用户名: 密码: 验证码:
多胺对毛竹幼苗抗旱调控机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文采用毛竹实生幼苗为材料,以PEG6000作为渗透调节剂模拟干旱胁迫,通过设置不同干旱胁迫处理及干旱胁迫条件下施加外源多胺和多胺合成前体、抑制剂等试验,分析毛竹幼苗抗旱转录因子基因和多胺合成关键酶基因的表达及内源多胺的变化动态,以及对毛竹幼苗抗旱生理生化特性的影响,探讨多胺对毛竹幼苗抗旱调控机理,主要结果和结论如下:
     1.在正常条件下,毛竹幼苗腐胺(Put)含量高于精胺(Spm)和亚精胺(Spd)的含量,分别是Spm和Spd的1.07倍和1.16倍;在干旱胁迫条件下,Put含量显著下降,Spm和Spd呈先上升后下降趋势,但仍显著高于对照水平;外施0.1mM Spd下,内源Put、Spm和Spd积累达到最高,分别为24.70、39.95和46.61μg·g-1鲜重,显著高于其他浓度处理;施加多胺合成抑制剂,毛竹幼苗内源Put、Spm和Spd含量总体呈现下降的趋势,1mM甲基乙二醛-双(脒基腙)(MGBG)显著抑制了内源Put、Spm、Spd的合成。结果表明,S-腺苷甲硫氨酸脱羧酶(SAMDC)是毛竹幼苗内源多胺合成的关键酶,干旱胁迫下,各多胺类型可以相互转化,内源Put向Spd、Spm转化积累。
     2.干旱条件下毛竹幼苗的叶绿素(a+b)含量和Chla/Chlb受到明显抑制,实际光化学效率Yield、qP显著降低,NPQ明显提高;施用外源0.5mM Spd能显著提高叶绿素和类胡萝卜素的含量,提高实际光化学效率Yield和qP;1.0mM MGBG能显著降低各类色素含量。结果表明,多胺能提高干旱胁迫条件下毛竹幼苗的光合色素水平,改善其光合性能,提高抗旱性。
     3.随着干旱胁迫的加强,脯氨酸含量持续上升,可溶性蛋白、SOD、POD、CAT活性呈先提高后降低的趋势;叶片相对含水量逐渐降低,体内超氧自由基生成速率增加,25%PEG胁迫条件下,其生成速率为67.85μmol·min-1·g-1,是对照的1.48倍,与对照达到了显著水平,加快了细胞膜脂过氧化作用,叶片相对电导率和MDA含量也逐渐提高。
     20%PEG模拟干旱胁迫下,施加0.5mM浓度的外源Spd,可溶性蛋白含量、叶片SOD、POD、CAT活性显著提高,Pro含量显著下降;叶片相对含水量为最高,氧自由基的生成速率为45.33μmol·min-1·g-1,是20%PEG处理下的75.68%,二者差异显著,减少了毛竹幼苗的膜脂过氧化。外源施用1mM MGBG显著降低SOD、POD、CAT的活性及可溶性蛋白含量,显著增加脯氨酸含量;氧自由基生成的速率达到64.77μmol·min-1·g-1, MDA含量提高。结果表明,干旱胁迫下,多胺能通过提高毛竹幼苗叶片SOD、POD、CAT活性及可溶性蛋白含量,提高毛竹幼苗的抗旱能力;脯氨酸合成与毛竹幼苗内源多胺存在竞争关系。
     4.克隆毛竹幼苗SAMDC的cDNA片段长度为1200bp,序列与动物SAMDC差异很大,同源性很低;但与水稻、玉米、拟南芥等植物的同源性都在75%以上,在物种间的进化上很保守。毛竹SAMDC蛋白二级结构以无规则卷曲为主,占55.4%:其次为α-螺旋,达20.1%;β-转角分布区域24.6%;预测的编码蛋白质三级结构与二级结构预测结果相符,与其他多种植物的SAMDC蛋白的预测结果相似。
     5.干旱胁迫下SAMDC基因上调表达;施加外源Spd随着浓度的提高,SAMDC表达量显著下降,0.5mM时达到谷点;多胺合成前体和竞争性抑制剂精胺(L或D)均能抑制SAMDC的表达,MGBG则显著抑制SAMDC的表达,这与MGBG为SAMDC抑制剂的功能相吻合。结果同时表明,毛竹幼苗能主动从外源吸收多胺,以提高其抗旱能力。
     6.干旱胁迫下脱水应答元件结合蛋白(DREB2)基因上调表达;外源Spd在小于或超于0.5mM时,Spd浓度与DRED表达量呈负相关,而在0.5mM时,DREB2显著高表达:多胺合成前体L-ARG和抑制剂D-ARG、MGBG明显降低DREB的表达水平。结果表明,DREB2是毛竹幼苗的抗旱转录因子;低浓度Spd可能缓解了毛竹幼苗的干旱胁迫,DREB2表达量下降;但较高浓度的Spd可能起了干旱胁迫信号传导的功能,促进了DREB2的表达。
Polyamines (PAs) are low molecular nitrogen-containing compounds belonging to nitric fatty group, which perform particular physiological activi-ties. Polyamines, ubiquitous in living cells, are evolutionarily highly conserved organic cationic polymer and have important functions in the regulation of abiotic stress tolerance. Seedlings of phyllostachys edulis have been used as experimental materials and PEG6000as osmotic regulator to simulate the effect of drought stress. By applying exogenous polyamines and polyamines synthesis inhibitor under drought stress condition, this thesis analyzed genetic expression of drought resistance gene transcription factor, genes of key enzymes that control polyamines synthesis, the changes of endogenous polyamines and physiological and biochemical characteristics of drought resistance of seedlings of phyllostachys edulis to clarify the regulation mechanism of polyamine to drought resistance in seedlings of phyllostachys edulis. The main results and conclusions care as follows:
     1. Under normal conditions, the Put content of seedling of phyllostachys edulis was higher than the content of the Spd and Spm, which was1.07times of the Spd and1.16times of the Spm. Under drought stress conditions, the Put content dropped significantly, whilst Spm and Spd increased first and then decreased but but contents of Spm and Spd were still significantly higher than control level. After applying0.1mM exogenous Spd, seedlings accumulated maximum endogenous Put, Spd and Spm reaching0.0247、0.0395and0.04661mg per gram in fresh weight, which was significantly higher than other treatments of concentration.By applying polyamines synthesis inhibitor, endogenous Put,Spd and Spm contents of seedling of phyllostachys edulis had downward trends and1mM MGBG significantly inhibit the synthesis of endogenous Put and Spm, Spd. The results show that the SAMDC is the key enzyme of polyamines synthesis in seedling of phyllostachys edulis, various types of polyamines can convert each other under drought stress:Endogenous Put was converted to Spd and Spm and exogenous Spd content of0.1mM could obviously improve the levels of endogenous Put, Spd and Spm of seedling of phyllostachys edulis.
