al. Interactions between irradiance and nutrient availability during astaxanthin accumulation and degradation in Haematococcus pluvialis[J]. Applied Microbiology and Biotechnology,2003,61:545-551.
    [89]Sandmann G. Carotenoid biosynthesis and biotechnological application. Arch Biochem Biophys.2001,385(1):4-12.
    [90]Freer A, Prince S, Sauer K. Pigment-pigment interactions and energy transfer in the antenna complex of the photosynthetic bacterium Rhodopseudomonas Acidophila[J]. Structure 1996,4(4):449-62.
    [91]Smith RL, Maguire ME. Microbial magnesium transport:unusual transporters searching for identity[J]. Molecular Microbiology.1998,28:217-26.
    [92]Candan N, Tarhan L. Relationship among chlorophyll-carotenoid content, antioxidant enzyme activities and lipid peroxidation levels by Mg2+deficiency in the Mentha pulegium leaves[J]. Plant Physiology and Biochemistry.2003,41:35-40.
    [93]Lampila L E, Wallen S E, Dulerman L B. The effect of illumination of growth and b-carotene content of Blakeslea trispora grown in whey[J]. Lebensmittel-Wissenschaft und-Technologie-Food Science and Technology 1985,18:360-370.
    [94]Kobayashi M K, Toshihide N M, Nagai S Effects of light intensity, light quality, and illumination cycle on astaxanthin formation in a green alga, Haematococcus pluvialis[J]. Journal of Bioscience and Bioengineering.1992,74:61-63.
    [95]Liu, B H, Lee Y K. Secondary carotenoids formation by the green alga Chlorococcum sp[J]. Journal of Applied Phycology.2000,12:301-307.
    [96]Govind N S, Amin A R, Modi V V. Stimulation of carotenogenesis in Blakeslea trispora by cupric ions[J]. Phytochemistry,1982,21:1043-1044.
    [97]Komemushi S, Sakaki H, Yokoyama H, et al. Effect of barium and other metals on the growth of a d-lactic assimilating yeast Rhodotorula glutinis no.21 [J]. J ournal of Antibacterial Antifungal Agents,1994,22:583-587.
    [98]Kunshen Z, Hongmei H, Yunxia R. Effection of additive and ion on carotenoid production[J]. Food Science,2004,25(10):144-147.
    [99]Daraseliya G Y, Daushvili L P. Effect of various carbon sources on the growth and carotenogenesis of Mycobacterium rubrum strain 44[J]. Prik Biokhim Mikrobiol. 1982,18:191-196.
    [100]Squina F M, Mercadante A Z. Influence of nicotine and diphenylamine on the carotenoid composition of Rhodotorula strains[J]. Journal of Food Biochemistry, 2005,29 (6):638-652.
    [101]Kim B K, Park P K, Chae H J, et al. Effect of phenol on B-carotene content in total carotenoids production in cultivation of Rhodotorula glutinis[J]. Korean Journal of Chemical Engineering,2004,21(3):689-692.
    [102]王绍校,杨惠芳黄志勇,等.嗜盐光合细菌的分离鉴定及其营养成分分析[J].应用与环境微生物,2003(93):298-301.
    [103]杨素萍,赵春贵,张铁,等.一株可利用硫化物紫色硫细菌的分离与鉴定[J].山西大学学报,1994,17(1):81-85.
    [104]杨素萍,曲音波,钱新民,等.一株极端环境光合细菌的生理特性研究[J].水生生物学报,2002,26(3):221-225.
    [105]崔小华,杨素萍,姚鹏.响应面法优化嗜盐紫色硫细菌283-1培养基.山西农业大学学报(自然科学版),2012,32(1):37-41.
    [106]崔小华,林志华,杨素萍.嗜盐紫色硫细菌283-1的耐盐机制.山西农业大学学报(自然科学版),2012,32(3):228-231.
    [107]杨素萍,岳慧英,崔小华.不产氧光合细菌色素蛋白复合体研究进展[J].微生物学报,2009,49(9):1146-1151.
    [108]Vogl, K., Bryant, D A. Biosynthesis of the biomarker okenone:x-ring formation[J]. Geobiology.2012.10(3),205-215.
    [109]Vogl, K., Bryant, D.A. Elucidation of the Biosynthetic Pathway for Okenone in Thiodictyon sp CAD16 Leads to the Discovery of Two Novel Carotene Ketolases[J]. Journal of Biological Chemistry.2011.286(44),38521-38532.
