用户名: 密码: 验证码:
大豆蛋白的结构表征及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大豆因具有极高的营养价值和优良的保健功能在食品工业中大放异彩,同时由于大豆中含有高达40%的蛋白质,因此促使科学家们不断探索,期望从了解天然蛋白质材料的结构与性能之间的关系入手,借鉴自然界的力量开发出具有优异性能的大豆蛋白材料。大豆蛋白主要组分是7S球蛋白和11S球蛋白,两者占到蛋白质总含量的87%,基本代表了纯大豆蛋白的营养价值、物化性能以及生理功能等。对大豆蛋白进行仔细而深入的基础研究,有利于弄清其结构和性能之间的关系,从而能够有的放矢地设计和制备各类基于大豆蛋白的天然材料,充分发挥大豆蛋白全天然、可再生、可回收等绿色环保的特点。
     大豆蛋白具有复杂的组成和结构,亚基内和亚基间存在较强的相互作用,形成紧密的聚集态结构,不利于其在水中溶解,因此,制备均匀、稳定的大豆蛋白水溶液对于后续研究非常重要。我们采用了两种常见的生化试剂——盐酸胍和二硫苏糖醇(或巯基乙醇)来破坏大豆蛋白中的氢键和二硫键,再经过透析将它们除去,从而获得浓度为3.0 wt%左右,并且分子链未发生明显降解的大豆蛋白水溶液。将3.0 wt%的大豆蛋白水溶液进一步采用聚乙二醇水溶液进行反向透析后可获得浓度更高的大豆蛋白水溶液用于后续研究。大豆蛋白溶液性质对于我们充分理解并改善大豆蛋白材料结构和性能至关重要,因此我们接着采用流变技术考察了大豆蛋白溶液性质。研究结果发现大豆蛋白溶液的浓度是其流变性质的重要影响因素。当大豆蛋白溶液浓度小于等于7.2 wt%时其在低频区的模量几乎不随浓度而变化且弹性模量大于损耗模量,说明溶液中存在某种微凝胶结构;当溶液浓度大于等于9.0 wt%时,大豆蛋白溶液的流变性质发生显著变化,其动态模量与频率有如下关系:G′(ω)~G″(ω)~ω″,且损耗角tanδ与频率ω无关,符合Winter的自相似松驰模型,即当浓度等于临界浓度113 wt%时,储存模量与损耗模量相等,形成亚稳定临界凝胶;低于11.3 wt%时转变为溶液状态而高于11.3wt%时会形成弱凝胶。
     大豆蛋白构象及其聚集态结构与其功能有着密切的关系,本论文详细讨论了热诱导大豆蛋白膜的构象转变过程,并提出其构象转变机理。在升温过程中,外界热能使得大豆蛋白膜中蛋白质分子链及链段运动得以实现,发生局部调整或重排,部分不稳定的无规线团构象遭到破坏,形成了较为稳定的β-转角构象。通过对特征峰随温度升高的变化曲线图以及二维相关红外光谱分析,我们将1500cm-1处的特征峰归属于与1700 cm-1处同源的p-转角构象。同时我们发现酰胺Ⅰ的变化速率要快于1550 cm-1处特征峰的变化速率,究其原因我们认为该处吸收峰是酰胺Ⅱ和酪氨酸残基振动的协调效果。大豆蛋白膜在一定温度下随时间的增加而发生的构象转变机理在本质上与通过加热诱导的构象转变机理相同。升降温循环实验则表明了热诱导大豆蛋白膜的大豆蛋白大约有30%~40%的构象具有可逆回复的性质,但是,1700 cm-1处的特征峰在降温再升温过程中几乎没有变化,表明大豆蛋白通过热诱导形成的p-转角构象比较稳定。
     蛋白质材料通常在制备后很短时间内(几个小时或者更短的时间)会发生结构的变化,如较容易吸收空气中的水分使其力学性能发生改变,为日后的使用带来很大的不便。因此我们在通过红外光谱考察大豆蛋白膜热诱导其构象转变的基础上,结合热力学分析(TGA和DMTA)从分子水平上来重点讨论水在大豆蛋白膜构象转变中的作用。结合这三种不同的测试方法进行动力学分析,我们发现大豆蛋白膜的构象转变速率与蛋白质热力学次级松弛过程中的其分子链氨基酸残基上缔合的水分子经升温后的脱离过程有密切联系。在加热过程中,随着水分子活动能力的增加,蛋白质主链上氨基酸残基的氢键被破坏,取而代之的是脱离水分子后的氨基酸残基间形成了新的氢键,从而引起蛋白质分子链的构象转变。但是我们的研究表明,简单的水蒸发过程并不能提供足够的活化能使蛋白质分子链发生重排,而是蛋白质变性或其玻璃化转变过程中水与氨酸残基之间相互作用引起的弹性不稳定状态导致了其从无序结构向有序结构转变。
     在研究大豆蛋白构象转变机理的同时,制备纯天然大豆蛋白材料是本论文的另一研究目的。虽然大豆蛋白在膜材料、纤维和塑料领域有一定的应用,但是将其作为智能型水凝胶方面的应用却未见报道。由于大豆蛋白的分子链上含有较多的酸性和碱性氨基酸残基,具有相当数量的可离子化基团,因此,我们成功将其制备成了一种具有较好力学性能的电场敏感水凝胶。作为一种蛋白质水凝胶,大豆蛋白水凝胶上所带电荷的种类和数量取决于电解质溶液的pH值及其本身的等电点。当pH值接近大豆蛋白质等电点时,大豆蛋白凝胶上所带的电荷数量非常少,因此在pH=6的电解质溶液中大豆蛋白水凝胶几乎没有电场响应性。在pH<6的缓冲溶液中,大豆蛋白水凝胶具有聚阳离子的性质,在电场的作用下弯向阳极;在pH>6的缓冲溶液中,该水凝胶变为聚阴离子,在电场的作用下弯向阴极。在pH=2-4和pH=10-12范围内,水凝胶的平衡弯曲角可以达到60°以上,甚至在pH=2以及pH=12时,电压为20 V的条件下可以达到90°。另外,在pH=7的中性条件下,大豆蛋白水凝胶弯向阴极,电压为20 V时平衡弯曲角度可以达到21°。这些结果表明了我们制备的大豆蛋白水凝胶是一种性能良好的天然高分子电场敏感水凝胶,在很宽的pH值范围均具有较好的电场响应性,优于我们课题组先前报道的壳聚糖/羧甲基纤维素水凝胶和壳聚糖/羧甲基壳聚糖水凝胶。除溶液的pH值外,电压的大小、溶液的离子强度等都会影响大豆蛋白水凝胶的电场响应性,并且大豆蛋白水凝胶的弯曲行为具有很好的重复性,这些特点表明该水凝胶在微型传感器、微型驱动器以及人工肌肉方面具有潜在的应用价值。此外,在环形电场刺激下,大豆蛋白水凝胶环也有很好的刺激响应性,拓展了其应用范围,为日后大豆蛋白电场敏感水凝胶的实际应用奠定了基础。
     综上所述,我们首先获得了分子链未降解的高浓度大豆蛋白溶液,然后采用流变技术测定了其溶液性质,用红外光谱研究了其构象转变,同时结合热力学分析,提出了大豆蛋白在热诱导下的构象转变机理。最后我们成功制备了一种具有相当应用潜力的大豆蛋白电场敏感水凝胶,并详细研究了影响其电场响应性的因素。由此,本论文分别从基础研究和实际应用两方面对大豆蛋白这一种天然高分子材料进行了较为系统的研究,期望能够加深对大豆蛋白这种来源丰富,可资源再生的天然高分子材料的了解,拓展其应用领域。
Soybean has a long history in the food industry owing to its high nutritional value and processability. However, soybean also contains a large fraction of proteins (up to 40%) that has attracted research interests for the development of environment-friendly protein materials with potential excellent physical properties. Soy protein isolate (SPI), more than 90% protein content, contains two major components:glycinin (11S, approximately 52% of the total protein content) and (3-conglycinin (7S, approximately 35% of the total protein content). These two components are responsible for the nutritional, physicochemical and physiological properties of soy proteins. In order to take full advantage of the green feature of soy protein, a fundamental understanding of the relationship between structure and properties of soy protein will be very valuable for the preparation and application of natural protein materials in the future, as well as the more direct application to soy-based foodstuffs and environmentally friendly structural polymers.