     2. Under drought condition, content of chlorophyll (a+b) and Chla/Chlb were significantly inhibited, actual photochemical efficiency Yield and qP significantly decreased, while NPQ improved significantly. Application of exogenous0.5mM Spd could significantly increase the content of chlorophyll and carotenoids and improve actual photochemical efficiency Yield and qP.1.0mM MGBG could significantly reduce the content of all kinds of pigments. The results show that under drought stress,polyamines could raise the levels of photosynthetic pigments of seedling of phyllostachys edulis, improve photosynthetic performance, improve the capacity of drought resistance.
     3. With the strengthening of drought stress, Proline content continued to rise, whilst soluble protein, SOD、POD and CAT increased first and then decreased. Leaf relative water content decreased gradually and generation rate of super oxygen free radical increased,which reached67.85μmol·min-1·g-1under treatment of25%PEG.The generation rate is1.48times to control and reached a significant level. The cell membrane lipid peroxidation was enhanced and leaf relative conductivity and MDA content in the cell membrane also gradually improved lipid peroxidation as well.
     Under drought stress of20%PEG, Application of exogenous0.5mM Spd could significantly increase content of soluble protein and activity of SOD、POD and CAT, while content of Pro decreased significantly. Application of exogenous0.5mM Spd maximized the leaf relative water content. Generation rate of oxygen free radical reached45.33μmol·min-1·g-1, which decreased to75.68%of control and significant difference to control. This shows that application of exogenous0.5mM Spd decreased of membrane lipid peroxidation under drought stress. Application of exogenous1mM MGBG could significantly decrease content of soluble protein and activity of SOD、POD and CAT, while content of Pro increased significantly. Generation rate of oxygen free radical reached64.77μmol-min-1·g-1and the content of increased significantly. Results show that under drought stress polyamines can improve the ability of drought resistance of seedling of phyllostachys edulis through increase content of soluble protein and activity of SOD、POD and CAT and there is competition between proline synthesis and endogenous polyamines of seedling of phyllostachys edulis.
     4. The lenght of cDNA fragment from cloning SAMDC of seedling of phyllostachys edulis is1200bp. The sequence of the cDNA fragment is significant different to that from animal SAMDC. which shows high heterogeneity. To plants such as arabidopsis thaliana, rice and corn, the gene homology reaches75%or more,which is very conservative on the evolution of the species. Secondary structure of SAMDC gene of phyllostachys edulis is mainly random coil, which takes55.4%of secondary structure. Then α-helix takes20.1%and β-angle distribution area is24.6%. Tertiary structure and secondary structure of encoding protein coincide with the theory predicts and are Similar to the predictions of SAMDC protein of a variety of other plants.
     5. The express of SAMDC gene raised under drought stress. With the increase of applying concentration of exogenous Spd, SAMDC expression was significantly decreased, reaching the lowest point with treatment of0.5mM exogenous Spd. Polyamines synthesis competitive inhibitor spermine (D or L) could restrain the expression of SAMDC, but MGBG was significantly inhibit SAMDC's expression, this function is consistent with MGBG's characteristic which is SAMDC's inhibitors. The results also show that Seedling of Phyllostachys edulis can actively absorbed from exogenous polyamines to improve the drought-resistant ability.