    [110]Takaichi, S. Carotenoids and Carotenogenesis in Anoxygenic Photosynthetic Bacteria[J]. Advances in Photosynthesis and Respiration.2004,8:39-69.
    [111]Fujii R, Chen CH. Mizoguchi T. et al.1H NMR, electronic-absorption and resonance-Raman spectra of isomeric okenone as compared with those of isomeric [beta]-carotene, canthaxanthin, [β]-apo-8'-carotenal and spheroidene[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy.1998.54(5), 727-743.
    [112]Toropygina O, Makhneva Z, Moskalenko A. Reconstitution of okenone into light harvesting complexes from Allochromatium minutissimum[J]. Biochemistry (Moscow),2005.70(11),1231-1237.
    [113]Polli D, Cerullo G, Lanzani G, et al. Carotenoid-Bacteriochlorophyll Energy Transfer in LH2 Complexes Studied with 10-fs Time Resolution[J]. Biophysical Journal,2006,90(7),2486-2497.
    [114]Griffin B M, Schott J, Schink B. Nitrite, an electron donor for anoxygenic photosynthesis[J]. Science,2007,316 (5833):1870-1877.
    [115]杨素萍,连建科,赵春贵,等.含奥氏酮嗜盐紫色硫细菌分离鉴定及系统发育分析[J].微生物学报,2008,48(5):1-6.
    [116]Pfennig N, Truper H G. The Prokaryotes[M]. New York:Springer,1992(2),3203-3205.
    [117]Imhoff J F,Caumette P. Recommended standards for the description of new species of anoxygenic phototrophic bacteria[J]. International Journal of Systematic and Evolutionary Microbiology.2004,54,1415-1421.
    [118]周洪波,刘飞飞,邱冠周.一株光合细菌的分离鉴定及污水处理能力研究[J].生态环境,2006,15(5):901-904.
    [119]黄宝兴,李兰生,赵亮,等.固定化海洋光合细菌处理生活污水的研究[J].海洋湖沼通报,2006,(2):69-74.
    [120]邓晓皋,唐赞.几株光合细菌的分离鉴定及用于水质净化的初步研究[J].四川师范学院学报,2001,22(1):84-88.
    [121]李秀珠.一种紫色非硫光合细菌对硫化物的抑制及其在对虾养殖中的应用[J].福建水产,1997,15(1):9-13.
    [122]Cavicchioli R, Ostrowski M. Ultramicrobacteris.Encyclopedia of life Science [J]. Nature,2003(45):2344-2352.
    [123]Button DK. Biochemical basis for whole-cell uptake kinetics:specific assinity, oligotrophic capacity, and the meaning of the Michaelis Constant[J]. Applied and Environmental Microbiology.1991,354(57):2033-2038.
    [124]焦念志,张瑶,杜海莲.好氧不产氧光合异养细菌及其在海洋生态系统中的作用[J],科学通报.2003,48(6):530-534.
    [125]Vreeland R H. Mechanisms of halotolerance on microorganisms [J]. Critical Reviews in Microbiology,1987,14(4):311-356.
    [126]Kushner D J. Halophilic bacteria:life in and out of salt. In Hattori T, Ishida Y, Y, Maruyama, Morita R Y, Uchida A. Recent advances in microbial ecology[M]. Tokyo, Japan Scientific Societies Press,1989,60-64.
    [127]Cormenzana A. Ecology of moderately halophilic bacteria. In Vreelandand R H Hochstein L I [M]. The biology of halophilic bacteria. Boca Raton, CRC Press,1993, 55-86.
    [128]Rodriguez V F. Characteristics and microbial ecology of hypersaline environments. In F. Rodriguez-Valera[M]. Halophilic bacteria, vol.1. Boca Raton,CRC Press.1988, 3-30.
    [129]Galinski E A. Compatible solutes of halophilic eubacteria:molecular principles, water solute interaction,stress protection[J].Experiemtia,1993,49(6):487-496.
    [130]Russel N J. Adaptive modifications in membranes of halotolerant and halophilic microorganisms[J]. Journal of Bioenergetics and Biomembranes.1989,21(1):93-113.