     Soy protein has complex composition and structure and there are relatively strong interactions in and between the subunits, which prevents soy protein from dissolving in water. Therefore, the preparation of uniform and steady aqueous solution of soy protein is important for further investigation. Herein, two biochemical agents, guandine hydrocholoride (GuIICl) and dithiothreitol (DTT), were used to destroy the hydrogen bonds and disulfide bonds in soy protein, which were removed by dialysis against water to obtain soy protein solution with initial concentration of 3.0 wt% and without obvious degradation. More concentrated soy protein solutions were obtained by reverse dialysis against PEG solution. It is essential to know the properties of soy protein solution for fully understanding and improving the structure and properties of soy protein. So rheological measurements were applied to study the properties of soy protein solution with different concentrations. When the concentration was equal to or lesser than 7.2 wt%, the modulus were independent on the concentrations of soy protein solution and the storage modulus were higher than the loss modulus in low frequency, observations revealed the existence of some microgel structure. However, there was a significant change when the concentration was equal to or higher than 9.0 wt%, the dynamic modulus and the frequency conformed to the following relations:G′(ω)~G″(ω)~ωn, fitting in with Winter's self-similar relaxation line model, that is, when the concentration is equar to the critical concentration 11.3 wt% it can form an metastable critical gel; otherwise, when the concentration is lower than 11.3 wt% it changed to solution while weak gel could form when the concentration is higher than 11.3 wt%.
     The functions of soy protein are closely related to its conformation and aggregation structure, so the thermally-induced conformational transitions of soy protein films were studied detailedly and corresponding mechanism of conformational changes was proposed. In the heating process, the heat energy made the soy protein molecular chain segment move with partial adjustment or rearrangement, some volatile random coil structure destructed and formed a relatively stable P-turn conformation. We also suggested that the peak at 1500 cm-1 was assigned to the characteristic of p-turn with the homologous at the peak of 1700 cm-1 according to FTIR and 2D-IR. The rate of change in amide I was faster than at the peak of 1550 cm-1 because of the combination mode of amide II and Tyrosine. The mechanism of conformational transitions of soybean protein films under isothermal conditions was the same as in the heating process. Moreover, the observations in heated-cooled-heated experiment revealed that about 30%~40 %conformation could be reversible, however, the peak at 1700 cm-1 had little change which showed that the heating-inducedβ-turn conformation was very stable.
     Generally speaking, properties such as water pick-up and mechanical properties of protein materials are often seen to change significantly over a period of minutes or hours after preparation, even under moderate laboratory conditions around ambient temperature. So we tried to study the effect of water on the thermally-induced conformational transitions of soy protein films. By comparing the kinetics of protein-water interactions as a function of temperature using time resolved FTIR, TGA, and DTMA measurements on soybean protein films, we found that simply evaporating water from the film (TGA) is insufficient to explain the rate of conformational changes (FTIR and DMTA). The onset of mobility in the water molecules allows the amide groups to reconfigure and form stronger amide-amide hydrogen bonds. Thus, simple loss of water (evaporation) is insufficient by itself to allow the protein chains to reconfigure, which requires an activation step for the water to become mobile. We suggest that an elastic instability condition of denaturation or glass transition events in water-amide interactions is the governing mechanism for conformational changes that allows the evolution of disordered structures into more ordered secondary structures, thereby controlling the changes in physical properties such as stiffness and water sensitivity.
     Owing to its sustainability, abundance, low cost and functionality, soy protein has attracted great research interests for the development of environment-friendly protein materials with potentially good properties, such as regeneration, biocompatibility and biodegradability, etc. To date, numerous soy protein-based materials have been studied which can be divided into plastics, gels, films, and additives or coatings. However, there have not been any studies on electroactive protein hydrogels made of pristine soy protein. A natural electroactive protein hydrogel was prepared from soy protein isolate (SPI) solution by crosslinking with epichlorohydrin. Under electrical stimulus, such SPI hydrogel quickly bends towards one electrode, showing a good electroactivity. Because of its amphoteric nature, the SPI hydrogel bends either toward the anode (pH< 6) or cathode (pH> 6), depending on the pH of the electrolyte solution. Other factors, such as electric field strength and ionic strength also influence the electromechanical behavior of the SPI hydrogels. Moreover, this SPI hydrogel exhibits a good electroactive behavior under strong acidic (pH=2-4) or basic (pH=10-12) solutions, which is a significant improvement over two other kinds of natural electroactive hydrogels, i.e., chitosan/carboxymethylcellulose and chitosan/carboxymethylchitosan hydrogel, which we reported previously. The wide pH range and good electroactivity of this natural protein hydrogel suggests its great potential for microsensor and actuator applications, especially in the biomedical field, and also to increase the scope of natural polymer-based electroactive hydrogels.
     In conclusion, we first obtained high concentrated soy protein solution without obvious degradation and also studied the properties of this solution by rheological measurements. Then, we studied the thermally-induced conformational transitions of soy protein films detailedly by FTIR and thermodynamic analysis and suggested the mechanism of conformational changes. At last, we successfully prepared a natural electroactive protein hydrogel from soy protein solution by crosslinking with epichlorohydrin. Thus, in this thesis, we systematically studied the soy protein in both the basic research and its practical application, so as to learn more about the soy protein from the perspective of bipolymer and finally expand its applications.
引文
[1]Shutov A. D., Braun H., Chesnokov Y. V. and Baumlein H. A gene encoding a vicilin-like protein is specifically expressed in fern spores-Evolutionary pathway of seed storage globulins. European Journal of Biochemistry,1998.252(1):79-89.
    [2]Templeman T. S., Dedmaggio A. E. and Stetler D. A. Biochemistry of fern spore germination; globulin storage proteins in Matteucia struthiopteris L. Plant Physiology, 1987.85:343-349.
    [3]Kinsella J. E. Functional properties of soy proteins. Journal of the American Oil Chemists' Society,1979.56:242-258.
    [4]Peng I. C., Quass D. W. and Dayton W. R. The Physicochemical and functional properties of soybean 11S globulin. A review. Cereal Chemistry,1984.61(6): 480-489.
    [5]周兵,周瑞宝.大豆球蛋白的性质.西部粮油科技,1998.23(4):39-43.
    [6]Riblett A. L., Herald T. J., Schmidt K. A. and Tilley K. A. Characterization of beta-conglycinin and glycinin soy protein fractions from four selected soybean genotypes. Journal of Agricultural and Food Chemistry,2001.49(10):4983-4989.
    [7]赵威祺.大豆蛋白质的构造和功能特性(上),粮食与食品工业,2003.2:24-28.
    [8]Adachi M., Takenaka Y., Gidamis A. B., Mikami B. and Utsumi S. Crystal structure of soybean proglycinin AlaB1b homotrimer. Journal of Molecular Biology, 2001.305(2):291-305.
    [9]Badley R. A., Atkinson D., Hauser H., Oldani D., Green J. P. and Stubbs J. M. The structure, physical and chemical properties of the soybean protein glycinin. Biochimicaet Biophysica Acta,1975.412:214-228.
    [10]Plietz P., Drescher B. and Damaschun G. Relationship between the amino acid sequence and the domain structure of the subunits of the 11 S seed globulins. Interna-tional Journal of Biological Macromolecules,1987.9:161-165.
    [11]Plietz P., Zirwer D., Schlesier B., Gast k. and Damaschun G. Shape, symmetry, hydration and secondary structure of the legumin from Vicia faba in solution. Biochimicaet Biophysica Acta,1984.784:140-146.
    [12]Adachi M., Kanamori J., Masuda T., Yagasaki K., Kitamura K., Mikami B. and Utsumi S. Crystal structure of soybean 11S globulin:Glycinin A3B4 homohexamer. Proceedings of the National Academy of Sciences of the United States America, 2003.100(12):7395-7400.
    [13]Fahnestock S. R., Steinbuchel A.,邵正中,杨新林,生物高分子(第8卷).2001:化学工业出版社.210-233.