     6. The express of DREB gene raised under drought stress, when exogenous Spd level of less than or beyond0.5mM, the Spd concentration with DRED2expression quantity and have a negatively correlated,but at the0.5mM. DREB2has a high expression significantly. Three kinds of polyamines synthesis inhibitor L-ARG, D-ARG. MGBG significantly reduce DREB2's expression level. It turned out that DREB2is transcription factor of seedling of phyllostachys edulis to fight with the drought. Low concentration of the Spd could ease the Seedling of Phyllostachys edulis drought stress, the amount of DREB2's express was dropped. But relatively high concentrations of the Spd may play the role of drought stress signaling and promote the expression of DREB2.
引文
安玉艳,梁宗锁,韩蕊莲.黄十高原3种乡土灌木的水分利用与抗旱适应性[J].林业科学,2011,(10):8-15.
    陈坤明,张承烈.干旱期间春小麦叶片多胺含量与作物抗旱性的关系[J].植物生理学报,2000,
    范叶青.经营强度和地形条件对毛竹林生态系统碳储量的差异影响分析[D]:浙江农林大学,2012.26(5):381-386
    关军锋,曹君霞,及华等。根施外源多胺抑制剂MGBG和D-Arg对小麦幼苗抗旱性的影响[J]。华北农学报,2007,22(5):24-26
    关军锋,刘海龙,李广敏.干旱胁迫下小麦幼苗根、叶多胺含量和多胺氧化酶活性的变化[J].植物生态学报,2003,27(5):655-660
    何奇江,汪全宏,翁甫金,吴蓉.毛竹笋用林供水试验研究初报[J].浙江林业科技,2001(05):17-19
    金善宝.中国小麦学[M].北京:中国农业出版社,1996:29-57.
    李强,杨洪强,沈伟.多胺含量及精胺和业精胺对盐胁迫下平邑甜茶膜脂过氧化的影响[J].北京林业大学学报,2011,33(6):173-176.
    李伟,韩蕾,钱永强,等.非生物逆境胁迫相关NAC转录因子的生物信息学分析[J].西北植物学报,2012,(3):454-464.
    刘广路,范少辉,官凤英,等.毛竹凋落叶组成对叶凋落物分解的影响[J].生态学杂志2011,(8):1598-1603.
    刘颖,王莹,龙萃,等.植物多胺代谢途径研究进展[J].生物工程学报,2011,27(2):147-155.
    刘永红,张丽静,张洪荣,等.△12-脂肪酸脱氢酶及其编码基因研究进展[J].草业学报,2011,(3):256-267.
    卢榕泉.抚育施肥措施对毛竹林笋产量的影响及效益分析[J].亚热带农业研究,2008,(4):261-263.
    裴丽丽,郭玉华,徐兆师,等.植物逆境胁迫相关蛋白激酶的研究进展[J].西北植物学报,2012,(5):1052-1061.
    蒲光兰,周兰英,胡学华等。干旱胁迫对金太阳杏叶绿素荧光动力学参数的影响[J]。干旱地区农业研究,2005,23(3):44-48
    山仑.科学应对农业干旱[J].干旱地区农业研究,2011,(2):1-5.
    商振清,王秀芬,周慧欣。亚精胺对提高玉米幼苗抗旱机理的研究[J]。河北农业大学学报,1996,19(3):60-63
    孙志勇,季孔庶。干旱胁迫对4个杂交鹅掌揪无性系叶绿索荧光特性的影响[J]。西北林学院学报,2010,25(4):35-39
    王晓云,李向东,邹琦。外源多胺、多胺合成前体及抑制剂对花生连体叶片哀老的影响[J]。中国农业科学,2000,33(3):30-35
    文李,刘盖,王坤,等.红莲型水稻二核期花粉蛋白质组学分析[J].华南师范大学学报(自然科学版),2012,(2):115-119.
    吴长艾,孟庆伟,邹琦等。小麦不同品种叶片对光氧化胁迫响应的比较研究[J]。作物学报,2003,29(3):339-344
    夏军,翟金良,占车生.我国水资源研究与发展的若干思考[J].地球科学进展,2011,(9):905-915.
    徐仰仓,王静,刘华,王根轩.外源精胺对小麦幼苗抗氧化酶活性的促进作用[J].植物生理学报,2001,27(4):349-352
    许大全,张玉忠,张荣铣。光合作用的光抑制[J]。植物生理学通讯,1997,35(6):237-243
    杨帆,苗灵凤,胥晓,等.植物对干旱胁迫的响应研究进展[J].应用与环境生物学报,2007,(4):586-591.
    杨瑰丽,杨美娜,陈志强,等.水稻抗旱机理和抗旱育种研究进展[J].中国农学通报,2012,(21):1-6.
    杨鑫光,傅华,李晓尔.干旱胁迫对霸王水分生理特征及细胞膜透性的影响[J].西北植物学报,2009,29(10):2076-2083
    应叶青,郭璟,魏建芬,等.干旱胁迫对毛竹幼苗生理特性的影响[J].生态学杂志,2011.30(2):262-266
    应叶青,郭璟,魏建芬,等.水分胁迫下毛竹幼苗光合荧光特性研究[J].北京林业大学学报,2009,31(6):128-133
    应叶青,魏建芬,解楠楠,等.自然低温胁迫对毛竹生理生化特性的影响[J].南京林业大学学报,2011,35(3):13:3-136
    余晓从,娜仁,张少英.钙信号在植物抗病性中的作用研究进展[J].中国农学通报,2012,28(3):12-16.
