用户名: 密码: 验证码:
细菌纤维素高产菌株高压诱变选育及其机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
细菌纤维素具有高结晶度、高纯度、机械性能良好、持水透水性强、生物可降解性和合成可调控性等优良特性,纤维丝粗细度可达纳米级(纤维直径0.01~0.1um),广泛应用于食品、医学和器官再造、高级造纸、高档声学器材等领域。未来细菌纤维素在各行各业的应用将不断扩大,需求量将迅速增长而供不应求,因此,如何提高细菌纤维素产量是科学领域亟待解决的问题。优化培养基、改进发酵条件和培育高产菌株是提高纤维素产量的常用手段。其中,选育高产菌株是解决高产问题的根本,而高压诱变是其最为有效的途径之一。在细菌纤维素高产菌株的诱变育种中,高静水压诱变克服了传统物理诱变(如UV或X-射线等)的辐射性和化学诱变(如DES、亚硝基胍、氯化锂等)的毒性,成为重要的诱变育种方法之一。在超高压(P≥100MPa)环境中,微生物细胞形态、细胞膜和细胞壁都可能发生变化,它也会引起细胞内生化反应,还可改变微生物的基因表达、核酸结构及其生物学功能,这在微生物菌种诱变方面具有很大的应用潜力。
     本研究首先从本实验室自制荞麦醋中筛选出一株性能优良的纤维素产生菌野生菌株J2,然后对其进行高静水压诱变,从突变菌株中成功筛选出一株纤维素产量更高且传代稳定的突变菌株M_(438)。进而优化了两株菌生产纤维素的发酵培养基及培养条件,并测定和对比了所产纤维素的各项指标及性能,继而对两株菌的形态特征和生理生化特征进行了研究比较,结合系统发育分析对两株菌做了菌种鉴定,最后通过AFLP分子标记技术在DNA水平对细菌纤维素产生菌的高压诱变机理进行初步探讨,得到了以下主要研究结果:
     (1)从自制荞麦醋中分离出了性质稳定的纤维素产生菌野生菌株J2,并对其种子培养基及培养条件、发酵培养基及发酵条件进行优化。菌株J2最优种子培养基配方为:葡萄糖7%,酵母膏1%,K_2HPO_40.5%,MgSO_47H2O1.5%,无水乙醇2%(v/v),最佳培养条件为:温度30℃,种龄24h、接种量7%、摇床转速150r/min。优化后的发酵培养基为:碳源3%(葡萄糖:蔗糖=1:2),酵母膏0.33%,FeSO_40.4%,ZnSO_40.09%,K_2HPO_40.1%,MgSO_47H_2O1%,苹果酸0.3%,无水乙醇0.7%(v/v)。细菌纤维素的产量为10.41g/100mL,是优化前(8.52g/100mL)的1.22倍。最佳发酵周期为7d,此时纤维素产量约为12g/100mL。
     (2)对野生菌株J2进行高静水压诱变处理,从突变株中筛选出纤维素产量高且传代稳定的突变菌株M_(438)。高静水压诱变的最适条件为压力250MPa,时间15min,温度25℃。突变菌株M_(438)的种子培养基和种子培养时摇床转速仍用其出发菌株优化的种子培养基配方及培养条件,优化后的种龄为24h,接种量为9%。优化后的发酵培养基为:碳源5%(葡萄糖/蔗糖=4:1),酵母浸出汁1.25%,CaCl_20.15%,ZnSO_40.2%,K_2HPO_40.2%,MgSO_47H_2O0.93%,富马酸0.3%,无水乙醇浓度为0.5%(v/v)。细菌纤维素的产量为28.99g/100mL,是优化前(15.75g/100mL)的1.84倍,是出发菌株J2产量(10.41g/100mL)的2.78倍。最佳发酵周期为7d,此时纤维素产量约为34g/100mL。
     (3)确定了菌株J2和菌株M_(438)所产凝胶状膜的主要成分是纤维素,纤维素含量分别为89.32%和89.35%。菌株J2所产细菌纤维素的各项理化指标分别为:纤维素湿膜含水量为98.68%,干膜复水率为81.76%,蛋白质含量为7.69%,脂肪含量为1.65%,持水力是其干膜的94倍,释水率为56h。菌株M_(438)所产细菌纤维素的各项理化指标分别为:纤维素湿膜含水量为98.73%,干膜复水率为80.63%,蛋白质含量为7.83%,脂肪含量为1.62%,持水力是其干膜的105倍,释水率为80h。菌株J2和菌株M_(438)所产细菌纤维素为致密的网状结构,结晶度分别为78%和82%,Iα型纤维素含量分别为52%和62%,最大抗拉强度分别为55.8MPa和78.4MPa。
     以上数据说明,菌株M_(438)所产的细菌纤维素比菌株J2所产细菌纤维素更具有优越性;高静水压不仅使细菌纤维素产生菌突变菌株的纤维素产量提高了,也使纤维素性能增强了。
     (4)通过表型测定和遗传学分类鉴定,菌株J2为典型Gluconacetobacter hansenii的变种,菌株M_(438)为Gluconacetobacter hansenii的亚种。虽然野生菌株J_2和高静水压诱变菌株M_(438)的最优发酵培养基配方以及纤维素产量均不同,但两者表型特征和系统发育关系完全相同。说明高静水压使纤维素产生菌代谢途径中的某些生化过程发生了改变,但并没有改变菌体的个体形态、群体形态、发酵状态、生理生化特征以及遗传关系。
     (5)建立了适合高静水压诱变前后葡糖醋杆菌菌株的AFLP多态性分析的反应体系,即双酶切反应模板DNA用量为600ng、反应时间为8h,连接反应时间为8h或过夜,预扩增反应的产物稀释500倍用于选择性扩增最为理想,筛选出了E+T/M+G为适合葡糖醋杆菌菌株高静水压诱变前后菌株多态性分析的引物组合。通过AFLP多态性分析,高静水压处理得到的纤维素高产突变菌株M_(438)是缺失突变株,这唯一的缺失片段的补码序列编码的小多重抗药蛋白cl00910能一定程度地抑制细菌纤维素的分泌,因而经高静水压诱变的缺失突变菌株M_(438)的细菌纤维素产量比它的野生菌株J2的纤维素产量显著提高。
Due to high crystallinity, high purity, good mechanical property, strong waterpermeability and water holding capacity, well biodegradability and synthesis of controlled,and nanometer size of thin fibrils (diameter0.01~0.1um), bacterial cellulose (BC) was widelyused in the areas of food, medicine, organ reengineering, senior paper making and high-gradeacoustics etc. Because of the expanding application and the rapidly increased demand of BCin all walks of life in the future, how to increase the yield of BC comes to be a problemneeded to solve exigently. Optimizing culture medium, improving the conditions offermentation and cultivating high yield strains are the commonly used method of increasingBC yield. Cultivating high yield strains is solving the root of the high yield problem. Highpressure mutagenesis is one of the most effective ways. Among the methods of high-yield BCproducing strain mutation breeding, high hydrostatic pressure (HHP) technology bacomesone of the important ways of mutation breeding because of overcoming the shortages ofradioactive of traditional physical mutation (such as UV or X-ray, etc) and toxic of chemicalmutation (such as DES, nitrosoguanidine, lithium chloride and so on). Ultra high pressure (P≥100MPa), which can make changes in microbial cells form, cell membrane and cell wall,and cause intracellular biochemical reactions, even vary the microbial gene expression andthe nucleic acid structure and biological function, has great application potency in microbialmutation breeding.
     In the paper, a wild BC producing strain J2with good property was screened fromhomemade buckwheat vinegar in our laboratory firstly. Wild strain J2was treated by highhydrostatic pressure, then a mutant strain M_(438)with higher yield BC production and wellstablity in subculture was isolated successfully from all mutant strains. Both the fermentationmedium and the culture conditions of strain J2and strain M_(438)were optimized. Sequently, allindex parameters and properties of BC produced by strain J_2and strain M_(438)were measuredand compared. Next, the characterizations of morphology and physiology-biochemistry ofstrain J_2and strain M_(438)were researched and compared, and then the two strains wereidentified combining the phylogenetic analysis. At last, high pressure mutagenesismechanism of HHP technology on BC producing strain was primarily discussed in the level of DNA based on amplified fragment length polymorphism (AFLP). The main researchresults are as follows:
     (1) The wild BC producing strain J2with stable property was screened from homemadebuckwheat vinegar. Its seed culture medium, fermentation medium and culture conditionswere optimized. The optimum seed culture medium contained D-glucose7%, yeast extract1%, K_2HPO_40.5%, MgSO_4·7H_2O1.5%, ethanol2%(v/v). The optimum cultivation time was24h at30℃with the shaking speed of150r/min in constant temperature shaking incubator.The optimized inoculation amount was7%. The optimum fermentation medium containedcarbon source3%(glucose:sucrose=1:2), yeast extract0.33%, FeSO_40.4%, ZnSO_40.09%,K2HPO_40.1%,MgSO_47H_2O1%, malic acid0.3%and anhydrous alcohol0.7%(v/v). Underthese conditions, BC yield could reach to10.41g/100mL, whch is1.22times as that under theconditions with no optimization (8.52g/100mL). The optimum fermentation time was7d, andthe yield of BC was about12g/100mL at this time.