    [14]Maruyama N., Salleh M. R. M., Takahashi K., Yagasaki K., Goto H., Hontani N., Nakagawa S. and Utsumi S. Structure-physicochemical function relationships of soybean beta-conglycinin heterotrimers. Journal of Agricultural and Food Chemistry, 2002.50(15):4323-4326.
    [15]Maruyama N., Katsube T., Wada Y., Oh M. H., De la Rosa A. P. B., Okuda E., Nakagawa S. and Utsumi S. The roles of the N-linked glycans and extension regions of soybean beta-conglycinin in folding, assembly and structural features. European Journal of Biochemistry,1998.258(2):854-862.
    [16]Katsube T., Maruyama N., Takaiwa F. and Utsumi S. Food protein engineering of soybean proteins and the development of soy-rice. In Engineering Crop Plants for Industrial End Uses; ed. Shewry P. R., Napier J. A. and Davis P. J. E.1998:Portland Press:London, U.K.65-76.
    [17]Maruyama Y., Maruyama N., Mikami B. and Utsumi S. Structure of the core region of the soybean beta-conglycinin alpha'subunit. Acta Crystallographica Section D-Biological Crystallography,2004.60:289-297.
    [18]Maruyama N., Adachi M., Takahashi K., Yagasaki K., Kohno M., Takenaka Y., Okuda E., Nakagawa S., Mikami B. and Utsumi S. Crystal structures of recombinant and native soybean beta-conglycinin beta homotrimers. European Journal of Biochemistry,2001.268(12):3595-3604.
    [19]Lawrence M. C., Izard T., Beuchat M., Blagrove R. J. and Colman P. M. Structure of phaseolin at 2-Center-Dot-2 angstrom resolution-Implications for a common vicilin/legumin structure and the genetic-engineering of seed storage proteins. Journal of Molecular Biology,1994.238(5):748-776.
    [20]Wolf W. J. and Sly D. A. Cryoprecipitation of soybean 11s protein. Cereal Chemistry,1967.44(6):653-668.
    [21]Thanh V. H. and Shibasaki K. Major proteins of soybean seeds. A straightforward fractionation and their characterization. Journal of Agricultural and Food Chemistry,1976.24(6):1117-1121.
    [22]Thiering R., Hofland G., Foster N., Witkamp G. J. and van de Wielen L. Carbon dioxide induced soybean protein precipitation:Protein fractionation, particle aggregation, and continuous operation. Biotechnology Progress,2001.17(3): 513-521.
    [23]Deak N. A., Murphy P. A. and Johnson L. A. Fractionating soybean storage proteins using Ca2+ and NaHSO3 Journal of Food Science,2006.71(7):C413-C424.
    [24]Deak N. A., Murphy P. A. and Johnson L. A. Characterization of fractionated soy proteins produced by a new simplified procedure. Journal of the American Oil Chemists Society,2007.84(2):137-149.
    [25]Wu S. W., Murphy P. A., Johnson L. A., Fratzke A. R. and Reuber M. A. Pilot-plant fractionation of soybean glycinin and beta-conglycinin. Journal of the American Oil Chemists Society,1999.76(3):285-293.
    [26]Chove B. E., Grandison A. S. and Lewis M. J. Some functional properties of fractionated soy protein isolates obtained by micro filtration. Food Hydrocolloids, 2007.21(8):1379-1388.
    [27]Ishino K. and Kudo S. Conformational transition of alkali-denatured soybean 7s and 11s globulins by ethanol. Agric. Biol. Chem.,1980a.44(3):537-543.
    [28]Pleitz P. and Damaschun G. The structure of the 11 s seed globulins from various plant species:Comparative investigations by physical methods. Stud. Biophys.,1986.116:153-173.
    [29]Marcone M. F., Bondi M. C. and Yada R. Y. Isolation of soybean 11s globulin by isoelectric precipitation and sephacryl S-300 gel-filtration chromatography-a new purification technique. Bioscience Biotechnology and Biochemistry,1994.58(2): 413-415.
    [30]Dev S. B., Keller J. T. and Rha C. K. Secondary structure of 11s globulins in aqueous solution investigated by FT-IR derivative spectroscopy. Biochimica et BiophysicaActa,1988.957:272-280.
    [31]Tsumura K., Enatsu M., Kuramori K., Morita S., Kugimiya W., Kuwada M., Shimura Y. and Hasumi H. Conformational change in a single molecular species, beta(3), of beta-conglycinin in acidic ethanol solution. Bioscience Biotechnology and Biochemistry,2001.65(2):292-297.
    [32]Ishino K. and Okamoto S. Molecular interaction in alkali denatured soybean proteins. Cereal Chemistry,1975.52(1):9-21.
    [33]Nagano T., Akasaka T. and Nishinari K. Study on the heat-induced conformational changes of beta-conglycinin by FTIR and CD analysis. Food Hydrocolloids,1995.9(2):83-89.
    [34]Wang C. H. and Damodaran S. Thermal gelation of globular proteins: influence of protein conformation on gel strength. Journal of Agricultural and Food Chemistry,1991.39(3):433-438.
    [35]Marcone M. F. A comparative study of thermally induced conformational changes occurring in food-grade seed proteins. Italian Journal of Food Science,1999. 11(3):193-206.
    [36]Hashizume K. and Watanabe T. Heat denaturation of soybeans. Part II. Influence of heating temperature on conformational changes of soybean proteins. Agricultural and Biological Chemistry,1979.43(4):683-690.
    [37]Subirade M., Kelly I., Gueguen J. and Pezolet M. Molecular basis of film formation from a soybean protein:comparison between the conformation of glycinin in aqueous solution and in films. International Journal of Biological Macromolecules, 1998.23(4):241-249.
    [38]Zhang H., Li L., Tatsumi E. and Kotwal S. Influence of high pressure on conformational changes of soybean glycinin. Innovative Food Science & Emerging Technologies,2003.4(3):269-275.
    [39]Kinsella J. E. and Melachouris N. Functional properties of proteins in foods:A survey. Critical Reviews in Food Science and Nutrition,1976.7(3):219-280.
    [40]Murphy P. A., Chen H. P., Hauck G. C. and Wilson L. A. Soybean protein composition and tofu quality. Food Technology,1997.51 (3):86-88.
    [41]Petruccelli S. and Anon M. C. Partial reduction of soy protein isolate disulfide bonds. Journal of Agricultural and Food Chemistry,1995.43(8):2001-2006.
    [42]Kwanyuen P., Wilson R. F. and Burton J. W., Soybean protein quality in Emerging technologies, current practices, quality control, technology transfer, and environmental issues, In The Proceedings of the World Conference on Oilseed and Edible Oils Processing, ed. Kosceoglu S. S. and Wilson R. F. Vol.1.1998:AOAC Press:Champaign, IL,
    [43]Takashi Nakamura, Shigeru Utsumi, Keisuke Kitamura, Kyuya Harada and Mori T. Cultivar differences in gelling characteristics of soybean glycinin. Journal of Agricultural and Food Chemistry,1984.32(3):647-651.
    [44]Serretti C., Schapaugh W. T. and Leffel R. C. Amino-acid profile of high seed protein soybean. Crop Science,1994.34(1):207-209.
    [45]Tanteetatarm K., Wei L. S. and Steinberg M. P. Effect of soybean maturity on storage stability and process quality. Journal of Food Science,1989.54(3):593-597.
    [46]Kitamura K. Genetic-Improvement of Nutritional and Food-Processing Quality in Soybean. Jarq-Japan Agricultural Research Quarterly,1995.29(1):1-8.
    [47]Yamauchi F., Yamagishi T. and Iwabuchi S. Molecular understanding of heat-induced phenomena of soybean protein. Food Reviews International,1991.7(3): 283-322.
    [48]Damodaran S., Interrelationship of molecular and functional properties of food proteins Food proteins, ed. Williams G., Soucie J. and Kinsella E.1997, Chanpaign, IL Am. Oil. Chem. Soc.
    [49]Liu K., Soybeans Chemistry, Technology and Utilization, ed. Chapman and Hall.1997, New York.
    [50]Shewry P. R. Plant-storage proteins. Biological Reviews of the Cambridge Philosophical Society,1995.70(3):375-426.