    岳艳玲,李广敏,商振清等.精胺和甲基乙二醛-双及D-精氨酸对水分胁迫下小麦幼苗内源多胺含量的影响[J].植物生理学通讯,1998,34(4):251-254
    张和臣,尹伟伦,夏新莉.非生物逆境胁迫下植物钙信号转导的分子机制[J].植物学通报,2007,(1):114-122.
    张木清,陈如凯.作物抗旱分子生理与遗传改良[M].科学出版社,北京,2005,70-72.
    张仁和,马国胜,柴海,等.干旱胁迫对玉米妙棋叶绿素荧光参数的影响[J].2010,28(6):171-175
    张守仁.叶绿素荧光动力学参数的意义及讨论[J].植物学通报,1999,16(4):444-448
    张永强,毛学森,孙宏勇等。干旱胁迫对冬小麦叶绿素荧光的影响[J].中国生态农业学报,2002,10(4):13-15
    赵美荣.扩展蛋白与植物激素调节的干旱胁迫下小麦细胞生长的关系研究[D]:山东农业大学,2011.
    周国模.毛竹林生态系统中碳储量、固定及其分配与分布的研究[D]:浙江大学,2006.
    Agarwal P K, Jha B. Transcription factors in plants and ABA dependent and independent abiotic stress signalling[J]. Biologia Plantarum,2010,54(2):201-212.
    Agarwal P, Agarwal P K, Joshi A J, et al. Overexpression of PgDREB2A transcription factor enhances abiotic stress tolerance and activates downstream stress-responsive genes[J]. Molecular biology reports,2010,37(2):1125-1135.
    Akhtar M, Jaiswal A, Taj G, et al. DREB1/CBF transcription factors:their structure, function and role in abiotic stress tolerance in plants[J]. Journal of Genetics,2012,91(3):385.
    Alcazar R, Planas J, Saxena T, et al. Putrescine accumulation confers drought tolerance in transgenic Arabidopsis plants over-expressing the homologous Arginine decarboxylase 2 gene[J]. Plant Physiology and Biochemistry,2010,48(7):547-552.
    Amin A A, Gharib F A E, El-Awadi M. et al. Physiological response of onion plants to foliar application of putrescine and glutamine[J]. Scientia Horticulturae,2011,129(3):353-360.
    Anjum S A, Farooq M, Xie X, et al. Antioxidant defense system and proline accumulation enables hot pepper to perform better under drought[J]. Scientia Horticulturae,2012,140(0):66-73.
    Banu M N A, Hoque M A, Watanabe-Sugimoto M, et al. Proline and glycinebetaine induce antioxidant defense gene expression and suppress cell death in cultured tobacco cells under salt stress[J]. Journal of Plant Physiology,2009,166(2):146-156.
    Bassard J, Ullmann P, Bernier F, et al. Phenolamides:Bridging polyamines to the phenolic metabolism[J]. Phytochemistry.2010.71(16):1808-1824.
    Boudsocq M, Lauri E Re C. Osmotic signaling in plants. Multiple pathways mediated by emerging kinase families[J]. Plant Physiology,2005,138(3):1185-1194.
    Cao X, Chen M, Xu Z, et al. Isolation and Functional Analysis of the bZIP Transcription Factor Gene TaABP1 from a Chinese Wheat Landrace[J]. Journal of Integrative Agriculture,2012,11(10): 1580-1591.
    Chandra Rai A, Singh M, Shah K. Effect of water withdrawal on formation of free radical, proline accumulation and activities of antioxidant enzymes in ZAT12-transformed transgenic tomato plants[J]. Plant Physiology and Biochemistry,2012,61(0):108-114.
    Chen H, Chen W, Zhou J, et al. Basic leucine zipper transcription factor OsbZIP16 positively regulates drought resistance in rice[J]. Plant Science,2012,193-194(0):8-17.
    Chen H, Li Z, Xiong L. A plant microRNA regulates the adaptation of roots to drought stress[J]. FEBS Letters,2012,586(12):1742-1747.
    Chen S, Cui X, Chen Y. et al. CgDREBa transgenic chrysanthemum confers drought and salinity tolerance[J]. Environmental and Experimental Botany,2011,74(0):255-260.
    Chen S, Liu G, Wang Y, et al. Cloning of a Calcium-Dependent Protein Kinase Gene NtCDPK12, and Its Induced Expression by High-Salt and Drought in Nicotiana tabacum[J]. Agricultural Sciences in China,2011,10(12):1851-1860.
    Chen S, Polle A. Salinity tolerance of Populus[J]. Plant Biology,2010,12(2):317-333.
    Chinnusamy V, Zhu J. Epigenetic regulation of stress responses in plants[J]. Current Opinion in Plant Biology,2009,12(2):133-139.
    Christmann A, Weiler E W, Steudle E, et al. A hydraulic signal in root-to-shoot signalling of water shortage[J]. Plant J,2007,52(1):164-174.
    Cui M, Zhang W, Zhang Q, et al. Induced over-expression of the transcription factor OsDREB2A improves drought tolerance in rice[J]. Plant Physiology and Biochemistry,2011,49(12): 1384-1391.