     (2) After treating the wild BC producing strain J2by HHP, a mutated strain M_(438)withhigher yield of BC and stable property during serial passage was isolated from the mutants.The optimal conditions of strain J2mutated by HHP were under250MPa with15min at25℃.Srtain M_(438)cultured in the same seed culture medium and the same culture conditions withstrain J2’s. The optimum cultivation time was24h at30℃with the shaking speed of150r/min in constant temperature shaking incubator. The optimized inoculation amount was9%.The optimum fermentation medium contained carbon source5%(glucose:sucrose=4:1),yeast leaching juice1.25%, CaCl20.15%, ZnSO_40.2%, K2HPO_40.2%,MgSO_47H_2O0.93%,fumaric acid0.3%and anhydrous alcohol0.5%(v/v). Under these conditions, BC yield couldreach to28.99g/100mL, whch is1.84times as that under the conditions with no optimization(15.75g/100mL). The optimum fermentation time was7d, and the yield of BC was about34g/100mL at this time.
     (3) The main component of the gelatinous membrane produced by strain J2and strainM_(438)was confirmed as cellulose, and the content of it produced by the two strains were89.32%and89.35%, respectively. The other physical and chemical characters of BCproduced by strain J2were as follows: water content of wet BC was98.68%, rehydration rateof dry BC after absorbing water was81.76%, protein content of dry BC was7.69%, fatcontent of dry BC was1.65%, water holding capacity of wet BC was as94times as that ofdry BC, and water release rate of wet BC was56h. All above physical and chemicalcharacters of BC produced by strain M_(438)were98.73%,80.63%,7.83%,1.62%,105timesand80h, respectively. BC produced by strain J2and strain M_(438)was observed as dense mesh structure.The crystallinity indexes were78%and82%, respectively. The cellulose Iα contents were52% and62%, repectively. And the maximum tensile strength were55.8MPa and78.4MPa,repectively.
     The data above indicated that BC produced by strain M_(438)has more advantages thanthat produced by strain J_2. Not only the yield of BC of the mutated strain treated by HHP hasincreased, but the properties were enhanced.
     (4) Based on identification through phenotype and hereditism, strain J_2was varietas oftypical Gluconacetobacter hansenii strain, while strain M_(438)was subspecies of Gluconaceto-bacter hansenii. The components of optimum fermentation medium, culture conditions andthe BC yield of strain J_2and strain M_(438)were not the same, but both phenotypiccharacterization and phylogenetic relationships were completely the same. It confirmed thatHHP treatment could make changes in some biochemical processes in the bacteria metabolicpathway of BC producing strain, but it couldnot change the bacteria individual form, thegroup form, the fermentation state, the physiological and biochemical characteristics andthe genetic relationship.
     (5) Amplified fragment length polymorphism (AFLP) reaction systerm was constructed.It was feasible to conduct the AFLP analysis of Gluconacetobacter sp. and its mutated straintreated by HHP. The optimum technical parameters of the AFLP reaction systerm were asfollows:600ng genomic DNA served as template should be used in the digestion system withthe reaction time8hours, the time of ligation should be8h or overnight (more than10h),500times of dilution for the products of pre-amplification for selective amplification, and1pairsof primers (M+G/E+T) were selected which adapt the AFLP reaction system of Glucona-cetobacter sp. and its mutated strain treated by HHP. On the basis of AFLP analysis, strainM_(438)with higher BC yield was a deletion mutant induced by HHP, and the complement genesof the only deleted sequence code small multidrug resistance protein c100910, which inhibitBC producing in a certain extent. Therefore, the deletion mutant M_(438)muteted by HHP hasmuch higher BC yield than its initial strain J_2.
引文
北京师范大学生物系微生物教研组.1981.怎样观察与培养微生物.北京:北京师范大学出版社,153~157
    陈代杰,朱宝泉.1994.工业微生物菌种选育与发酵控制技术.上海:上海科学技术文献出版社,261~265
    陈万权,漆小泉,Nikes R E.1999.利用AFLP遗传连锁图定位大麦苗期对叶锈病的部分抗性基因.遗传学报,26(6):690~694
    陈希.2006.产双酶假单胞杆菌的诱变选育及发酵条件的优化[硕士学位论文].长沙:中南林业科技大学
    池振明.2005.现代微生物生态学.科学出版社,北京:44~174
    丁振,刘建龙,王瑞明.2006.细菌纤维素膜固定化海藻糖合酶的研究.中国酿造,9:19~23
    东秀珠,蔡妙英.1999.常见细菌系统鉴定手册.北京:科学出版社,135~137
    鄂永春,蔡可,区伟乾.1997.生物学词典.北京:科学出版社:124
    冯静,施庆珊,欧阳友生,陈仪本.2009.葡糖醋杆菌的研究进展.化学与生物工程,26:10~13
    高翔,李炯,阮康成.2001.高压力诱变的耐压大肠杆菌.生物化学与生物物理学报,33(1):77~81
    葛含静,杜双奎,林德慧,向进乐,李志西.2011.葡糖醋杆菌高静水压诱变株AFLP体系的建立.西北农林科技大学学报(自然科学版),(02):171~177
    郝常明,罗讳.2002.细菌纤维素——一种新兴的生物材料.纤维素科学与技术,10(2):56~61
    何建新,王善元.2008.天然纤维素的核磁共振碳谱表征.纺织学报,29(5):1~5
    胡晓丽,周春江,岳良松.2006.三倍体毛白杨无性系的AFLP分子标记鉴定.北京林业大学学报,28(2):9~14
    胡晓燕,曲音波.1998.细菌纤维素的研究进展.纤维素科学与技术,6(4):56~64
    黄少伟.2006.松树分子标记辅助育种研究进展.林业科学研究,19(6):799~806
    黄韬睿,李玉锋,王鑫.2009. AFLP技术及其在微生物研究中的应用. http://www.gongkong.com/Common/WebModule/Media/MediaColumn.aspx?Type=mediapaper&Pid=6-AE58-21670CC3F102&Id=2009010610552500006[2009-01-06]
    贾建航,李传友,金德敏.1999.香菇空间诱变突变体的分子生物学鉴定研究.菌物系统, l8(1):20~24
    贾士儒,傅强,张恺瑞,陈贵斌.2001.葡萄糖氧化杆菌发酵生产细菌纤维素的方法.中国发明专利,1281051A
    贾士儒,欧竤宇,傅强.2000.新型生物材料一一细菌纤维素.食品与发酵工业,27(1):54~58
    贾士儒,欧竤宇.2001.细菌纤维素的生物合成及其应用.化工科技市场,(2):21~23
    贾士儒,张恺瑞,胡惠仁,欧站宇,谢来苏.2002.细菌纤维素在草纸浆中应用的探讨.中国造纸学报,27(2):74~77
    蒋红军.2005.醋酸高产菌株的选育及代谢控制发酵的研究.中国酿造,1:25~27
    柯为.2002.嗜极生物中的嗜高压生物.生物工程学报,18(4):51~53
    克莱姆迪特尔,马尔斯希尔维亚,舒曼迪特尔,乌德哈尔特乌尔丽克.2003.制备用作生物材料、特别是用作显微成形外科中的成形微生物纤维素的方法和装置.中国发明专利,1401005A
    李桂双,白成科,段俊,彭长连,翁克难,刘曙东.2003.静水高压处理对水稻植株生理特性的影响.高压物理学报,17(2):122~128
    李海星,曹郁生,付琳琳.2005. AFLP技术对发酵酸面团中乳酸菌多态性的研究.微生物学杂志,25(5):50~53
    林祥木.2004.醋酸菌纤维素高产菌株的诱变选育及其发酵特性研究[博士学位论文].福州:福建农林大学
    凌云.2006.细菌纤维素产生菌的筛选、初步鉴定、培养基的优化及GDH基因缺失体的研究[硕士学位论文].南宁:广西大学
    刘邻渭,黄晓钰.2002.食品化学综合实验.北京:中国农业大学出版社,115~118,137~140