    [51]Marcone M. F., Kakuda Y. and Yada R. Y. Salt-soluble seed globulins of various dicotyledonous and monocotyledonous plants-I. Isolation/purification and characterization. Food Chemistry,1998.62(1):27-47.
    [52]Mo X. Q. and Sun X. Z. Thermal and mechanical properties of plastics molded from sodium dodecyl sulfate-modified soy protein isolates. Journal of Polymers and the Environment,2000.8(4):161-166.
    [53]Maruyama N., Sato R., Wada Y., Matsumura Y., Goto H., Okuda E., Nakagawa S. and Utsumi S. Structure-physicochemical function relationships of soybean beta-conglycinin constituent subunits. Journal of Agricultural and Food Chemistry, 1999.47(12):5278-5284.
    [54]Iwabuchi S. and Yamauchi F. Electrophoretic analysis of whey proteins present in soybean globulin fractions. Journal of Agricultural and Food Chemistry,1987. 35(2):205-209.
    [55]Thanh V. H. and Shibasaki K. Major proteins of soybean seeds. Reversible and irreversible dissociation of beta-conglycinin. Journal of Agricultural and Food Chemistry,1979.27(4):805-809.
    [56]Gennadios A. and Weller C. L. Soy protein isolate-dialdehyde starch films. Industrial Crops and Products,1998.8:195-203.
    [57]Kim K. M., Weller C. L., Hanna M. A. and Gennadios A. Heat curing of soy protein films at selected temperatures and pressures. Lebensmittel-Wissenschaft Und-Technologie-Food Science and Technology,2002.35(2):140-145.
    [58]Zhang X. F., Min B. G. and Kumar S. Solution spinning and characterization of poly(vinyl alcohol)/soybean protein blend fibers. Journal of Applied Polymer Science, 2003.90(3):716-721.
    [59]Renkema J. M. S., Lakemond C. M. M., de Jongh H. H. J., Gruppen H. and van Vliet T. The effect of pH on heat denaturation and gel forming properties of soy proteins. Journal of Biotechnology,2000.79(3):223-230.
    [60]Nishinari K., Nagano T. and Akasaka T. Dynamic viscoelastic properties of glycinin and β-conglycinin gels from soybeans. Biopolymers,1994.34:1303-1309.
    [61]Damodaran S. and Kinsella J. E. Effect of conglycinin on the thermal aggregation of glycinin. Journal of Agricultural and Food Chemistry,1982.30(5): 812-817.
    [62]Damodaran S. Refolding of thermally unfolded soy proteins during the cooling regime of the gelation process:effect on gelation. Journal of Agricultural and Food Chemistry,1988.36(2):262-269.
    [63]Hashizume K., Nakamura N. and Watanabe T. Influence of ionic strength on conformation changes of soybean proteins caused by heating, and relationship of its conformation changes to gel formation. Agric. Biol. Chem.,1975.39:1339-1347.
    [64]Nagano T., Mori H. and Nishinari K. Rheological properties and conformational states of β-conglycinin gels at acidic pH. Biopolymers,1994b.34: 293-298.
    [65]Wolf W. J., Rackisa J. J., Smith K., Sasame H. A. and Babcock G. E. Behavior of the 11s Protein of Soybeans in Acid Solutions. I. Effects of pH, Ionic Strength and Time on Ultracentrifugal and Optical Rotatory Properties. Journal of the American Chemical Society,1958.80(21):5730-5735.
    [66]Puppo M. C., Lupano C. E. and Anon M. C. Gelation of soybean protein isolates in acidic conditions. Effects of pH and protein concentration. Journal of Agricultural and Food Chemistry,1995.43(9):2356-2361.
    [67]Puppo M. C. and Anon M. C. Structural properties of heat-induced soy protein gels as affected by ionic strength and pH. Journal of Agricultural and Food Chemistry, 1998.43(9):3583-3589.
    [68]Hermansson A. M. Physicochemical aspects of soy proteins structure formation. Journal of Texture Studies,1978.9:33-58.
    [69]Utsumi S. and Kinsella J. E. Forces involved in soy protein gelation:Effects of various reagents on the formation, hardness and solubility of heat-induced gels made from 7S,11S, and soy isolate. Journal of Food Science,1985.50:1278-1282.
    [70]Kleef F. S. M. V. Thermally induced protein gelation:Gelation and rheological characterization of highly concentrated ovalbumin and soybean protein gels. Biopolymers,1986.25:31-59.
    [71]Mori T., Nakamura T. and Utsumi S. Behavior of intermolecular bond formation in the late stage of heat-induced gelation of glycinin. Journal of Agricultural and Food Chemistry,1986.34(1):33-36.
    [72]Takao Nagano, Hiroyuki Mori and Nishinari K. Effect of heating and cooling on the gelation kinetics of 7S globulin from soybeans. Journal of Agricultural and Food Chemistry,1994.42(7):1415-1419.
    [73]Chronakis I. S. Network formation and viscoelastic properties of commercial soy protein dispersions:Effect of heat treatment, pH and calcium ions. Food Research International,1996.29(2):123-134.
    [74]Brandenburg A. H., Weller C. L. and Testin R. F. Edible films and coatings from soy protein. Journal of Food Science,1993.58:1086-1089.
    [75]Gennadios A., Ghorpade V. M., Weller C. L. and Hanna M. A. Heat curing of soy protein films. Transactions of the ASAE,1996.39:575-579.
    [76]Rangavajhyala N., Ghorpade V. and Hanna M. Solubility and molecular properties of heat-cured soy protein films. Journal of Agricultural and Food Chemistry, 1997.45(11):4204-4208.
    [77]Shih F. F. Interaction of soy isolate with polysaccharide and its effects on film properties. Journal of the American Oil Chemists'Society,1994.71:1281-1285.
    [78]Rhim J. W., Wu Y., Weller C. L. and Schnepe M. Physical characteristics of a composite film of soy protein isolate and propyleneglycol alginate. Journal of Food Science,1999.64:149-152.
    [79]Ghorpade V. M., Gennadios A., Hanna M. A. and Weller C. L. Soy protein isolate/poly(ethylene oxide) films. Cereal Chemistry,1995.72:559-563.
    [80]Rhim J. W., Gennadios A., Handa A., Weller C. L. and Hanna M. A. Solubility, tensile, and color properties of modified soy protein isolate films. Journal of Agricultural and Food Chemistry,2000.48(10):4937-4941.
    [81]Gennadios A., Rhim J. W., Handa A., Weller C. L. and Hanna M. A. Ultraviolet radiation affects physical and molecular properties of soy protein films. Journal of Food Science,1998.63:225-228.
    [82]Rhim J. W., Gennadios A., Fu D., Weller C. L. and Hanna M. A. Properties of ultraviolet irradiated protein films. Lebensmittel-Wissenschaft Und-Technologie-Food Science and Technology,1998.32:129-133.
    [83]Motoki M., Nio N. and Takinami K. Functional properties of heterologous polymer prepared by transglutaminase between milk casein and soybean globulin. Agricultural and Biological Chemistry,1987.51:237-239.
    [84]Stuchell Y. M. and Krochta J. M. Enzymatic treatments and thermal effects on edible soy protein films. Journal of Food Science,1994.59:1332-1337.
    [85]Yildirim M. and Hettiarachchy N. S. Biopolymers produced by cross-linking soybean US globulin with whey proteins using transglutaminase. Journal of Food Science,1997.62:270-275.
    [86]Gennadios A., C. L. Weller and Testin. R. F. Effect of pH on properties of wheat gluten and soy protein isolate films. Journal of Agricultural and Food Chemistry,1993.41:1835-1839.
    [87]Soares R. M. D., Scremin F. F. and V. S. Thermal stability of biodegradable films based on soy protein and corn starch. Macromolecular Symposia,2005.229: 258-265.
    [88]季国标.我国化纤工业及其在新世纪初的发展趋势.西北纺织工学院学报,2001.30(4):221-223.
    [89]沈国先.大豆蛋白纤维应用讲座.现代纺织技术,2003.11(1):56-58.