    Da Rocha I M A, Vitorello V A, Silva J S. et al. Exogenous ornithine is an effective precursor and the δ-ornithine amino transferase pathway contributes to proline accumulation under high N recycling in salt-stressed cashew leaves[J]. Journal of Plant Physiology,2012,169(1):41-49.
    de Campos M K F, de Carvalho K, de Souza F S, et al. Drought tolerance and antioxidant enzymatic activity in transgenic 'Swingle' citrumelo plants over-accumulating proline[J]. Environmental and Experimental Botany,2011,72(2):242-250.
    Deal R B, Henikoff S. Histone variants and modifications in plant gene regulation[J]. Current Opinion in Plant Biology,2011.14(2):116-122.
    Deng Y, Jiang J, Chen S, et al. Drought tolerance of intergeneric hybrids between Chrysanthemum morifolium and Ajania przewalskii[J]. Scientia Horticulturae,2012,148(0):17-22.
    Dobra J, Motyka V, Dobrev P, et al. Comparison of hormonal responses to heat, drought and combined stress in tobacco plants with elevated proline content[J]. Journal of Plant Physiology,2010,167(16): 1360-1370.
    Dobra J, Vankova R, Havlova M, et al. Tobacco leaves and roots differ in the expression of proline metabolism-related genes in the course of drought stress and subsequent recovery[J]. Journal of Plant Physiology,2011,168(13):1588-1597.
    Duan J, Zhang M, Zhang H, et al. OsMIOX, a myo-inositol oxygenase gene, improves drought tolerance through scavenging of reactive oxygen species in rice (Oryza sativa L.)[J]. Plant Science, 2012,196(0):143-151.
    Evans PT, Malmberg RL. Do polyamines have roles in plant development? Plant Mol. Biol,1989, 40:235-269
    Evans PT, Malmberg RL. Do polyamines have roles in plant development? Plant Mol. Biol,1989, 40:235-269
    Falasca G, Franceschetti M, Bagni N, et al. Polyamine biosynthesis and control of the development of functional pollen in kiwifruit[J]. Plant Physiology and Biochemistry,2010,48(7):565-573.
    Fedina I, Velitchkova M, Georgieva K, et al. UV-B-induced compounds as affected by proline and N'aCl in Hordeum vulgare L. cv. Alfa[J]. Environmental and Experimental Botany,2005,54(2): 182-191.
    Fuell C, Elliott K A, Hanfrey C C, et al. Polyamine biosynthetic diversity in plants and algae[J]. Plant Physiology and Biochemistry,2010,48(7):513-520.
    G K. Some mechanisms of damage and acclimation of the photosynthetic apparatus to high temperature[J]. Bulg Plant Physiology,1999,25:89-99.
    George S, Venkataraman G, Parida A. A chloroplast-localized and auxin-induced glutathione S-transferase from phreatophyte Prosopis juliflora confer drought tolerance on tobacco[J]. Journal of Plant Physiology,2010,167(4):311-318.
    Gerald B,Marilyn S,William GE,et al.Ultrastructural and biochemical bases of resurrection in the droug ht-tolerant vascular plant, Selaginella lepidophylla. Journal of Ultrastructure Research,1982, 78(3):269-282.
    Gomes F P, Oliva M A, Mielke M S, et al. Osmotic adjustment, proline accumulation and cell membrane stability in leaves of Cocos nucifera submitted to drought stress[J]. Scientia Horticulturae,2010,126(3):379-384.
    Gong D, Xiong Y, Ma B, et al. Early activation of plasma membrane H+-ATPase and its relation to drought adaptation in two contrasting oat (Avena sativa L.) genotypes[J]. Environmental and Experimental Botany,2010,69(1):1-8.
    Grafi G. Epigenetics in plant development and response to stress[J]. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms,2011,1809(8):351-352.
    Hadi F, Gilpin M, Fuller M P. Identification and expression analysis of CBF/DREB1 and COR15 genes in mutants of Brassica oleracea var. botrytis with enhanced proline production and frost resistance[J]. Plant Physiology and Biochemistry,2011,49(11):1323-1332.
    Hamdani S, Yaakoubi H, Carpentier R. Polyamines interaction with thylakoid proteins during stress[J]. Journal of Photochemistry and Photobiology B:Biology,2011a,104(1-2):314-319.
    Hamdani S, Yaakoubi H, Carpentier R. Polyamines interaction with thylakoid proteins during stress[J]. Journal of Photochemistry and Photobiology B:Biology,2011b,104(1-2):314-319.
    Handa A K, Mattoo A K. Differential and functional interactions emphasize the multiple roles of polyamines in plants[J]. Plant Physiology and Biochemistry,2010,48(7):540-546.
    Herrera A, Fernandez M D, Taisma M A. Effects of Drought on CAM and Water Relations in Plants of Peperomia carnevalii[J]. Annals of Botany,2000,86(3):511-517.
    Hu D, Wang S, Luo H, et al. Overexpression of MdVHA-B, a V-ATPase gene from apple, confers tolerance to drought in transgenic tomato[J]. Scientia Horticulturae,2012,145(0):94-101.
    Ibanez H, Ballester A, Munoz R, et al. Chlororespiration and tolerance to drought, heat and high illumination[J]. Journal of Plant Physiology,2010,167(9):732-738.