    刘四新,李从发,李枚秋,方仲根,康丽茹.1999.纳塔产生菌的分离鉴定和发酵特性研究.食品与发酵工业,25(6):37~41
    刘四新,李枚秋,方仲根.1999.椰子纳塔发酵条件研究.食品与发酵工业,25(1):36~39
    刘四新,李枚秋.1998.椰子纳塔发酵条件研究.食品与发酵工业,25(1):36~39
    刘四新,汪全伟,李从发.2009.振荡发酵生产球形细菌纤维素.热带作物学报,30(06):885~890
    马承铸,顾真荣.2000.醋菌纤维素高产菌株筛选和菌物鉴定.上海农业学报,16(3):78~82
    马承铸,顾真荣.2001.细菌纤维素生物理化特性和商业用途.上海农业学报,17(4):93~98
    马承铸.2001.生物有机纳米材料-细菌纤维素.精细与专用化学品,(18):14~17
    马霞,陈世文,王瑞明,陆大年,贾士儒.2006.纳米材料细菌纤维素对大鼠皮肤创伤的促愈作用.中国临床康复,10(37):45~47
    马霞.2003.发酵生产细菌纤维素及其作为医学材料的应用研究[博士学位论文].天津:天津科技大学
    马玉花,杨吉安,贾万忠,冶贵生.2004.中国不同地区杜仲rDNA的ITS序列分析.西北林学院学报,19(4):16~19
    潘颖,朱平,潘元风,王炳,董朝红,张建波.2007.多糖改性细菌纤维素的制备.合成纤维,(6):28~31,43
    齐香君,苟金霞,邱雅楠,张华.2004.细菌纤维素合成菌株的分离与生产工艺研究.纤维素科学与技术,12(l):27~32,36
    秦微微,迟玉杰.2006.木醋杆菌发酵培养基优化及发酵方式的探讨.中国酿造,(6):33~36
    青岛海博.2010a.其他生化试验培养基(上). http://www.hopebiol.com/asphtml/refere3204.htm[2010-8-18]
    青岛海博.2010b.碳源和氮源利用试验培养基. http://www.hopebiol.com/asphtml/refere3203.htm[2010-8-18]
    青岛海博.2010c.其他生化试验培养基(下). http://www.hopebiol.com/asphtml/refere3205.htm[2010-8-18]
    赛拉菲卡G C,莫尔米诺R,奥斯特G A,伦兹K E,克勒K P.2003.处理慢性创伤的微生物纤维素创伤敷料.中国发明专利,1453043A
    邵伟,黄斌,胡潘.2002a.细菌纤维素在发酵香肠生产中的应用.肉类工业,6:10~12
    邵伟,乐超银,唐明,熊泽.2002b.醋酸菌对甲醇的净化及细菌纤维素合成研究.生物技术,12(6):18~20
    邵伟,唐明,黎妹华,熊泽.2002c.细菌纤维素在发酵植物蛋白冰淇淋中的应用.食品科学,23(8):167~169
    邵伟,唐明,熊泽,乐超银.2004.醋酸菌对乙醛的降解及细菌纤维素合成作用的研究.中国酿造,(5):13~15
    申斯乐.2006.高静水压对种子植物及真菌的影响和诱变作用[硕士学位论文].长春:吉林大学
    石岗,严方贵,宋维平.2002.2,5-二酮基-D-葡萄糖酸产生菌种发酵条件研究.华北农学报,17(2):132~136
    孙晓波,郑鹏,白净,任珂,丁献宾.2004.玉米粉糖化液流变性的研究.郑州工程学院学报,25(1):5~68
    唐丽杰.2004.微生物学试验.黑龙江哈尔滨:哈尔滨工业大学出版社,11:89~91
    王岁楼,李国富,王琼波,吴晓宗,段旭昌.2005.紫外和超高压诱导漆酶产生菌变异的对比研究.郑州轻工业学院学报(自然科学版),20(3):39~42
    王志国,钟春燕,王锡彬,郑瑞.2009.椰子水自然发酵条件对细菌纤维素生产的影响.中国酿造,(4):32~34
    旺达姆E J,贝特斯S De,斯泰因比歇尔A.2004.生物高分子(第5卷).北京:化学工业出版社,37~87
    微生物鉴定的技术与方法——遗传学分类法.2009. http://www.cnferment.net/Article/shjc/200912/920.html
    毋锐琴.2008.高产细菌纤维素菌株的筛选及发酵工艺优化[硕士学位论文].杨凌:西北农林科技大学
    吴周新,王锡彬,林强,尹学琼,庞素娟,冯玉红,孙中亮.2005.一种木醋杆菌的复壮方法.中国发明专利,200510070365.2
    武汉大学、复旦大学生物系微生物教研室.1991.微生物学.北京:高等教育出版社,160~165
    熊强.2001.细菌纤维素生产菌的筛选及其产物性质研究[硕士学位论文].南京:南京农业大学
    修慧娟,王志杰,李金宝.2004.细菌纤维素对麦草浆的增强实验.中华纸业,25(9):31
    修慧娟,王志杰,李金宝.2005a.细菌纤维素纤维对纸张性能的影响.中国造纸,24(3):14~17
    修慧娟,王志杰,李金宝.2005b.细菌纤维素用于制浆造纸的研究.西南造纸,34(2):23~24
    薛璐,杨谦,李晓东.2004.大豆乳清细菌纤维素在冰淇淋中的应用.食品与发酵工业,30(6):122~124
    杨革.2004.微生物学试验教程.北京:科学出版社,5:159~170
    杨加志.2007.细菌纤维素应用于质子交换膜的研究[硕士学位论文].南京:南京理工大学
    杨甲平.2009.细菌纤维素高产菌株超高压诱变选育及冻干保藏研究[硕士学位论文].杨凌:西北农林科技大学
    杨礼富.2003.细菌纤维素研究新进展.微生物学通报,30(4):95~98
    易生物实验.2010a. http://shiyan.ebioe.com/60691.htm
    易生物实验.2010b. http://shiyan.ebioe.com/60678.htm
    尹佟明,黄敏仁.1997. AFLP分子标记及其在植物育种上的应用.生物工程进展,17:11~16
    余晓斌,卞玉荣,全文海,刘伟.1999b.细菌纤维素高产菌的选育.纤维素科学与技术,7(4):63~66
    余晓斌,卞玉荣,全文海.1999.生产细菌纤维素的最适培养基成分.生物技术,9(3):27~30
    余晓斌,卞玉荣,全文海.1999a.细菌纤维素的商业化用途.纤维素科学与技术,7(3):42~46
    俞俊棠,唐孝宣.1991.生物工艺学.上海:华东化工学院出版社,102~104
    张德强,张志毅,杨凯.2000.AFLP技术在林木遗传改良中的应用.北京林业大学学报,22(6):75~78
    张纪忠.1990.微生物分类学.上海:复旦大学出版社,20~41
    张晓利.2005.细菌纤维素衍生物的合成研究[硕士学位论文].海口:海南大学
    赵琼.2005.木醋杆菌C5紫外诱变育种及其培养基优化[硕士学位论文].哈尔滨:哈尔滨工业大学
    朱名阳.2004.产细菌纤维素菌株选育及细菌纤维素性质研究[硕士学位论文].南京:南京理工大学
    朱清梅,冯玉红,林强,吴敏,魏爱平.2010.利用椰子水生物合成CMC改性细菌纤维素.精细化工,27(07):654~658
    Abe F, Horikoshi K.2000. Metabolic changes in glycolysis in yeast induced by elevated hydrostaticpressure—A study in baro-(piezo-) physiology. Manghnani M H, Nellis W J, Nicol M F (Eds).Science and Technology of High Pressure. Universities press, Hyderabad, India,335~337
    Amikam D, Benziman M.1989. Cyclic diguanylic acid and cellulose synthesis in Agrobacteriumtumefaciens. Journal of Bacteriology,171:6649~6665
    Anicuta S G, Marta S F, Florin T, Traian Z, Elena G.2007. Effect of electron beam irradiation on bacterialcellulose membranes used as transdermal drug delivery systems. Beam Interactions With Materialsand Atoms, DOI:10.1016/j.nimb.2007.09.033
    Asada S, Sotani T, Arabas H J, Kubota.2000. Effect of high pressure on germination of bacterial spore.Manghnani M H, Nellis W J, Nicol M F (Eds). Science and Technology of High Pressure.Universities Press, Hyderabad, IndiaB ckdahl H, Esguerra M, Delbro D, Risberg B, Gatenholm P.2008. Engineering microporosity inbacterial cellulose scaffolds. Journal of Tissue Engineering and Regenerative Medicine,2:320~330B ckdahl H, Helenius G, Bodin A, Nannmark U, Johansson B R, Risberg B, Gatenholm P.2006.Mechanical properties of bacterial cellulose and interactions with smooth muscle cells. Biomaterials,27:2141~2149
    Bae S O, Sugano Y, Ohi K, Shoda M.2004a. Features of bacterial cellulose synthesis in a mutantgenerated by disruption of the diguanylate cyclaseⅠgene of Acetobacter xylinum BPR2001. AppliedMicrobiology and Biotechnology,65(3):315~322
    Bae S O, Sugano Y, Shoda M.2004b. lmprovement of bacterial cellulose production by addition of agar ina jar fermentor. Journal of Bioscience and Bioengineering,97(1):33~38
    Balny C, Hayashi R, Heremans K, Masson P (Eds).1992. High pressure and biotechnology.INSERM/Libbey, Paris
    Balny C, Masson P, Heremans K.2002a. High pressures on biological macromolecules: from structuralchanges to alteration of cellular processes. Biochimica et Biophysica Acta,1595:3~10
    Balny C, Masson P, Heremans K (Eds).2002b. Frontiers in high pressure biochemistry and biophysics.Elsevier, Amsterdam
    Banly C, Masson P, Travers F.1989. Some recent aspects of the use of high-pressure for proteininvestigation in solution. High Pressure Research,2:1~28
    Barciszewski J, Jurzak J, Porowski S, Specht T, Erdmann V A.1999. The role of water structure inconformational changes of nucleic acids in ambient and high pressure conditions. European Journalof Biochemistry,260:293~307
    Bartlett D H.2002. Pressure effect on in vivo microbial processes. Biochemistry and Biophysics Acta,1595:367~381