    [90]姜岩,王业宏,欧力,李洁,王宝东.大豆蛋白质纤维的结构研究(Ⅰ):大分子组成和化学结构.纺织学报,2004.25(6):43-44.
    [91]Zhang Y., Ghasemzadeh S., Kotliar A. M., Kumar S., Presnell S. and Williams L. D. Fibers from soybean protein and poly(vinyl alcohol). Journal of Applied Polymer Science,1999.71(1):11-19.
    [92]Vaz C. M., Fossen M., van Tuil R. F., de Graaf L. A., Reis R. L. and Cunha A. M. Casein and soybean protein-based thermoplastics and composites as alternative biodegradable polymers for biomedical applications. Journal of Biomedical Materials Research Part A,2003.65A(1):60-70.
    [93]Zhong Z. K. and Sun S. X. Properties of soy protein isolate/ poly(ethylene-co-ethyl acrylate-co-maleic anhydride) blends. Journal of Applied Polymer Science,2003.88(2):407-413.
    [94]姚玉静,杨晓泉.乙酰化大豆分离蛋白的功能特性研究.中国调味品,2001.9:16-19.
    [95]Schilling C. H., Babcock T., Wang S. and Jane J. Mechanical-properties of biodegradable soy-protein plastics. Journal of Materials Research,1995.10:2197.
    [96]Wang S., Sue H. J. and Jane J. Effects of polyhydric alcohols on the mechanical properties of soy protein plastics. Journal of Macromolecular Science-Pure and Applied Chemistry,1996. A33(5):557-569.
    [97]Zhong Z. K. and Sun X. Z. S. Properties of soy protein isolate/polycaprolactone blends compatibilized by methylene diphenyl diisocyanate. Polymer,2001.42(16):6961-6969.
    [98]Huang J., Zhang L. N. and Chen F. G. Effects of lignin as a filler on properties of soy protein plastics.1. Lignosulfonate. Journal of Applied Polymer Science,2003. 88(14):3284-3290.
    [99]Huang J., Zhang L. N. and Chen P. Effects of lignin as a filler on properties of soy protein plastics. Ⅱ. Alkaline lignin. Journal of Applied Polymer Science,2003. 88(14):3291-3297.
    [100]Wang Y. X., Cao X. D. and Zhang L. N. Effects of cellulose whiskers on properties of soy protein thermoplastics. Macromolecular Bioscience,2006.6(7): 524-531.
    [101]Lu Y. S., Weng L. H. and Zhang L. N. Morphology and properties of soy protein isolate thermoplastics reinforced with chitin whiskers. Biomacromolecules, 2004.5(3):1046-1051.
    [102]Wang N. G., Zhang L. N. and Gu J. M. Mechanical properties and biodegradability of crosslinked soy protein isolate/waterborne polyurethane composites. Journal of Applied Polymer Science,2005.95(2):465-473.
    [103]Chen P. and Zhang L. Interaction and properties of highly exfoliated soy protein/montmorillonite nanocomposites. Biomacromolecules,2006.7(6):1700-1706.
    [104]Sonoyama M. and Nakano T. Infrared rheo-optics of bombyx mori fibroin film by dynamic step-scan FTIR spectroscopy combined with digital signal processing. Applied Spectroscopy,2000.54(7):968-973.
    [105]Fukushima Y. Genetically engineered syntheses of tandem repetitive polypeptides consisting of glycine-rich sequence of spider dragline silk. Biopolymers, 1998.45(4):269-279.
    [106]Fossey S. A., Nemethy G., Gibson K. D. and Scheraga H. A. Conformational energy studies of beta-sheets of model silk fibroin peptides.1. Sheets of Poly(Ala-Gly) Chains. Biopolymers,1991.31(13):1529-1541.
    [107]Chen X., Shao Z. Z., Marinkovic N. S., Miller L. M., Zhou P. and Chance M. R. Conformation transition kinetics of regenerated Bombyx mori silk fibroin membrane monitored by time-resolved FTIR spectroscopy. Biophysical Chemistry, 2001.89(1):25-34.
    [108]Chen X., Knight D. P., Shao Z. Z. and Vollrath F. Conformation transition in silk protein films monitored by time-resolved Fourier transform infrared spectroscopy: Effect of potassium ions on Nephila spidroin films. Biochemistry,2002.41(50): 14944-14950.
    [109]Chen X., Knight D. P. and Shao Z. Z. Beta-turn formation during the conformation transition in silk fibroin. Soft Matter,2009.5(14):2777-2781.
    [110]Edwards H. G. M. and Farwell D. W. Raman-spectroscopic studies of silk. Journal of Raman Spectroscopy,1995.26(8-9):901-909.
    [111]Monti P., Freddi G, Bertoluzza A., Kasai N. and Tsukada M. Raman spectroscopic studies of silk fibroin from bombyx mori. Journal of Raman Spectroscopy,1998.29(4):297-304.
    [112]Monti P., Taddei P., Freddi G., Asakura T. and Tsukada M. Raman spectroscopic characterization of Bombyx mori silk fibroin:Raman spectrum of Silk I. Journal of Raman Spectroscopy,2001.32(2):103-107.
    [113]Tsukada M., Freddi G, Monti P., Bertoluzza A. and Kasai N. Structure and molecular-conformation of tussah silk fibroin films-effect of methanol. Journal of Polymer Science Part B-Polymer Physics,1995.33(14):1995-2001.
    [114]Winkler S., Wilson D. and Kaplan D. L. Controlling beta-sheet assembly in genetically engineered silk by enzymatic phosphorylation/dephosphorylation. Biochemistry,2000.39:12739-12746.
    [115]Demura M., Minami M., Asakura T. and Cross T. A. Structure of Bombyx mori silk fibroin based on solid-state NMR orientational constraints and fiber diffraction unit cell parameters. Journal of the American Chemical Society,1998. 120(6):1300-1308.
    [116]Asakura T., Minami M., Shimada R., Demura M., Osanai M., Fujito T., Imanari M. and Ulrich A. S. H-2-Labeling of silk fibroin fibers and their structural characterization by solid-state H-2 NMR. Macromolecules,1997.30(8):2429-2435.
    [117]Asakura T., Nakazawa Y., Ghi P. Y., Ashida J. and Kameda T. Structure and dynamics of silk fibroin studied with C-13, N-15, and H-2 solid-state NMR Abstracts of Papers of the American Chemical Society,2000.219:51-PMSE.
    [118]Asakura T. and Murakami T. Nmr of Silk Fibroin.4. Temperature-induced and urea-induced helix-coil transitions of the-(Ala)N-Sequence in Philosamia-Cynthia-Ricini silk fibroin protein monitored by C-13 NMR-Spectroscopy. Macromolecules,1985.18(12):2614-2619.
    [119]Asakura T., Kuzuhara A., Tabeta R. and Saito H. Conformational characterization of Bombyx mori silk fibroin in the solid state by high-frequency carbon-13 cross polarization-magic angle spinning NMR, X-ray diffraction, and infrared spectroscopy. Macromolecules,1985.18(10):1841-1845.
    [120]Asakura T., Demura M. and Tsutsumi M. Na-23 and Al-27 Nmr-Studies of the Interaction between Bombyx-Mori Silk Fibroin and Metal-Ions Trapped in the Porous Silk Fibroin Membrane. Makromolekulare Chemie-Rapid Communications,1988. 9(12):835-839.
    [121]Asakura T., Ashida J., Yamane T., Kameda T., Nakazawa Y., Ohgo K. and Komatsu K. A repeated beta-turn structure in poly(Ala-Gly) as a model for silk I of Bombyx mori silk fibroin studied with two-dimensional spin-diffusion NMR under off magic angle spinning and rotational echo double resonance. Journal of Molecular Biology,2001.306(2):291-305.
    [122]Putthanarat S., Stribeck N., Fossey S. A., Eby R. K. and Adams W. W. Investigation of the nanofibrils of silk fibers. Polymer,2000.41(21):7735-7747.
    [123]Madsen B. and Vollrath F. Mechanics and morphology of silk drawn from anesthetized spiders. Naturwissenschaften,2000.87(3):148-153.