    [131]Severin J, Wohlfarth A, Ewrwin A. The predominant role of recently discovered terahydrorimidines for the osmoadaptaion of halophilic eubacteria[J]. Journal of Genetic Microbiology.1992,138(8):1629-1638.
    [132]Choquet C G, Ahonkhai I, Klein M,et al. Formation and role of glycine betaine in the moderate halophile Vibrio Costicola[J]. Archives of Microbiology.1991,155(2): 153-158.
    [133]Canovas D, Vargas C, Csonka L, et al. Osmoprotectants in Halomonas elonga:high-affinity betaine transport system and choline-betaine pathway [J]. Journal of Bacteriology.1993,178(24):7221-7226.
    [134]Anne C, Vianney P, Jean A P, et al. Nanomolar levels of dimethylsulfoniopropionate and glycine Betaine adre sufficient to confer osmoprotection to Escherichia coli[J]. Applied and Environmental Microbiology.99,65(8):3304-3311.
    [135]Eric B, Magne, Marie C P, et al. Occurrence of choline and glycine betaine uptake and metabolism in the family Rhizobiaceae and their roles in osmoprotection[J]. Applied and Environmental Microbiology,1999,65(5):2072-2077.
    [136]Nagata S. Growth of Escherichia coli ATCC 9637 through the uptake of compatible solutes at high osmolarity[J]. Journal of Bioscience and Bioengineering. 2001,92(4):324-329.
    [137]Shinichi N, Yoriko M, Tomohiko I,et al. Effect of compatible solutes on the respiratory activity and growth of Escherichia coli K-12 under NaCl stress [J]. Journal of Bioscience and Bioengineering.2002,94(5):384-389.
    [138]王魁荣,张树军,李少贺,等.一株中度嗜盐菌Halomonas sp. NY-011的耐盐特性及机理[J].应用与环境生物学报.2010,6(2):256-260.
    [139]Olliver B,Caumette P,Garcia J L,et al, Anaerobic bacteria from hypersaline environments[J]. Microbiology Review.1994.38(1):27-38.
    [140]赵江燕,赵春贵,杨素萍,等.一株高含玫红品的红树林海洋紫色硫细菌分离鉴定及特性.微生物学报,2011,51(10):1318-1325.
    [141]Anne U.Kuhlmann, Erhard Bremer. Osmotically Regulated Synthesis of the Compatible Solute Ectoine in Bacilluspasteurii and Related Bacillus spp.[J]. Applied and Environmental Microbiology 2002,68(2):772-783.
    [142]尹昆,安利国,袁金铎,等.反相HPLC色谱法测定盐芥和菠菜中的甜菜碱含量[J].东师范大学学报(自然科学版),2005,20(1):82-85.
    [143]Rubenhagen R, Ronsch H, Jung H, et al. Osmosensor and osmoregulator properties of the betaine carrier BetP from Corynebacterium glutamicum in proteoliposomes[J]. Journal of Biological Chemistry,2000,275 (2):735-741.
    [144]Pfluger K,Muller V. Transport of compatible solutes in extremophiles[J] Journal of Bioenergetics & Biomembranes,2004,36 (1):17-23.
    [145]Vreeland R H, Mierau C D, Litchfield,et al. Relationship of the internal solute composition to the salt tolerance of Halomonas elongata [J], Canadian Journal of Microbiology.1983,29(4):407-414.
    [146]洪青,张国顺,张忠辉,等.中度嗜盐菌Halomonas sp1BYS21的渗透调节[J].微生物学通报.2004,31(5):71-75.
    [147]Bjarne L,Arne R.Choline-glycine betaine pathway confers a high level of osmotic tolerance in Escherichia coli[J].1986,Journal of Bacteriology,165:849-85.
    [148]Rudulier L,Bernard D T, Bouillard L. Glycine betaine,an osmtic effector in Klebsiella pneumoniae and other members of the Enterbacteriaceae[J]. Applied and Environmental Microbiology.1983,46:152-159.
    [149]Rudulier L,Strom A R,Dandekar A M.et al.Molecular biology of osmoregulation[J]. Science,1984,224(4653):1064-1068.
    [150]Madkour M A M, Tombras L, Smith G M.Preferential osmolyte accumulation:a mechanism of osmotic stress adaptation in diazotrophic bacteria[J]. Applied and Environmental Microbiology.1990,56:2876-2881.