    Barud H S, Barrios C, Regiani T, Marques R F C, Verelst M, Dexpert-Ghys J, Messaddeq Y, Ribeiro S J L.2007. Self-supported silver nanoparticles containing bacterial cellulose membranes. Materials Scienceand Engineering C, DOI:10.1016/j.msec.2007.05.001
    Basavaraj S, Hungund, S. G. Gupta S G.2010. Production of bacterial cellulose from Enterobacteramnigenus GH-1isolated from rotten apple. World Journal of Microbiology and Biotechnology,26:1823~1828DOI10.1007/s11274-010-0363-1
    Bassam B J, Caetano-anolles G, Gresshoff P M.1991. Fast and sensitive silver staining of DNA inpolyacrylamide gels. Analytical Biochemistry,196(1):80~83
    Bay D C, Turner R J.2009. Diversity and evolution of the small multidrug resistance protein family. BMCEvolutionary Biology,9:140~151
    Bridgman P W.1964. Collected experimental papers. Harvard University press, Cambridge, MA
    Bridgman P W.1970. The physics of high pressure. Dover publications, New York
    Brigid A, McKenna, Mikkelsen D, Bernhard Wehr J, Gidley M J, Menzies N W.2009. Mechanical andstructural properties of native and alkalitreated bacterial cellulose produced by Gluconacetobacterxylinus strain ATCC53524. Cellulose,16,1047~1055
    Brown A J.1886. An acetic ferment which forms cellulose. Journal of Chemical Society,49:432~439
    Buchanan R.E, Gibbons N E,中国科学院微生物研究所《伯杰细菌鉴定手册》翻译组译.1984.伯杰细菌鉴定手册(第八版).北京:科学出版社,12:362~366
    Castellá G, Bragulat M R, Rubiales M V, Caba es F J.1997. Malachite green agar, a new selectivemedium for Fusarium. Mycopathologia,137:173~178
    Chang A L, Tuckerman J R, Gonzalez G, Mayer R, Weinhouse H, Volman G, Amikam D, Benziman M,Gilles-Gonzalez M A.2001. Phosphodiesterase A1, a regulator of cellulose synthesis in Acetobacterxylinum, is a heme-based sensor. Biochemistry,40:3420~3426
    Chao Y, Mitarai M, Sugano Y, Shoda M.2001. Effect of addition of water-soluble polysaccharides onbacterial cellulose production in a50mL airlift reactor. Biotechnology Progress,17:781~785
    Charpentier P A, Maguire A,Wan W.2006. Surface modification of polyester to produce a bacterialcellulose-based vascular prosthetic device. Applied Surface Science,252:6360~6367
    Ciechańska D.2004. Multifunctional bacterial cellulose/chitosan compositematerials for medicalapplications. Fibres&Textiles in Eastern Europe,12:69~72.
    Danuta C.2004. Multifunctional bacterial cellulose/chitosan composite materials for medical applica-tions.Fibres&Textiles in Eastern Europe,12(4):69~72
    Degraeve P, Delorme P, Lemay P.1996. Pressure-induced inactivation of E.coli β-galactosidase: infiuenceof pH and temperature. Biochimistry and Biophysics Acta,1292:61~68
    Dellaglio F, Cleenwerck I, Felis GE, Engelbeen K, Janssens D, and Marzotto M.2005. Description ofGluconacetobacter swingsiisp. nov. and Gluconacetobacter rhaeticus sp. nov., isolated from Italianapple fruit. International Journal of Systematic and Evolutionary Microbiology,55:2365~2370.
    Delmer D P.1983. Biosynthesis of cellulose. Advances in Carbohydrate Chemistry and Biochemistry,41:105~153
    Delmer D P.1999. Cellulose biosynthesis: exciting times for a difficult field of study. Annual Review ofPlant Physiologiacal and Plant Molecular Biology,50:245~276
    De-Wulf P, Joris K, Vandamme E J.1996. Improved cellulose formation by an Acetobacter xylinummutant limited in (keto) gluconate synthesis. Journal of Chemical Technology and Biotechnology,67:376~380
    Dubey V, Pandey L K, Sexena C.2005. Pervaporative separation of ethanol/Water azeotrope using a novelchitosan-impregnated bacterial cellulose membrane and chitoson-poly(vinyl aleohol) blends. Journalof membrane science,251:131~136
    Dubey V, Saxena C, Singh L, Ramana K V, Chauhan R S.2002. Pervaporation of binary water-ethanolmixture through bacterial cellulose membrane. Separation and Purification technology,27:163~171
    Dubins D N, Lee A, Macgregor Jr R B, Chalikian T V.2001. On the stability of double-stranded nucleicacids. Journal of the American Chemical Society,123:9254~9259
    Dumoulin M, Ueno H, Hayashi R, Banly C.1999. Contribution of the carboxypeptidase Y. EuropeanJournal of Biochemistry,262:475~483
    Dutta D, Gachhui R.2007. Nitrogen-fixing and cellulose-producing Gluconacetobacter kombuchae sp.nov., isolated from Kombucha tea. International Journal of Systematic and EvolutionaryMicrobiology,57:353~357
    Dzwolak W, Kato M, Shimizu A, Taniguchi Y.1999. Fourier transform infrared spectroscopy study of thepressure-induced changes in the structure of the bovine α-lactalbumin: the stabilizing role of thecalcium ion. Biochimistry and Biophysics Acta,1433:45~55
    Dzwolak W, Kato M, Shimizu A, Taniguchi Y.2000. FTIR Study of the stabilizing role of the calcium ionin the bovineа-lactalbumin upon pressure denaturation. Manghnani M H, Nellis W J, Nicol M F (Eds).Science and Technology of High Pressure. Universities Press, Hyderabad, India
    Eicher R, Ludwig H.2000. Inactivation of mould spores by high hydrostatic pressure. Manghnani M H,Nellis W J, Nicol M F (Eds). Science and Technology of High Pressure. Universities press,Hyderabad, India
    Evans B R, O’Neill H M.2005. Effect of surface attachment on synthesis of bacterial cellulose. AppliedBiochemistry and Biotechnology,121:439~450
    Evans B R, O’Neill H M, Malyvanh V P, Lee I, Woodward J.2003. Palladium-bacterial cellulosemembranes for fuel cells. Biosensors and bioelectronics,18:917~923
    Fabian H, Schultz C, Naumann D.1993. Secondary structure and temperature-induceed unfolding andrefolding of ribonuclease-T(1) in aqueous-solution-a fourier-transform infrared spectroscopic study.Journal of Molecular Biology,232:967~981
    Felsenstein J.1981. Evolutionary trees from DNA sequences: A maximum likelihood approach. Journal ofMolecular Evolution,17:368~376.