    [124]Mahoney D. V., Vezie D. L., Eby R. K., Adams W. W. and Kaplan D., Aspects of the morphology of dragline silk of Nephila-Clavipes, in Silk Polymers:Materials Science and Biotechnology, Kaplan D., Adams W. W., Farmer B. and Viney C., Editors.1994, American Chemical Society:Washington, p.196-210.
    [125]Robson R. M. Microvoids in Bombyx mori silk. An electron microscope study. International Journal of Biological Macromolecules,1999.24(2-3):145-150.
    [126]Freddi G, Monti P., Nagura M., Gotoh Y. and Tsukada M. Structure and molecular conformation of tussah silk fibroin films:Effect of heat treatment. Journal of Polymer Science Part B-Polymer Physics,1997.35(5):841-847.
    [127]Rammelsberg R., Boulas S., Chorongiewski H. and Gerwert K. Set-up for time-resolved step-scan FTIR spectroscopy of noncyclic reactions. Vibrational Spectroscopy,1999.19:143-149.
    [128]Palmer R. A., Manning C. J., Chao J. L., Noda I., Dowrey A. E. and Marcott C. Application of step-scan interferometry to 2-Dimensional Fourier-Transform Infrared-correlation spectroscopy. Applied Spectroscopy,1991.45(1):12-17.
    [129]McFarlane K., Lee B., Bridgewater J. and Ford P. C. Time resolved infrared spectroscopy as a technique to study reactive organometallic intermediates. Journal of Organometallic Chemistry,1998.554:49-61.
    [130]Palmer R. A., Smith G. D. and Chen P. Y. Breaking the nanosecond barrier in FTIR time-resolved spectroscopy. Vibrational Spectroscopy,1999.19:131-141.
    [131]Bordiga S., Bertarione S., Damin A., Prestipino C., Spoto G., Lamberti C. and Zecchina A. On the first stages of the ethylene polymerization on Cr2+/SiO2 Phillips catalyst:time and temperature resolved IR studies. Journal of Molecular Catalysis a-Chemical,2003.204:527-534.
    [132]Gilmanshin R., Williams S., Callender R.H., Woodruff W. H. and Dyer R. B. Fast events in protein folding:Relaxation dynamics of secondary and tertiary structure in native apomyoglobin. Proceedings of the National Academy of Sciences of the United States of America,1997.94(8):3709-3713.
    [133]Gilmanshin R., Williams S., Callender R. H., Woodruff W. H. and Dyer R. B. Fast events in protein folding:Relaxation dynamics and structure of the I form of apomyoglobin. Biochemistry,1997.36(48):15006-15012.
    [134]Chen P. Y. and Palmer R. A. Ten-nanosecond step-scan FT-IR absorption difference time-resolved spectroscopy:Applications to excited states of transition metal complexes. Applied Spectroscopy,1997.51(4):580-583.
    [135]Chen P. Y. and Palmer R. A. Time-resolved infrared spectroscopy of excited states of d(6) metal complexes. Abstracts of Papers of the American Chemical Society, 1996.211:215-Inor.
    [136]Czarnecki M. A., Okretic S. and Siesler H. W. Reorientation of nematic liquid-crystals and liquid-crystalline polymers in an electric field studied by FT-IR time-resolved spectroscopy and 2D-correlation analysis. Journal of Physical Chemistry B,1997.101(3):374-380.
    [137]Hilber W., Helm M., Alavi K. and Pathak R. N. Hot-electron power loss in a doped GaAs/AlGaAs superlattice at intermediate temperature studied by infrared differential spectroscopy. Applied Physics Letters,1996.69(17):2528-2530.
    [138]Hilber W., Helm M., Peeters F. M., Alavi K. and Pathak R. N. Impurity band and magnetic-field-induced metal-insulator transition in a doped GaAs/AlxGal-xAs superlattice. Physical Review B,1996.53(11):6919-6922.
    [139]Wu P. G, Li Y. K., Talalay P. and Brand L. Characterization of the 3 Tyrosine residues of Delta(5)-3-Ketosteroid Isomerase by Time-Resolved Fluorescence and Circular-Dichroism. Biochemistry,1994.33(23):7415-7422.
    [140]Reinstadler D., Fabian H., Backmann J. and Naumann D. Refolding of thermally and urea-denatured ribonuclease A monitored by time-resolved FTIR spectroscopy. Biochemistry,1996.35(49):15822-15830.
    [141]Noda I. Two-dimensional infrared spectroscopy of synthetic and biopolymers. Bulletin of American Physical Society,1986.31:520.
    [142]Noda I. Generalized Two-dimensional correlation method applicable to Infrared, Raman and other trypes of spectroscopy. Applied Spectroscopy,1993.47(9): 1329-1336.
    [143]Izawa K., Ogasawara T., Masuda H., Okabayashi H., O'Connor C. J. and Noda I.2D gel permeation chromatography (2D GPC) correlation studies of the growth process for perfluoro-octyltriethoxysilane polymer aggregates. Physical Chemistry Chemical Physics,2002.4(6):1053-1061.
    [144]Noda I.2-Dimensional Infrared Spectroscopy-Theory and Applications. Applied Spectroscopy,1990.44(4):550-561.
    [145]Noda I., Dowrey A. E. and Marcott C. Recent developments in 2-Dimensional infrared correlation spectroscopy. Applied Spectroscopy,1993.47(9):1317-1323.
    [146]Noda I. and Marcott C. Two-dimensional Raman (2D Raman) correlation spectroscopy study of non-oxidative photodegradation of beta-carotene. Journal of Physical Chemistry A,2002.106(14):3371-3376.
    [147]Noda I. Two-Dimensional Infrared Spectroscopy. Journal of the American Chemical Society.1989. 111:8116-8118.
    [148]Noda I., Dowrey A. E. and Marcott C. Proceedings of an international conference on fourier and computerized infrared spectroscopy. SPIE,1985.553:56.
    [149]Noda I., Dowrey A. E. and Marcott C. In FT-IR characterization of polymers; Ishida, H., Ed.; Plenum:New York,1987:33.
    [150]Noda I. Two-Dimensional Infrared-Spectroscopy. Journal of the American Chemical Society,1989.111(21):8116-8118.
    [151]Noda I., Dowrey A. E., Marcott C., Story G. M. and Ozaki Y. Generalized two-dimensional correlation spectroscopy. Applied Spectroscopy,2000.54(7): 236A-248A.
    [152]Kurkuri M. D., Lee J. R., Han J. H. and Lee I. Electroactive behavior of poly(acrylic acid) grafted poly(vinyl alcohol) samples, their synthesis using a Ce-(IV) glucose redox system and their characterization. Smart Materials & Structures,2006. 15(2):417-423.
    [153]Ali A. E. H., El-Rehim H. A. A., Hegazy E. S. A. and Ghobashy M. M. Synthesis and electrical response of acrylic acid/vinyl sulfonic acid hydrogels prepared by gamma-irradiation. Radiation Physics and Chemistry,2006.75(9): 1041-1046.
    [154]Gao Y, Xu S. M., Wu R. L, Wang J. D. and Wei J. Preparation and characteristic of electric stimuli responsive hydrogel composed of polyvinyl Alcohol/Poly (Sodium maleate-co-sodium acrylate). Journal of Applied Polymer Science,2008.107(1):391-395.
    [155]Yao L. and Krause S. Electromechanical responses of strong acid polymer gels in DC electric fields. Macromolecules,2003.36(6):2055-2065.
    [1]Kinsella J. E. Functional properties of soy proteins. Journal of the American Oil Chemists'Society,1979.56:242-258.
    [2]周兵,周瑞宝.大豆球蛋白的性质.西部粮油科技,1998.23(4):39-43.
    [3]S. R. Fahnestock, A.Steinbuchel,邵正中,杨新林,生物高分子(第8卷).2001:化学工业出版社.210-233.
    [4]Adachi M., Takenaka Y., Gidamis A. B., Mikami B. and Utsumi S. Crystal structure of soybean proglycinin AlaBlb homotrimer. Journal of Molecular Biology, 2001.305(2):291-305.
    [5]Arrese E. L., Sorgentini D. A., Wagner J. R. and Anon M. C. Electrophoretic, solubility, and functional-properties of commercial soy protein isolates. Journal of Agricultural and Food Chemistry,1991.39(6):1029-1032.