    [151]洪青,何健,刘智,等.中度嗜盐细菌Halomonas sp. BYS21甜菜碱醛脱氢酶基因的克隆和表达[J].微生物学报.2004,44(1):72-74.
    [152]Jitrwung R, Yargeau V. Optimization of media composition for the production of biohydrogen from waste glycerol [J]. International Journal of Hydrogen Energy. 2011,36:9602-9611.
    [153]Ing L S, Chia Y K. Feng C H, et al. Use of surface response methodology to optimize culture conditions foriturin A production by Bacillus subtilis in solid-state fermentation[J]. Journal of the Chinese Institute of Chemical Engineers,2008,39: 635-643.
    [154]黄丽金,陆兆新,袁勇军,等.响应面法优化唾液链球菌嗜热亚种增殖培养基[J].食品与发酵工业,2005,31(5):27-31.
    [155]Scheming S, Sturgis J N. Chromatic adaptation of photosynthetic membranes[J]. Science,2005,309 (5733):484-487.
    [156]Woronowicz K, Niederman R A. Proteomic analysis of the developing intracytoplasmic membrane in Rhodobacter sphaeroides during adaptation to low light intensity. Recent Advances in Phototrophic Prokaryotes,2010,675 (3):161 178.
    [157]Ritsuko F, Chen C.1H NMR, electronic-absorption and resonance-Raman spectra of isomeric okenone as compared with those of isomeric P-carotene, canthaxanthin, β-apo-8-carotenal and spheroidene[J]. Spectrochimica Acta Part A,1998,54:727-743.
    [158]Vogl K, Bryant DA. Biosynthesis of the biomarker okenone:χ-ring formation[J]. Geobiology,2012,10:205-215.
    [159]Kajetan V, Donald A B. Elucidation of the biosynthetic pathway for okenone in thiodictyon sp. CAD 16 leads to the discovery of two novel carotene ketolaseses [J]. Journal of Biological Chemistry.2011,288(14):38521-38532.
    [160]Aleksander R,Tina H, June, et al. Crystal Structure of the RC-LH1 Core Complex from Rhodopseudomonas palustris[J]. Science,2003,302(5652):1969-1972.
    [161]张晓蓉,赵春贵,杨素萍.产氢红杆菌类胡萝卜素含量和组分分析[J].微生物学通报,34(5):863-866.
    [162]Koyama Y, Kuki M, Andersson P O. et al. Singlet Excited States and the Light-harvesting Function of Carotenoid in Bacterial Photosynthesise[J]. Photochemical and Photobiology.1996,63(3):243-256.
    [163]Schmidt K, Liaaen-Jensen S, SchlegelH G. Die carotinoide der Thiorhodaceae. okenonals hauptcarotinoid von Chromatium okenii Perty. Archives of Microbiology 1963,46:117-126.
    [164]Aasen A J, Jensen S L. Bacterial carotenoids. ⅩⅩⅩⅢ. The carotenoids of Thiorhodaceae.6. total synthesis of okenone and related compounds[J]. Acta Chemica Scandinavica 1967,21,970-982.
    [165]Imhoff J F. The Chromatiaceae. In The Prokaryotes (eds Dworkin M, Falkow S, Rosenberg E,Schleifer K-H,Stackebrandt E,Imhoff J F)[M], New York,Springer,, 2006,846-873.
    [166]Polli D, Cerullo G, Lanzani G,et al. Carotenoid-bacteriochlorophyll energy transfer in LH2 complexes studied with 10-fs time resolution[J]. Biophysical Journal, 2006,90,2486-2497.
    [167]Brocks J B, Love G D, Summons R E, et al. Biomarker evidence for green and purple sulfur bacteria in a stratified Palaeoproterozoic sea [J]. Nature,2005,437:866-870.
    [168]Kerfeld C A, Yeates T O, Thornber J P. Purification and characterization of the peripheral antenna of the purple-sulfur bacterium Chromatium purpuratum:evidence of an unusual pigment-protein composition[J]. Biochemistry,1994,33(8):2178-2184.
    [169]汪海峰,邱伟芬.天然番茄红素在不同环境条件下的稳定性研究[J].食品科学,2004,25(2):56-60.
    [170]Lee MT, Chen B H. Stability of lycopene during heating and illumination in a model system[J]. Food Chemistry.2002,78(4):425-432.
    [171]Calvo M M, Santa M G, Effect of illumination and chlorophylls on stability of tomato carotenoids[J]. Food Chemistry.2008,107 (4),1365-1370.