    Felsenstein J.1983. Parsimony in systematic: Biological and statistical issues. Annual Review of EcologyEvolution and Systematics,14:313~333.
    Felsenstein J.1985Confidence limits on phylogenics: An approach using the bootstrap. Evolution,39:783~791.
    Fidy J, Laberge M, Kaposi A D, Vanderkooi J M.1998. Fluorescence line narrowing applied to the studyof proteins. Biochimistry and Biophysics Acta,1386:331~351
    Fusi P, Foossens K, Consonni R, Grisa M, Puricelli P, Vercchio G, Vanoni M, Zetta L, Heremans K,Tortora P.1997. The exetremely heat-and pressure-resistant7kDa protein P2from the archaeonSulfolobus solfataricus is dramatically destabilized by a single aminoacid substitution.Proteins-Structure Function and Genetics,29:381~390
    Gao C, Wan Y Z, Yang C X, Dai K R, Tang T T, Luo H L, Wang J H.2010. Preparation andcharacterization of bacterial cellulose sponge with hierarchical pore structure as tissue engineeringscaffold. Journal of Porous Materials, springer DOI10.1007/s10934-010-9364-6
    Garrity G M, Bell J A, Lilburn T G.2004. Bergey’s manual of systematic bacteriology (Part C): Family II.Acetobacteraceae Genus VIII. Gluconacetobacter,2nded., Siever M and Swings J, Springer, NewYork,72~74
    Gibson J R, Slater E, Xerry J.1998. Use of AFLP to fingerprint and differentiate isolates of Hulicobactorpytori.Journal of Clinic Microbiology,36:2580~2585.
    Glaster L.1957. The synthesis of cellulose in cell-free extracts of Acetobacter xylinum. Journal ofBiological Chemistry,12:627~636
    Glaster L.1958. The synthesis of cellulose in cell-free extracts of Acetobacter xylinum. Journal of Bi-ological Chemistry,232:627~636
    Hamada S, Andou M, Naito N.1992. Direct induction of tetraploids or homogezygous diploids in theindustry yeast saccharomyces cerevisiae by hydrostatic pressure. Current Opinion in Genetics&Development,(22):371~376
    Hauben L, Vauterin L, E.R.B. Moore E R B, Hoste B, Swings J.1999. Genomic diversity of the genusStenotrophomonas. International Journal of Systematic Bacteriology,49:1749~1760.
    Hawley S A, Macleod R M.1974. Pressure-temperature stability of DNA in neutral salt solutions.Biopolymers,13:1417~1426
    Hawley S A.1971. Reversible pressure-temperature denaturation of chymotrysinogen. Biochemistry,10:2436~2442
    Hayashi R, BalnyC (Eds).1996. High Pressure bioscience and biotechnology. Elsevier, Amsterdam
    Heinisch O, Kowalski E,.Goossens K, Frank J, Heremans K, Ludwig H, Tauscher B.1995. Pressure effectson the stability of lipoxygenase: Fourier transform infrared spectroscopy and enzyme activity studies.Zeitschrift Für Lebensmittel-Untersuchung Und-Forschung,201:562~565
    Heremans K, Meersman F, Pfeiffer H, Smeller L.2001. Water mediated effects in high pressure processing.in: Berk Z, Leslie R B, LillFord O J, Mizrahi S (Eds). Water Science for Food, Health, Agricultureand Environment. Technomic Publishing Co. Lancaster.
    Heremans K.1982. High pressure effects on proteins and other biomolecues. Annual Review of Biophysicsand Bioengineering,11:1~21
    Heremans K (Ed).1997. High pressure research in the biosciences and biotechnology. Leuven Universitypress, Louvain
    Hermeans K, Goossens K, Smeller L.1996. Pressure-tuning spectroscopy of proteins: Fourier transforminfrared studies in the diamond anvil cell, in: Markley J L, Northrop D B, Royer C A (Eds.), Highpressure Effects in Molecular Biophysics. Oxford University press, New York, pp.44~61
    Hesse S, Kondo T.2005. Behavior of cellulose production of Acetobacter xylinum in13C-enrichedcultivation media including movements on nematic ordered cellulose templates. CarbohydratePolymers,60:457~465
    Holzbaur I E, English A M, Ismail A A.1996. FTIR study of thermal denaturation of horseradish andcytochrome c peroxidases in D2O. Biochemistry,35:5488~5494
    Hong F, Qiu KY.2008. An alternative carbon source from konjac powder for enhancing production ofbacterial cellulose in static cultures by a model strain Acetobacter aceti subsp. xylinus ATCC23770.Carbohydrate Polymers,72:545~549
    Hong L, Wang Y L, Jia S R, Hung Y, Gao C, Wan Y Z.2006. Hydroxyapatite/bacterial cellulosecomposites synthesized via a biomimetic route. Materials letters,60:1710~1713
    Horikoshi K, Grant W D.1998. Extremophiles: microbial life in extreme environments. Wiley-Liss, NewYork
    Hult E L, Yamanaka S, Ishihara M, Sugiyama J.2003. Aggregation of ribbons in bacterial celluloseinduced by high pressure incubation. Carbohydrate Polymers,53:9~14
    Hutchens S A, Benson R S, Evans B R, O’Neill H M, Rawn C J.2006. Biomimetic synthesis ofcalcium-deficient hydroxyapatite in a natural hydrogel. Biomaterials,27:4661~4670
    Iguchi M, Yamanaka S, Budhiono A.2000. Review Bacterial cellulose—a masterpiece of nature’s arts.Journal of Materials Science,35:261~270
    Imai T, Sugiyama J.1998. Nanodomains of Iαand Iβcellulose in algal microfibrils. Macromolecules,31:6275~6279
    Inder M, Saxena R, Brown M.2005. Cellulose biosynthesis: Current views and evolving concepts. Annalsof Bontany,96:9~21
    Ishida T, Mitarai M, SuganoY, Shoda M.2003. Role of water-soluble polysaccharides in bacterialcellulose production. Biotechnology and Bioengineering,83(4):474~478
    Ishida T, Sugano Y, Nakai T, Shoda Makoto.2002. Effects of acetan on production of bacterial celluloseby Acetobacter xylinum. Bioscience Bioteehnology and Bioehemistry,66(8):1677~1681
    Johnson D C, Neogi A N.1990. Manufacture of nonwoven fabrics using a bacterial cellulose binder.United States Patent,4919753A
    Johnson F H, Eyring H, Polissar M J.1954. The kinetic basis of molecular biology. Wiley, New York
    Johnson F H, Eyring H, Stover B J.1974. The theory of rate processes in biology and medicine. Wiley,New York
    Jonas R, Farah L F.1998. Production and application of microbial cellulose. Po1ymer Degradation andStability,59:101~106
    Joseph G, Rowe G E, Margaritis A, Wan W.2003. Effects of polyacrylamide-co-acrylic acid on celluloseproduction by Acetobacter xylinum. Journal of Chemical Technology and Biotechnology,78:964~970
    Jung J Y, Khan T, Park J K, Chang H N.2007. Production of bacterial cellulose by Gluconacetobacterhansenii using a novel bioreactor equipped with a spin filter. Korean Journal of ChemicalEngineering,24(2):265~271
    Jung J Y, Park J K, Chang H N.2005. Bacterial cellulose production by Gluconacetobacter hansenii in anagitated culture without living non-cellulose producing cells. Enzyme and Microbial Technology,37:347~354
    Kato C, Qureshi M H, Yamada M, Nakasone K, Horikoshi K.2000. High pressure respiratory proteins indeep-sea piezophilic bacteria. Manghnani M H, Nellis W J, Nicol M F (Eds). Science and Technologyof High Pressure. Universities Press, Hyderabad, India,319~324
    KatsuraT, Okafuro K.1994. Forgery-preventive paper. Japan Patent,6313297A2
    Kawano S, Tajima K, Uemori Y.2002. Cloning of Cellulose Synthesis Related Genes from Acetobacterxylinum ATCC23769and ATCC53582: comparison of cellulose synthetic ability between strains.DNA Research,9(5):149~156
    Keim P, Schupp J M, Travis S E, Clayton K, Zhu T, Shi L, Ferreira A, Webb D M.1997. A high-densitysoybean genetic map based on AFLP markers. Crop Science,37:537~543
    Keshk S,Sameshima K.2006. Influence of lignosulfonate on crystal structure and productivity of bacterialcellulose in a static culture. Enzyme and Microbial Technology,40:4~8
    Keshk S.2006. Physical properties of bacterial cellulose sheets produced in presence of lignosulfonate.Enzyme and Microbial Technology,40:9~12
    Khan T, Khan S, Park J K.2008. Simple fed-batch cultivation strategy for the enhanced production of asingle-sugar glucuronic acid-based oligosaccharides by a cellulose-producing Gluconacetobacterhansenii strain. Biotechnology and Bioprocess Engineering,13:240~247
    Kimura M.1980. A simple method for estimating evolutionary rates of base substitutions throughcomparative studies of nucleotide sequences. Journal of Molecular Evolution,16:111~120.