    [6]Guan J., Yao J. R., Tian K., Shao Z. Z. and Chen X. Preparation of high molecular weight soy protein aqueous solution and separation of its main components. Acta Polymerica Sinica,2010.2:223-227.
    [7]Thanh V. H. and Shibasaki K. Major proteins of soybean seeds:Reversible and irreversible dissociation of beta-conglycinin. Journal of Agricultural and Food Chemistry,1979.27(4):805-809.
    [8]Thanh V. H. and Shibasaki K. Major proteins of soybean seeds:A straightforward fractionation and their characterization. Journal of Agricultural and Food Chemistry,1976.24(6):1117-1121.
    [9]Iwabuchi S. and Yamauchi F. Electrophoretic analysis of whey proteins present in soybean globulin fractions. Journal of Agricultural and Food Chemistry,1987. 35(2):205-209.
    [10]Gennadios A. and Weller C. L. Soy protein isolate-dialdehyde starch films. Industrial Crops and Products,1998.8:195-203.
    [11]Kim K. M., Weller C. L., Hanna M. A. and Gennadios A. Heat curing of soy protein films at selected temperatures and pressures. Lebensmittel-Wissenschaft Und-Technologie-Food Science and Technology,2002.35(2):140-145.
    [12]Zhang X. F., Min B. G. and Kumar S. Solution spinning and characterization of poly(vinyl alcohol)/soybean protein blend fibers. Journal of Applied Polymer Science, 2003.90(3):716-721.
    [13]Marcone M. F., Kakuda Y. and Yada R. Y. Salt-soluble seed globulins of various dicotyledonous and monocotyledonous plants-I. Isolation/purification and characterization. Food Chemistry,1998.62(1):27-47.
    [14]Sathe S. K. Isolation and characterization of the protein that copurifies with soybean (Glycine-Max L) glycinin. Journal of Food Biochemistry,1991.15(1):33-49.
    [15]Damodaran S., Interrelationship of molecular and functional properties of food proteins, ed. Williams G., Soucie J. and Kinsella E.1997, Chanpaign, IL Am. Oil. Chem. Soc.
    [16]Maruyama N., Sato R., Wada Y., Matsumura Y, Goto H., Okuda E., Nakagawa S. and Utsumi S. Structure-physicochemical function relationships of soybean beta-conglycinin constituent subunits. Journal of Agricultural and Food Chemistry, 1999.47(12):5278-5284.
    [17]管娟.大豆蛋白的溶液制备及应用初探.复旦大学硕士学位论文,2009.
    [18]Mori T., Utsumi S. and Inaba H. Interaction involving disulfide bridges between subunits of soybean seed globulin and between subunits of soybean and sesame seed globulins. Agricultural and Biological Chemistry,1979.43(11): 2317-2322.
    [19]Aune K. C. and Tanford C. Thermodynamics of denaturation of lysozyme by guanidine hydrochloride.1. Dependence on pH at 25 degrees. Biochemistry,1969. 8(11):4579-4585.
    [20]Aune K. C. and Tanford C. Thermodynamics of denaturation of lysozyme by guanidine hydrochloride.2. Dependence on denaturant concentration at 25 degrees. Biochemistry,1969.8(11):4586-4590.
    [21]Kizilay M. Y. and Okay O. Effect of hydrolysis on spatial inhomogeneity in poly (acrylamide) gels of various crosslink densities. Polymer,2003.44(18): 5239-5250.
    [22]Winter H. H. and Chambon F. Analysis of linear viscoelasticity of a crosslinking polymer at the gel point. Journal of Rheology,1986.30(2):367-382.
    [23]Yang J. M., Cao X. L., Zhang K. L., Song X. W., Qiu F. and Xu Y. Z. Monte Carlo simulation of the gelation process of the aqueous polymer weak gel. Chemical Journal of Chinese Universities-Chinese,2006.27(3):579-582.
    [24]Scanlan J. C. and Winter H. H. Composition dependence of the viscoelasticity of end-linked poly(dimethylsiloxane) at the gel point. Macromolecules,1991.24(1): 47-54.
    [25]Winter H. H., Izuka A. and Derosa M. E. Experimental-observation of the molecular-weight dependence of the critical exponents for the rheology near the gel point. Polymer Gels and Networks,1994.2(3-4):239-245.
    [26]Trappe V. and Weitz D. A. Scaling of the viscoelasticity of weakly attractive particles. Physical Review Letters,2000.85(2):449-452.
    [27]何曼君,张红东,陈维孝,董西侠.高分子物理(第三版).上海:复旦大学出版社,2007.
    [1]Zheng H., Tan Z. A., Zhan Y. R. and Huang J. Morphology and properties of soy protein plastics modified with chitin. Journal of Applied Polymer Science,2003. 90(13):3676-3682.
    [2]Zhang L., Chen P., Huang J., Yang G. and Zheng L. S. Ways of strengthening biodegradable soy-dreg plastics. Journal of Applied Polymer Science,2003.88(2): 422-427.
    [3]Wang N. G, Zhang L. N. and Gu J. M. Mechanical properties and biodegradability of crosslinked soy protein isolate/waterborne polyurethane composites. Journal of Applied Polymer Science,2005.95(2):465-473.
    [4]Wang Y. X., Cao X. D. and Zhang L. N. Effects of cellulose whiskers on properties of soy protein thermoplastics. Macromolecular Bioscience,2006.6(7): 524-531.
    [5]Zhang X. F., Min B. G. and Kumar S. Solution spinning and characterization of poly(vinyl alcohol)/soybean protein blend fibers. Journal of Applied Polymer Science, 2003.90(3):716-721.
    [6]Zhang Y, Ghasemzadeh S., Kotliar A. M., Kumar S., Presnell S. and Williams L D. Fibers from soybean protein and poly(vinyl alcohol). Journal of Applied Polymer Science,1999.71(1):11-19.
    [7]姜岩,王业宏,欧力,李洁,王宝东.大豆蛋白质纤维的结构研究(Ⅰ):大分子组成和化学结构.纺织学报,2004.25(6):43-44.
    [8]沈国先.大豆蛋白纤维应用讲座.现代纺织技术,2003.11(1):56-58.
    [9]Subirade M., Kelly I., Gueguen J. and Pezolet M. Molecular basis of film formation from a soybean protein:comparison between the conformation of glycinin in aqueous solution and in films. International Journal of Biological Macromolecules, 1998.23(4):241-249.
    [10]Soares R. M. D., Scremin F. F. and V. S. Thermal stability of biodegradable films based on soy protein and corn starch. Macromolecular Symposia,2005.229: 258-265.
    [11]Schmidt V., Giacomelli C. and Soldi V. Thermal stability of films formed by soy protein isolate-sodium dodecyl sulfate. Polymer Degradation and Stability,2005. 87(1):25-31.
    [12]Huang W. N. and Sun X. Z. Adhesive properties of soy proteins modified by urea and guanidine hydrochloride. Journal of the American Oil Chemists Society, 2000.77(1):101-104.
    [13]Huang W. N. and Sun X. Z. Adhesive properties of soy proteins modified by sodium dodecyl sulfate and sodium dodecylbenzene sulfonate. Journal of the American Oil Chemists Society,2000.77(7):705-708.
    [14]Ishino K. and Kudo S. Conformational transition of alkali-denatured soybean 7s and 11s globulins by ethanol. Agric. Biol. Chem.,1980a.44(3):537-543.
    [15]Pleitz P. and Damaschun G. The structure of the 11s seed globulins from various plant species:Comparative investigations by physical methods. Stud. Biophys.,1986.116:153-173.
    [16]Marcone M. F., Bondi M. C. and Yada R. Y. Isolation of soybean 11s globulin by isoelectric precipitation and sephacryl S-300 gel-filtration chromatography-a new purification technique. Bioscience Biotechnology and Biochemistry,1994.58(2): 413-415.
    [17]Dev S. B., Keller J. T. and Rha C. K. Secondary structure of 11s globulins in aqueous solution investigated by FT-IR derivative spectroscopy. Biochimica et Biophysica Acta,1988.957:272-280.