    Ikegami K, Okamoto M, Seo M, et al. Activation of abscisic acid biosynthesis in the leaves of Arabidopsis thaliana in response to water deficit[J]. J Plant Res,2009,122(2):235-243.
    Ioannidis N E, Kotzabasis K. Effects of polyamines on the functionality of photosynthetic membrane in vivo and in vitro[J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics,2007,1767(12): 1372-1382.
    Islam M M, Hoque M A, Okuma E, et al. Exogenous proline and glycinebetaine increase antioxidant enzyme activities and confer tolerance to cadmium stress in cultured tobacco cells[J]. Journal of Plant Physiology,2009,166(15):1587-1597.
    J K, O B, K H. Clcium Signals:the lead currency of plant information processing[J]. Plant Cell,2010, 31 (Mar).
    Jacobsen S, Liu F, Jensen C R. Does root-sourced ABA play a role for regulation of stomata under drought in quinoa(Chenopodium quinoa Willd.)[J]. Scientia Horticulturae,2009,122(2):281-287.
    Jiang Y, Liang G, Yu D. Activated Expression of WRK.Y57 Confers Drought Tolerance in Arabidopsis[J]. Mol Plant Microbe In,2012,5(6):1375-1388.
    K C, B F, Z C. Activation of hypersensitive cell death by pat hogen-induced receptor-like protein kinases from Arabidopsis[J]. Plant Mol. Biol,2004,56:271-283.
    Karan R, Subudhi P K. Overexpression of a nascent polypeptide associated complex gene (SaβNAC) of Spartina alterniflora improves tolerance to salinity and drought in transgenic Arabidopsis[J]. Biochemical and Biophysical Research Communications,2012,424(4):747-752.
    Kim J S, Mizoi J, Yoshida T, et al. An ABRE promoter sequence is involved in osmotic stress-responsive expression of the DREB2A gene, which encodes a transcription factor regulating drought-inducible genes in Arabidopsis[J]. Plant and Cell Physiology,2011,52(12):2136-2146.
    Kou H P, Li Y, Song X X, et al. Heritable alteration in DNA methylation induced by nitrogen-deficiency stress accompanies enhanced tolerance by progenies to the stress in rice (Oryza sativa L.)[J]. Journal of Plant Physiology,2011,168(14):1685-1693.
    Krishnamurthy L, Zaman-Allah M, Marimuthu S, et al. Root growth in Jatropha and its implications for drought adaptation[J]. Biomass and Bioenergy,2012,39(0):247-252.
    Ku H, Hu C, Chang H, et al. Analysis by virus induced gene silencing of the expression of two proline biosynthetic pathway genes in Nicotiana benthamiana under stress conditions[J]. Plant Physiology and Biochemistry,2011,49(10):1147-1154.
    Kwon C S, Lee D, Choi G, et al. Histone occupancy-dependent and-independent removal of H3K27 trimethylation at cold-responsive genes in Arabidopsis[Z].2009:60,112-121.
    Lata C, Prasad M. Role of DREBs in regulation of abiotic stress responses in plants[J]. Journal of experimental botany,2011,62(14):4731-4748.
    Lemcoff J H, Guarnaschelli A B, Garau A M, et al. Elastic and osmotic adjustments in rooted cuttings of several clones of Eucalyptus camaldulensis Dehnh. from southeastern Australia after a drought[J]. Flora-Morphology, Distribution, Functional Ecology of Plants,2002,197(2):134-142.
    Li D, Zhang Y, Hu X, et al. Transcriptional profiling of Medicago truncatula under salt stress identified a novel CBF transcription factor MtCBF4 that plays an important role in abiotic stress responses[J]. BMC plant biology,2011,11(1):109.
    Li G, Wan S, Zhou J, et al. Leaf chlorophyll fluorescence, hyperspectral reflectance, pigments content, malondialdehyde and proline accumulation responses of castor bean (Ricinus communis L.) seedlings to salt stress levels[J]. Industrial Crops and Products,2010,31(1):13-19.
    Li Y, Feng D, Zhang D, et al. Rice MAPK. phosphatase IBR5 negatively regulates drought stress tolerance in transgenic Nicotiana tabacum[J]. Plant Science,2012,188-189(0):10-18.
    Luan S. The CBL-CIPK network in plant calcium signaling[J]. Trends in Plant Science,2009,14(1): 37-42.
    Lucas S, Durmaz E, Akpinar B A, et al. The drought response displayed by a DRE-binding protein from Triticum dicoccoides[J]. Plant Physiology and Biochemistry,2011,49(3):346-351.
    Ma Q, Wang W, Li Y, et al. Alleviation of photoinhibition in drought-stressed wheat (Triticum aestivum) by foliar-applied glycinebetaine[J]. Journal of Plant Physiology,2006,163(2):165-175.
    Ma Y, Song W, Liu Z, et al. The dynamic changing of Ca2+ cellular localization in maize leaflets under drought stress[J]. Comptes Rendus Biologies,2009,332(4):351-362.
    Mascher R, Nagy E, Lippmann B, et al. Improvement of tolerance to paraquat and drought in barley (Hordeum vulgare L.) by exogenous 2-aminoethanol:effects on superoxide dismutase activity and chloroplast ultrastructure[J]. Plant Science,2005,168(3):691-698.