    Klemm D, Schumann D, Udhardt U, Marsch S.2001. Bacterial synthesized cellulose-artifical bloodvessels for microsurgery. Progress in Polymer Science,26,1561~1603
    Klotz I M.1999. Parallel change with temperature of water structure and protein behaviour. Journal ofPhysical Chemistry,103:5910~5916
    Kondo T, Kasai W, Brown R M Jr.2004. Formation of nematic ordered cellulose and chitin. Cellulose,11:463~474
    Kornblatt J A, Kornblatt M J.2002. The effects of osmotic and hydrostatic pressures on macromolecularsystems. Biochimica et Biophysica Acta,1595:30~47
    Kouda T, Naritomi T, Yano H, Yoshinaga F.1997. Effects of oxygen and carbon dioxide pressures onbacterial cellulose production by Acetobacter in aerated and agitated culture. Journal of Fermentationand Bioengineering,84(2):124~127
    Koyama M, Helbert W, Imai T, Sugiyama J, Henrissat B.1997. Parallel-up structure evidence themolecular direction during biosynthesis of bacterial cellulose. Biophysics,94(8):9091~9095
    Krystynowicz A, Czaja W, Wiktorowska-Jezierska A, Gon alves-Mi kiewicz M, Turkiewicz M, BieleckiS.2002. Factors affecting the yield and properties of bacterial cellulose. Journal of IndustrialMicrobiology&Biotechnology,29:189~195
    Krzyzaniak A, Salanski P, Jurzak J, Barciszewski.1991. B-Z DNA reversibal conformation changeseffected by high pressure. FEBS Letters,279:1~4
    Leslie J F, Summerell B A.2006. The Fusarium Laboratory Manual. Blackwell Publishing Ames, IA:12~13
    Lin M C, Eid P, Wong P T T, Macgregor Jr. R B.1999. High pressure fourier transform infraredspectroscopy of Poly (dA) Poly (dT), Poly (dA) and Poly (dT). Biophysical Chemistry,76:87~94
    Lisdiyanti P, Navarro R R, Uchimura T, Komagata K.2006. Reclassification of Gluconacetobacterhansenii strains and proposals of Gluconacetobacter saccharivorans sp. nov. and Gluconacetobacternataicola sp. nov.. International Journal of Systematic and Evolutionary Microbiology,56:2101~2111
    Ludikhuyze L, Claeys W, Hendrickx M.2000. Combined pressure temperature inactivation of alkalinephosphatase in bovine milk: a kinetic study. Journal of Food Science,65:155~160
    Ludikhuyze L, Indrawati, Van den Broeck I, Weemaes C, Hendrickx M.1998. Effect of combinedpressure and temperature on soybean lipoxygenase.I: Influence of extrinsic and intrinsic factors onisobaric isothermal inactivation kinetics. Journal of Agriculture and Food Chemistry,46:4074~4080
    Ludwig H (Ed).1999. Advances in high pressure bioscience and biotechnology. Springer, Heidelberg
    Mackill D J, Zhang Z, Redoňa E D, Colowit P M.1996. Level of polymorphism and genetic mapping ofAFLP markers in rice. Genome,39:969~977
    Maeda H, Nakajima M, Hagiwara T, Sawaguchi T, Yano S.2006. Bacterial cellulose/silica hybridfabricated by mimicking biocomposites. Journal of Materials Science,41:5646~5656
    Maneerung T,Tokura S,Rujiravanit R.2007. Impregnation of silver nanoparticles into bacterial cellulosefor antimicrobial wound dressing. Carbohydrate Polymers, DOI:10.1016/j.carbpol.2007.07.025
    Markley J L, Northrop D B, Royer(Eds) C A.1996. High pressure effects in molecular biophysics. OxfordUniversity press, New York
    Masson P, Arciero D, Hooper A B, Balny C.1990. Electrophoresis at elevated hydrostatic pressure of themultiheme hydroxylamine oxidoreductase. Electrophoresis,11:128~133
    Matthysse A G, Thomas D L, White A R.1995. Mechanism of cellulose synthesis in Agrobacteriumtumefaciens. Journal of Bacteriology,177:1076~1081
    Mcauliffe L, Kokotovic B, Ayling R D, Nicholas R A.2004. Molecular epidemiological analysis ofMycoplasma bovis isolates from the United Kingdom shows two genetically distinct clusters. Journalof Clinic Microbiology,42(10):4556~4565
    Mccann M C, Wells B, Roberts K.1990. Direct visualization of cross-links in the primary plant cell wall.Journal of Cell Science,96:323~334
    Meersman F, Smeller L, Heremans K.2000. Pressure-assisted cold unfolding of proteins and its effects onthe conformational stability compared to pressure and heat unfolding. High Pressure Research,19:263~268
    Mombelli E, Afshar M, Fusi P, Mariani M, Tortora P, Connelly J P, Lange R.1997. The role ofphenylalanine31in maintaining the conformational stability of ribonucleases P2from Sulfolobussolfataricus under extreme conditions of temperature and pressure. Biochemistry,36:8733~8742.
    Moon S H, Park J M, Chun H Y, Kim S J.2006. Comparisons of physical properties of bacterial cellulosesproduced in different culture conditions using saccharified food wastes. Biotechnology andBioprocess Engineering,11:26~31
    Mozhaev V V, Heremans K, Frank J, Masson P, Balny C.1994. Exploiting the effects of high hydrostaticpressure biotechnological applications. Trends in Biotechnology,12:493~501
    Muhr A H, Wetton R E, Blanshard J M V.1982. Effects of hydrostatic pressure on starch gelatinization asdetermined by DTA. Carbohydrate Polymers,2:91~102
    Nakai T, Moriya A, Tonouchi N, Yoshinaga F, Horinouchi S, Sone Y, Mori H, F. Sakai F, Hayashi T.1998. Control of expression by the cellulose synthase (bcsA) promoter region from Acetobacterxylinum BPR2001. Gene,213:93~100
    Nakai T, Nishiyama Y, Kuga S, Sugano Y, Shoda M.2002. ORF2gene involves in the construction ofhigh-order structure of bacterial cellulose. Biochemical and Biophysical Research Communication,295:458~462
    Naritomi T, Kouda T, Yano H, Yoshinaga F.1998. Effect of ethanol on bacterial cellulose production fromfructose in continuous culture. Journal of Fermentation and Bioengineering,85(6):598~603
    Newman R H.1998. Evidence for assignment of13C-NMR signals to cellulose crystallite surfaces in wood,pulp, and isolated celluloses. Holzforschung,52:157~159.
    Nguyen V T, Gidley M J, Dykes G A (2008) Potential of a nisincontaining bacterial cellulose film toinhibit Listeria monocytogenes on processed meats. Food Microbiology,25:471~478
    Nogi M, Yano H.2008. Transparent nanocomposites based on cellulose produced by bacteria offerpotential innovation in the electronics device industry. Advanced Materials,20:1849~1852
    Obuchi K.2000. Heat shock induced barotolerance of yeast: implication by high-pressure differential.Manghnani M H, Nellis W J, Nicol M F (Eds). Science and Technology of High Pressure.Universities press, Hyderabad, India
    Ohad I, Danon D, Hestrin S.1962. Synthesis of cellulose by Acetobacter xylinum V. ultrastructure ofpolymer. The Journal of Cell Biology,12:31~46
    Ohana P, Delmer D P, Volman G, Benziman M.1998. Glycosylated triterpenoid saponin: a specificinhibitor of diguanylate cyclase from Acetobacter xylinum. Biological activity and distribution. Plantand Cell Physiology,39:153~159
    Okiyama A, Motoki M, Yamanaka S.1992. Bacterial cellulose II. Processing of the gelatinous cellulosefor food materials. Food Hydrocolloids,6:479~487.