    [172]Stefanovich, A F, Karel M. Kinetics of beta-carotene degradation at temperatures typical of air drying of foods[J]. Journal of Food Processing and Preservation 1982,6 (4),227-242.
    [173]耿予欢,李琳,魏东,等.极地雪藻对紫外辐射的生理适应性研究[J].食品科学,2006,27(3)41-44.
    [174]梅晓岩,孟宪军,梁婧婧.番茄红素抗氧化活性的研究[J].安徽农业科学,2006,34(11)2315-2317.
    [175]Krinsky NI. The antioxidant and biological properties of the carotenoids [J]. Annals of The New York Academy of Sciences 1998,854(20):443-447.
    [176]Emodi A. Carotenoids properties and applications[J]. Food Technology 1978.32:38-40.
    [177]Vandamme E J. Production of vitamins, coenzymes and related biochemicals by biotechnological processes[J]. Journal of Chemical Technology and Biotechnolog 1992,53:313-327.
    [178]Steven M, Carla B, Ayako Y. Beta-Carotene and selenium supplementation enhances immune response in aged humans[J]. Integrative Medicine 2000;2(2-3):85-92.
    [179]Aksu Z, Tugba E A. Carotenoids production by the yeast Rhodotorula mucilaginosa: use of agricultural wastes as a carbon source[J]. Process Biochemical 2005;40:2985-2991.
    [180]Nelis H, De Enheer A P. Microbial sources of carotenoid pigments in foods and feeds[J]. Journal of Applied Bacteriology 1991,70:181-191.
    [181]Hanhu J. The nutrition of microorganisms. In:Food microbiology[M]. Beijing: Chinese Agriculture Publishing Press,2002.108-115.
    [182]Giotta L,Agostiano A,Italiano F.Heavy metal ion influence on the photosynthetic growth of Rhodobacter sphaeroides[J]. Chemosphere.2006,26(9):1490-1499.
    [183]Gejian Z, Huazhong L. The nutrition and growth of microorganisms[M]. In: Microbiology. Beijing:Science Publishing Press; 2004.175-188.
    [184]季宏飞,许杨,李燕萍.采用响应面法优化红曲霉固态发酵产红曲色素培养条件的研究[J].食品科技,2008,8:13-27.
    [185]Chen D M, Han Y B, Gu Z X.Application of statistical methodology to the optimization of fermentative medium for carotenoids production by Rhodobacter sphaeroides[J].Process Biochemistry,2006,41:1773-1778.
    [186]Bhosale P. Environmental and cultural stimulants in the production of carotenoids from microorganisms [J].Applied Microbiology and Biotechnology,2004,63:351 361.
    [187]Buzzini P, Martini A. Optimization of carotenoid production by Rhodotorula graminis DBVPG 7021 as a function of trace element concentration by means of response surface analysis[J]. Enzyme Microbial Technology.2005,36:687-92.
    [188]Gerhard S. Carotenoid biosynthesis and biotechnological application. Archives of Biochemistry and Biophysics.2001,385(1):4-12.
    [189]Kuo F, Chen Y, Chen, C. Effects of light sources on growth and carotenoid content of photosynthetic bacteria Rhodopseudomonas palustris[J]. Bioresource Technology. 2012,113:315-318.
    [190]Fazeli M, Tofighi H, Samadi N, et al. Carotenoids accumulation by Dunaliella tertiolecta (Lake Urmia isolate) and Dunaliella Salina (CCAP 19/18 & WT) under stress conditions[J]. DARU Journal of Pharmaceutical Sciences,2006,14(3):146-150.
    [191]Gomez P I, Barriga A, Cifuentes A S, et al. Effect of salinity on the quantity and quality of carotenoids accumulated by Dunaliella salina (strain CONC-007) and Dunaliella bardawil (strain ATCC 30861) Chlorophyta[J]. Biological Research. 2003,36:185-192.
    [192]Jahnke L S, White L A. Long-term hyposaline and hypersaline stresses produce distinct antioxidant responses in the marine alga Dunaliella tertiolecta[J]. Journal of Plant Physiology 2003,160:1193-1202
    [193]卓民权,赵春贵,杨素萍.紫细菌光合色素指纹图谱的建立与色素分析[J].微生物学报,2011,51(10):1318-1325.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700