    Massacci A, Nabiv S M, Pietrosanti L, et al. Response of photosynthesis apparatus of cotton to the onset of drought stress under field conditions by gas change analysis and chlorophyll fluorescence imaging. Plant physiology and biochemistry,2008,46:189-195
    Mastan S G, Rathore M S, Bhatt V D, et al. Assessment of changes in DNA methylation by methylation-sensitive amplification polymorphism in Jatropha curcas L. subjected to salinity stress[J]. Gene,2012,508(1):125-129.
    Meyer P. DNA methylation systems and targets in plants[J]. FEBS Letters,2011,585(13):2008-2015.
    Miyazono K, Koura T, Kubota K, et al. Purification, crystallization and preliminary X-ray analysis of OsAREB8 from rice, a member of the AREB/ABF family of bZIP transcription factors, in complex with its cognate DNA[J]. Acta Crystallographica Section F:Structural Biology and Crystallization Communications,2012,68(4):0--0.
    Nakashima K, Ito Y, Yamaguchi-Shinozaki K. Transcriptional Regulatory Networks in Response to Abiotic Stresses in Arabidopsis and Grasses[J]. Plant Physiol,2009,149(1):88-95.
    Nakashima K, Takasaki H, Mizoi J, et al. NAC transcription factors in plant abiotic stress responses[J]. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms,2012,1819(2):97-103.
    Nuruzzaman M, Manimekalai R, Sharoni A M, et al. Genome-wide analysis of NAC transcription factor family in rice[J]. Gene,2010,465(1-2):30-44.
    Parre E, Ghars M A, Leprince A S, et al. Calcium signaling via phospholipase C is essential for proline accumulation upon ionic but not nonionic hyperosmotic stresses in Arabidopsis[J]. Plant physiology,2007,144(1):503-512.
    Peng H, Cheng H, Chen C, et al. A NAC transcription factor gene of Chickpea (Cicer arietinum), CarNAC3, is involved in drought stress response and various developmental processes[J]. Journal of Plant Physiology,2009,166(17):1934-1945.
    Peng H, Cheng H, Yu X, et al. Characterization of a chickpea (Cicer arietinum L.) NAC family gene, CarNAC5, which is both developmentally-and stress-regulated[J]. Plant Physiology and Biochemistry,2009,47(11-12):1037-1045.
    Peng X, Tang X, Zhou P, et al. Isolation and Expression Patterns of Rice WRKY82 Transcription Factor Gene Responsive to Both Biotic and Abiotic Stresses[J]. Agricultural Sciences in China, 2011,10(6):893-901.
    Peremarti A, Bassie L, Yuan D, et al. Transcriptional regulation of the rice arginine decarboxylase (Adc1) and S-adenosylmethionine decarboxylase (Samdc) genes by methyl jasmonate[J]. Plant Physiology and Biochemistry,2010,48(7):553-559.
    Prabhavathi V, Rajam M V. Mannitol-accumulating transgenic eggplants exhibit enhanced resistance to fungal wilts[J]. Plant Science,2007,173(1):50-54.
    Qiu S, Huang J, Pan L, et al. Salt Induces Expression of RH3.2A, Encoding an H3.2-type Histone H3 Protein in Rice (Oryza sativa L.)[J]. Acta Genetica Sinica,2006,33(9):833-840.
    Qiu Y. Yu D. Over-expression of the stress-induced OsWRKY45 enhances disease resistance and drought tolerance in Arabidopsis[J]. Environmental and Experimental Botany,2009,65(1):35-47.
    Samardzic J T. Nikolic D B, Timotijevic G S, et al. Tissue expression analysis of FeMT3, a drought and oxidative stress related metallothionein gene from buckwheat (Fagopyrum esculentum)[J]. Journal of Plant Physiology,2010,167(16):1407-1411.
    Santos M G, Ribeiro R V, Machado E C, et al. Effects of drought stress on photosynthetic parameters and leaf water potential of five common bean genotypes under water deficit. Biologia pantarum,2009,53(2):229-236
    Serafini-Fracassini D, Di Sandro A, Del Duca S. Spermine delays leaf senescence in Lactuca sativa and prevents the decay of chloroplast photosystems[J]. Plant Physiology and Biochemistry,2010,48(7): 602-611.
    Song Y, Ai C, Jing S, et al. Research Progress on Functional Analysis of Rice WRKY Genes[J]. Rice Science,2010,17(1):60-72.
    Stein H, Honig A, Miller G, et al. Elevation of free proline and proline-rich protein levels by simultaneous manipulations of proline biosynthesis and degradation in plants[J]. Plant Science, 2011,181(2):140-150.
    Szabados L. Savoure A. Proline:a multifunctional amino acid[J]. Trends in Plant Science,2010,15(2): 89-97.
    Szalai G, Horgosi S, Soos V, et al. Salicylic acid treatment of pea seeds induces its de novo synthesis[J]. Journal of Plant Physiology,2011,168(3):213-219.
    Tak H, Mhatre M. Cloning and molecular characterization of a putative bZIP transcription factor VvbZIP23 from Vitis vinifera[J]. Protoplasma,2012:1-13.
    Takahashi T, Kakehi J I. Polyamines:ubiquitous polycations with unique roles in growth and stress responses[J]. Annals of botany,2010,105(1):1-6.