    Ordahl C P, Johnson T R, Caplan A I.1976. Sheared DNA fragment sizing comparison of techniques.Nucleic Acids Research,3:2985~2999
    Oshima T, Kondo K, Ohto K, Inoue K, Baba Y.2008. Preparation of phosphorylated bacterial cellulose asan adsorbent for metal ions. Reactive&Functional Polymers,68:376~383
    Pandey L K,Saxena C,Dubey V.2005. Studies on pervaporative characteristic of bacterial cellulosemembrane. Separation and Purification technology,42:213~218
    Panick G, Vidugiris G J A, Malessa R, Rapp G, Winter R, Royer C.1999. Exploring thetemperature-pressure phase diagram of staphylococcal nuclease. Biochemistry,38:4157~4164.
    Park J K, Khan T, Jung.J Y.2006. Structural studies of the glucuronic acid oligomers produced byGluconacetobacter hansenii strain. Carbohydrate Polymers,63:482~486
    Park J K, Jung J Y, Park Y H.2003a. Cellulose production by Gluconacetobacter hansenii in a mediumcontaining ethanol Gluconacetobacter hansenii PJK (KCTC10505BP). Biotechnology Letters,25,2055~2059
    Park J K, Park Y H, Jung J Y.2003b. Production of bacterial cellulose by Gluconacetobacter hansenii PJKisolated from rotten apple. Biotechnology and Bioprocess Engineering,8:83~88.
    Pinto R J B, Marques P A A P, Martins M A, Neoto C P, Trindade T.2007. Electrostatic assembly andgrowth of gold nanoparticles in cellulosic fibres. Journal of Colloid and Interface Science,312:506~512
    Pommet M, Juntaro J, Heng J Y Y, Mantalaris A, Lee A F, Wilson K, Kalinka G, Shaffer M S P, BismarckA.2008. Surface modification of natural fibers using bacteria: Depositing bacterial cellulose ontonatural fibers to create hierarchical fiber reinforced nanocomposites. Biomacromolecules,9:1643~1651
    Privalov P L.1990. Cold denaturation of proteins. Critical Reviews in Biochemistry and MolecularBiology,25:281~305
    Rainer J, Luiz F, Farah.1998. Production and application of microbial cellulose. Polymer Degradation andStability,(5):102
    Raity R V, Bec N, Saldana J L, Nametkin S N, Mozhaev V V, Klyachko N L, Levashol A V, Banly C.1995. High pressure stabilization ofα-chymotrypsin entrapped in reversed micelles of Aeroso OT inoctane against thermal inactivation. FEBS Letters,364:98~100
    Rajan K M, Swati S M.2004.利用多态性片段长度扩增(AFLP)法对印度大吉岭茶树遗传多样性的研究.茶叶科学,24(2):86~92
    Roa A C, Maya M M, Duque M C, Tohme J, Allem A C, Bonierbale M W.1997. AFLP analysis ofrelationships among cassava and other Manihot species. TAG Theoretical and Applied Genetics,95(5~6):741~750
    Robort B, Macgregor Jr.2002. The interactions of nucleic acids at elevated hydrostatic pressure.Biochimica et Biophysica Acta,1595:226~276
    Ross P, Mayer R, Weinhouse H, Amikam D, Huggirat Y, Benziman M, de Vroom E, Fidder A, de Paus P,Sliedregt L A.1990. The cyclic diguanylic acid regulatory system of cellulose synthesis inAcetobacter xylinum. The Journal of Biological Chemistry,265(31):18933~18943
    Ross P, Mayer R, Benziman M.1991. Cellulose biosynthesis and function in bacterial. MicrobiologicalReviews.55(1):35~38
    Rubens P, Goossens K, Heremans K.1997. Pressure induced gelatinisation of different starch types:a FTIRstudy, in: Heremans K (Ed.), High Pressure Research in Bioscience and Biotechnology, LeuvenUniversity press, Louvain, pp.55~58
    Rubens P, Snauwaert J, Heremans K, Stute R.1999. In-situ observation of pressure-induced gelation ofstarches studied with FTIR in the diamond anvil cell. Carbohydrate Polymers,39:231~235
    Rubens P, Snauwaert J, Heremans K.2000. Pressure-temperature gelatinization phase diagram of starch:an in situ Fourier transform infrared study. Biopolymers,54:521~530
    Saitou N, Nei M.1987The neighbor-joining method: A new method for reconstructing phylogenetic trees.Molecular Biology and Evolution,4:406~425.
    Sakairi N, Asano H, Ogawa M, Nishi N, Tokura S.1998. A method for direct harvest of bacterial cellulosefilaments during continuous cultivation of Acetobacter xylinum. Carbohydrate Polymers,35:233~237
    Sato M, Haga S, Shimada S, Arai R, Mabuchi I, Osumi M.2000. Aspect of pressure effects on fissionyeast: change in its ultrastructure and cytoskeleton of S.pombe. Manghnani M H, Nellis W J, Nicol MF (Eds). Science and Technology of High Pressure. Universities press, Hyderabad, India
    Sato T, HibinoY.1999. Thin layer printing paper. Japan Patent11061678A2
    Saxena I M, Kudlica K, Okuda K, Jr Brown R M.1994. Characterization of genes in thecellulose-synthesizing operon (acs operon) of Acetobacter xylinum: implication for cellulosecrystallization. Journal of bacteriology,176:5735~5752
    Seifert M, Hesse S, Kabrelian V, Klemm D.2004. Controlling the water content of never dried andreswollen bacterial cellulose by the addition of water-soluble polymers to the culture medium. Joumalof Polymer Science, Part A: Polymer Chemistry,42(3):463~470
    Seto A, Kojima Y, Tonouehi N, Tsuchida T, Yoshinaga F.1997. Screening of bacterialcellulose-produeing Acetobacter strains suitable for sucrose as a carbon source. Bioscience,Biotechnology and Biochemistry,61(4):735~736
    Setyawati M I, Chien L J, Lee C K.2007. Expressing Vitreoscilla hemoglobin in statically culturedAcetobacter xylinum with reduced O2tension maximizes bacterial cellulose pellicle production.Journal of Biotechnology,132:38~43
    Shah J, Brown R M Jr.2005. Towards electronic paper displays made from microbial cellulose. AppliedMicrobiology and Biotechnology,66:352~355
    Sharma A, Scott J H, Cody G D, Fogel M L, Hazen R M, Hemley R J, Huntress W T.2002. Microbialactivity at gigapascal pressures. Science,295:1514~1516
    Shezad O, Khan S, Khan T, Park J K.2009. Production of bacterial cellulose in static conditions by asimple fed-batch cultivation strategy. Korean Journal of Chemical Engineering,26(6):1689~1692
    Shezad O, Khana S, Khanb T, Park J K.2010. Physicochemical and mechanical characterization ofbacterial cellulose produced with an excellent productivity in static conditions using a simplefed-batch cultivation strategy. Carbohydrate Polymers,82:173~180
    Shigematsu T, Takamine K, Kitaxato M, Morita T, Naritomi T, Morimura S, Kida K.2005. Celluloseproduction from glucose using a glucose dehydrogenase gene (gdh)-deficient mutant ofGluconacetobacter xylinus and its use for bioconversion of sweet potato pulp. Journal of Bioscienceand Bioengineering,99(4):415~422
    Shoda M, Sugano Y.2005. Recent advances in bacterial cellulose production. Biotechnology andBioprocess Engineering,10:1~8
    Silva J L, Luan P, Glaser M, Voss E W.1992. Effects of hydrostatic pressure on a membrane envelopedvirus. The Journal of Virology,66:2111~2117
    Sleigh M A, Macdonald A G.1972. The effect of pressure on organisms. Cambridge University press,Cambridge
    Smeller L, Goossens K, Heremans K.1996. High pressure FTIR studies on hemoproteins, in:Trzeciakowski W A (Ed.), High Pressure Science and Technology. Word Scientific Co., Singapore,863~865
    Smeller L.2002. Pressure-temperature phase diagrams of biomolecules. Biochimica et Biophysica Acta,1595:11~19
    Son H J, Heo M S, Kim Y G, Lee S J.2001. Optimization of fermentation conditions for the production ofbacterial cellulose by a newly isolated Acetobacter sp A9in shaking cultures. Biotechnology andAppllied Biochemistry,33:1~5
    Son H J,Kim H G, Kim K K, Kim H S, Kim Y G, Lee S J.2003. Increased production of bacterialcellulose by Acetobacter sp. V6in synthetic media under shaking culture conditions. BioresourceTechnology,86:215~219
    Sonoyama T, Tani H, Matsuda K.1982. Production of2-keto-L-gulonic acid from D-glucose by two-stagefermentation. Apply Environmental Microbiology,43(5):1064~1069
    Sutherland IW.1998. Novel and established applications of microbial polysaccharides. Trends inBiotechnology,16:41~46
    Svensson A, Nicklasson E, Harrah T, Panilaitis B, Kaplan D L, Brittberg M, Gatenholm P.2005. Bacterialcellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials,26,419~431
    Tajima K, Fujiwara M, Takai M, Hayashi J.1995. Synthesis of Acetobacter xylinum bacterial cellulosecomposite and its mechanical strength and biodegradability. Mokuzai Gakkaishi,41(8):749~757
    Takahashi M, Yukphan P, Yamada Y, Suzuki K I, Sakane T, Nakagawa Y.2006. Intrageneric structure ofthe genus Gluconobacter analyzed by the16S rRNA gene and16S-23S rRNA gene internaltranscribed spacer sequences. Journal of General Appllied Microbiology,52:187~193.
    Takano K J, Takano T, Yamanouchi Y.1997. Pressure-induced apoptosis in human lymphoblasts.Expriment Cell Research,235:155~160
    Takano T, Takano K J, Yamanouchi Y.2000. Mechanism of pressure-induced apoptosis in human cells.Manghnani M H, Nellis W J, Nicol M F (Eds). Science and Technology of High Pressure.Universities Press, Hyderabad, India,342~345
    Take J I, Yamaguchi T, Terada S.2000. High Pressure induced apoptosis in murine erythroleukemia cells.Manghnani M H, Nellis W J, Nicol M F (Eds). Science and Technology of High Pressure.Universities Press, Hyderabad, India
    Tal R, Wong H C, Calhoon R, Gelfand D, Fear A L, Volman G, Mayer R, Ross P, Amikam D, WeinhouseH, Cohen A, Sapir S, Ohana P, Benziman M.1998. Three cdg operons control cellular turnover ofcyclic di-GMP in Acetobacter xylinum: genetic organization and occurrence of conserved domains inisoenzymes, Journal of Bacteriology,180(17):4416~4425
    Thevelein J M, Van Assche J A, Heremann K, Gerlsma S Y.1981. Gelatinization temperature of starch asinfluenced by high pressure. Carbohydrate Research,93:304~307
    Toda K, Asakura T, Fukaya M.1997. Cellulose production by acetic acid-resistant Acetobacter xylinum.Journal of Fermentation and Bioengineering,84(3):228~231
    Tohme M J, González D O, Beebe S, Duque M C.1996. AFLP analysis of gene pools of a wild bean corecollection.Crop Science,36(5):1375~1384
    Tonouchi N,Tsuchida T,Yoshinaga F,Beppu T.1996. Characterization of the biosynthetic pathway ofcellulose from glucose and fructose in Acetobacter xylinum. Bioscience Bioteelmology andBioehemistry,60:1377~1379
    Toyosaki H, Naritomi T, Seto A, Matsuoka M, Tsuchida T, Yoshinga F.1995. Sereening of bacterialcellulose-producing Acetobacter strains suitable for agitated culture. Bioscience, Biotechnology andBiochemistry,59:1498~1502
    Uraki Y, Nemoto J, Otsuka H, Tamai Y, Sugiyama J, Kishimoto T, Ubukata M, Yabu H, Tanaka M,Shimomura M.2007. Honeyeomb-like architecture produced by living bacteria, Gluconacetobacterxylinus. Carbohydrate Polymers,69: l~6
    R mling U.2002. Molecular biology of cellulose production in bacteria. Research in Microbiology,153,205~212
    Utoh S, Takemura T.1985. Phase transition of lipid multilamellar aqeous suspension under high pressure Iinvestigation of phase diagram of dipalmitoyl phosphatidylcholine bimembrane by high pressureDTA and dilatometry. Japanese Journal of Applied Physics Part1-Regular Papers ShortNote&Review,24:356~360
    Vandamme E J, Baets S D, Vanbaelen A, Joris K, De-Wulf P.1998. Improved production of bacterialcellulose and its application potential. Polymer Degradation and Stability,59:93~99
    Velappan N, Sondgrass J L, Hakovirta J R, Marronea B L, Burde S.2001. Rapid identification ofpathogenic bacteria by single-enzyme amplified fragment length polymorphism analysis. DiagnosticMicrobiology and Infectious Disease,39:77~83
    Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Friters A, Pot J, Paleman J, Kuiper M,Zabeau M.1995. AFLP:a new technique for DNA fingerprinting. Nucleic Acids Research,23(21):4407~44l4
    Wan Y Z, Hong L, Jia S R, Huang Y, Zhu Y, Wang Y L, Jiang H J.2006a. Synthesis and characterizationof hydroxyapatite-bacterial cellulose nanoeomposits. Composites Science and Technology,66:1825~1832
    Wang Y Z, Huang Y, Yuan C D, Raman S, Zhu Y, Jiang H J, He F, Gao C.2006b. Biomimetic synthesisof hydroxyapatite/bacterial cellulose nanoeomposites for biomedical applications. Materials Scienceand Engineering,27(4):855~864
    Watanabe K, Tabuchi M, Morinaga Y, Yoshinaga F.1998. Structural features and properties of bacterialcellulose produced in agitated culture. Cellulose,5:187~200
    Westland J A, Penny G S, Stephens R S.1994. Method of supporting fractures in geological formationsand hydraulic fluid composition for same. United States Patent5350528A
    Winkelman J W, Clark D P.1984. Proton suicide: general method for direct selection of sugartransport-and fermentation-defective mutants. Journal of Bacteriology,160(2):687~690
    Winter R, Jonas(Eds) J.1999. High pressure molecular science. Kluwer Academic publishers, Dordrecht
    Winter R, Landwehr A, Brauns T, Erbes J, Czeslik C, Reis O.1996. High pressure effects on the structureand phase behavior of model membrane systems, in: Markley J L, Northrop D B, Royer C A (Eds.),High Pressure Effects in Molecular Biophysics, Oxford. University press, New York,274~297
    Wong P T T.1996. Correlation field splitting of chain vibrations: structure and dynamics in lipid bilayersand biomembranes, in: Markley J L, Northrop D B, Royer C A (Eds.), High Pressure Effects inMolecular Biophysics, Oxford.University press, New York,256~273
    Yamaguchi T, Matsumoto M, Terada S.2000. Effects of high pressure on cell cycle in murineerythroleukemia cells. Manghnani M H, Nellis W J, Nicol M F (Eds). Science and Technology ofHigh pressure. Universities Press, Hyderabad, India,338~341
    Yamanaka S, Ishihara M, Sugiyama J.2000. Structural modification of bacterial cellulose. Cellulose,7:213~225
    Yan Z Y, Chen S Y, Wang H P, Wang B, Wang C S, Jiang J M.2007. Cellulose synthesized byAcetobacter xylinum in the presence of multi-walled carbon nanotubes. Carbohydrate Research,2007,DOI:10.1016/j.earres.2007.10.024
    Yoon S H, Jin H J.2006. Electrically conductive bacterial cellulose by incorporation of carbon nanotubes.Biomacromolecules,7:1280~1284
    Yoshinaga F, Tononchi N, Watanabe K.1997. Research progress in production of bacterial cellulose byaeration and agitation culture and its application as a new industrial material. Bioscience,Biotechnology and Biochemistry,61(2):219~224
    Zaar K.1979. Visualization of pores (export sites) correlated with cellulose production in the envelope ofthe gram-negative bacterium Acetobacter xylinum. Journal of Cell Biology,80(3):773~777
    Zhou L L, Sun D P, Hu L Y, Li Y W, Yang J Z.2007. Effect of addition of sodium alginate on bacterialcellulose production by Acetobacter xylinum. Journal of Microbiology&Biotechnology,34:483~489
    Zhu S, Monti M L, Rao R.1998. Genetic diversity of Chinese soybean germplasm revealed by amplifiedfragment length polymorphism. Acta Agriculturae Zhejiangensis,10(6):302~309
    Zimmerman A M.1970. High pressure effect on cellular processes. Academic, New York

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700