    Tang W, Peng X, Newton R J. Enhanced tolerance to salt stress in transgenic loblolly pine simultaneously expressing two genes encoding mannitol-1-phosphate dehydrogenase and glucitol-6-phosphate dehydrogenase[J]. Plant Physiology and Biochemistry,2005,43(2):139-146.
    Tassoni A. Bagni N, Ferri M, et al. Helianthus tuberosus and polyamine research:Past and recent applications of a classical growth model[J]. Plant Physiology and Biochemistry,2010,48(7): 496-505.
    Toumi I. Moschou P N, Paschalidis K A, et al. Abscisic acid signals reorientation of polyamine metabolism to orchestrate stress responses via the polyamine exodus pathway in grapevine[J]. Journal of Plant Physiology,2010,167(7):519-525.
    Tsugama D, Liu S, Takano T. Drought-induced activation and rehydration-induced inactivation of MPK6 in Arabidopsis[J]. Biochemical and Biophysical Research Communications,2012,426(4): 626-629.
    Uzilday B, Turkan 1, Sekmen A H, et al. Comparison of ROS formation and antioxidant enzymes in Cleome gynandra (C4) and Cleome spinosa (C3) under drought stress[J]. Plant Science,2012, 182(0):59-70.
    Vanyushin B F, Ashapkin V V. DNA methylation in higher plants:Past, present and future[J]. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms,2011,1809(8):360-368.
    Vera-Sirera F, Minguet E G, Singh S K, et al. Role of polyamines in plant vascular development[J]. Plant Physiology and Biochemistry,2010,48(7):534-539.
    Vinocur B, Altman A. Recent advances in engineering plant tolerance to abiotic stress:achievements and limitations[J]. Current Opinion in Biotechnology,2005,16(2):123-132.
    Wang B, Zhang Q, Liu J, et al. Overexpression of PtADC confers enhanced dehydration and drought tolerance in transgenic tobacco and tomato:Effect on ROS elimination[J]. Biochemical and Biophysical Research Communications,2011a,413(1):10-16.
    Wang B, Zhang Q, Liu J, et al. Overexpression of PtADC confers enhanced dehydration and drought tolerance in transgenic tobacco and tomato:Effect on ROS elimination[J]. Biochemical and Biophysical Research Communications,2011b,413(1):10-16.
    Wang H, Siopongco J, Wade L J, et al. Fractal analysis on root systems of rice plants in response to drought stress[J]. Environmental and Experimental Botany,2009,65(2-3):338-344.
    Wimalasekera R, Tebartz F, Scherer G F E. Polyamines, polyamine oxidases and nitric oxide in development, abiotic and biotic stresses[J]. Plant Science,2011,181(5):593-603.
    Xiong Y, Li F, Zhang T, et al. Evolution mechanism of non-hydraulic root-to-shoot signal during the anti-drought genetic breeding of spring wheat[J]. Environmental and Experimental Botany,2007, 59(2):193-205.
    Zentgraf U, Laun T, Miao Y. The complex regulation of WRK.Y53 during leaf senescence of Arabidopsis thaliana[J]. European Journal of Cell Biology,2010,89(2-3):133-137.
    Zhang H, Liu W, Wan L, et al. Functional analyses of ethylene response factor JERF3 with the aim of improving tolerance to drought and osmotic stress in transgenic rice[Z].2010:19,809-818.
    Zhang J Y, Qu S C, Du X L, et al. Overexpression of the Malus hupehensis MhTGA2 Gene, a Novel bZIP Transcription Factor for Increased Tolerance to Salt and Osmotic Stress in Transgenic Tobacco[J]. International Journal of Plant Sciences,2012,173(5):441-453.
    Zhao C, Guo L, Jaleel C A, et al. Prospectives for applying molecular and genetic methodology to improve wheat cultivars in drought environments[J]. Comptes Rendus Biologies,2008,331(8): 579-586.
    Zhao X, Lei H, Zhao K, et al. Isolation and characterization of a dehydration responsive element binding factor MsDREBA5 in Malus sieversii Roem.[J]. Scientia Horticulturae,2012,142(0): 212-220.
    Zheng X, Chen B, Lu G, et al. Overexpression of a NAC transcription factor enhances rice drought and salt tolerance[J]. Biochemical and Biophysical Research Communications,2009,379(4):985-989.
    Zhou M, Ma J, Zhao Y, et al. Improvement of drought and salt tolerance in Arabidopsis and Lotus corniculatus by overexpression of a novel DREB transcription factor from Populus euphratica[J]. Gene,2012,506(1):10-17.
    Zhou Q, Yu B. Changes in content of free, conjugated and bound polyamines and osmotic adjustment in adaptation of vetiver grass to water deficit[J]. Plant Physiology and Biochemistry,2010,48(6): 417-425.
    Zhu Y, Dong A, Shen W. Histone variants and chromatin assembly in plant abiotic stress responses[J]. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms,2012,1819(3-4):343-348.
    Zou J, Liu C, Liu A, et al. Overexpression of OsHsp17.0 and OsHsp23.7 enhances drought and salt tolerance in rice[J]. Journal of Plant Physiology,2012,169(6):628-635.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700