    [18]Nagano T., Akasaka T. and Nishinari K. Study on the heat-induced conformational changes of beta-conglycinin by FTIR and CD analysis. Food Hydrocolloids,1995.9(2):83-89.
    [19]Wang C. H. and Damodaran S. Thermal gelation of globular-proteins influence of protein conformation on gel strength. Journal of Agricultural and Food Chemistry,1991.39(3):433-438.
    [20]Marcone M. F. A comparative study of thermally induced conformational changes occurring in food-grade seed proteins. Italian Journal of Food Science,1999. 11(3):193-206.
    [21]Hashizume K. and Watanabe T. Heat denaturation of soybeans. Part II. Influence of heating temperature on conformational changes of soybean proteins. Agricultural and Biological Chemistry,1979.43(4):683-690.
    [22]Zhang II., Li L., Tatsumi E. and Kotwal S. Influence of high pressure on conformational changes of soybean glycinin. Innovative Food Science & Emerging Technologies,2003.4(3):269-275.
    [23]Tsumura K., Enatsu M., Kuramori K., Morita S., Kugimiya W., Kuwada M., Shimura Y. and Hasumi H. Conformational change in a single molecular species, beta(3). of beta-conglycinin in acidic ethanol solution. Bioscience Biotechnology and Biochemistry,2001.65(2):292-297.
    [24]Ishino K. and Okamoto S. Molecular interaction in alkali denatured soybean proteins. Cereal Chemistry,1975.52(1):9-21.
    [25]Chen X., Shao Z. Z., Marinkovic N. S., Miller L. M., Zhou P. and Chance M. R. Conformation transition kinetics of regenerated Bombyx mori silk fibroin membrane monitored by time-resolved FTIR spectroscopy. Biophysical Chemistry,2001.89(1): 25-34.
    [26]Chen X., Shao Z. Z., Knight D. P. and Vollrath F. Conformation transition of silk protein membranes monitored by time-resolved FTIR spectroscopy:Effect of alkali metal ions on Nephila spidroin membrane. Acta Chimica Sinica,2002.60(12): 2203-2208.
    [27]Chen X., Knight D. P., Shao Z. Z. and Vollrath F. Conformation transition in silk protein films monitored by time-resolved Fourier transform infrared spectroscopy: Effect of potassium ions on Nephila spidroin films. Biochemistry,2002.41(50): 14944-14950.
    [28]Noda I. Advances in two-dimensional correlation spectroscopy. Vibrational Spectroscopy,2004.36(2):143-165.
    [29]Park S. M., Jung H. Y., Chung K. C., Rhim H., Park J. H. and Kim J. Stress-induced aggregation profiles of GST-alpha-synuclein fusion proteins:Role of the C-terminal acidic tail of alpha-synuclein in protein thermosolubility and stability. Biochemistry,2002.
    [30]Jung Y. M., Kim S. B. and Noda I. New approach to generalized two-dimensional correlation spectroscopy. II:Eigenvalue manipulation transformation (EMT) for noise suppression. Applied Spectroscopy,2003.57(5):557-563.
    [31]Noda I., Dowrey A. E. and Marcott C. Recent developments in 2-Dimensional Infrared correlation spectroscopy. Applied Spectroscopy,1993.47(9):1317-1323.
    [32]Noda I.2-Dimensional Infrared (2D-IR) spectroscopy-theory and applications. Applied Spectroscopy,1990.44(4):550-561.
    [33]Noda I. Determination of two-dimensional correlation spectra using the Hilbert transform. Applied Spectroscopy,2000.54(7):994-999.
    [34]Ozaki Y., Sasic S., Tanaka T. and Noda I. Two-dimensional correlation spectroscopy:Principle and recent theoretical development. Bulletin of the Chemical Society of Japan,2001.74(1):1-17.
    [35]Noda I. Two-dimensional infrared spectroscopy of synthetic and biopolymers. Bulletin of American Physical Society,1986.31:520.
    [36]Noda I. Two-dimensional infrared spectroscopy. Journal of the American Chemical Society.1989. 111:8116-8118.
    [37]Noda I. Generalized Two-dimensional correlation method applicable to infrared, Raman and other trypes of spectroscopy. Applied Spectroscopy,1993.47(9): 1329-1336.
    [38]Liu Y. L., Ozaki Y. and Noda I. Two-dimensional Fourier-transform near-infrared correlation spectroscopy study of dissociation of hydrogen-bonded N-methylacetamide in the pure liquid state. Journal of Physical Chemistry,1996. 100(18):7326-7332.
    [39]Ren Y. Z., Murakami T., Nishioka T., Nakashima K., Noda I. and Ozaki Y. Two-dimensional Fourier transform Raman correlation spectroscopy studies of polymer blends:Conformational changes and specific interactions in blends of atactic polystyrene and poly(2,6-dimethyl-l,4-phenylene ether). Macromolecules,1999. 32(19):6307-6318.
    [40]Izawa K., Ogasawara T., Masuda H., Okabayashi H., O'Connor C. J. and Noda I.2D gel permeation chromatography (2D GPC) correlation studies of the growth process for perfluoro-octyltriethoxysilane polymer aggregates. Physical Chemistry Chemical Physics,2002.4(6):1053-1061.
    [41]Noda I., Story G. M. and Marcott C. Pressure-induced transitions of polyethylene studied by two-dimensional infrared correlation spectroscopy. Vibrational Spectroscopy,1999.19(2):461-465.
    [42]Noda I., Liu Y. L. and Ozaki Y. Two-dimensional correlation spectroscopy study of temperature-dependent spectral variations of N-methylacetamide in the pure liquid state.1. Two-dimensional infrared analysis. Journal of Physical Chemistry, 1996.100(21):8665-8673.
    [43]Ozaki Y., Liu Y. L. and Noda I. Two-dimensional infrared and near-infrared correlation spectroscopy:Applications to studies of temperature-dependent spectral variations of self-associated molecules. Applied Spectroscopy,1997.51(4):526-535.
    [44]Tretinnikov O. N. and Tamada Y. Influence of casting temperature on the near-surface structure and wettability of cast silk fibroin films. Langmuir,2001. 17(23):7406-7413.
    [45]Freddi G., Monti P., Nagura M., Gotoh Y. and Tsukada M. Structure and molecular conformation of tussah silk fibroin films:Effect of heat treatment. Journal of Polymer Science Part B-Polymer Physics,1997.35(5):841-847.
    [46]Sonoyama M., Miyazawa M., Katagiri G. and Ishida Ⅱ. Dynamic FT-IR spectroscopic studies of silk fibroin films. Applied Spectroscopy,1997.51(4): 545-547.
    [47]Sonoyama M. and Nakano T. Infrared rheo-optics of bombyx mori fibroin film by dynamic step-scan FTIR spectroscopy combined with digital signal processing. Applied Spectroscopy,2000.54(7):968-973.
    [48]Tsukada M., Freddi G., Gotoh Y. and Kasai N. Physical and chemical-properties of tussah silk fibroin films. Journal of Polymer Science Part B-Polymer Physics,1994. 32(8):1407-1412.
    [49]Wilson D., Valluzzi R. and Kaplan D. Conformational transitions in model silk peptides. Biophysical Journal,2000.78(5):2690-2701.
    [50]Chen X., Knight D. P. and Shao Z. Z. beta-turn formation during the conformation transition in silk fibroin. Soft Matter,2009.5(14):2777-2781.
    [51]Chen X., Shao Z. Z., Knight D. P. and Vollrath F. Conformation transition kinetics of Bombyx mori silk protein. Proteins-Structure Function and Bioinformatics, 2007.68(1):223-231.
    [52]Tsukada M. Effect of the drying rate on the structure of tussah silk (Antheraea-Pernyi) fibroin. Journal of Polymer Science Part B-Polymer Physics,1986. 24(2):457-460.
    [53]Tsukada M. Structural-changes induced in tussah silk (Antheraea-Pernyi) fibroin films by immersion in methanol. Journal of Polymer Science Part B-Polymer Physics,1986.24(6):1227-1232.
    [54]Barth A. Infrared spectroscopy of proteins. Biochimica Et Biophysica Acta-Bioenergetics,2007.1767(9):1073-1101.
    [55]Barth A. and Zscherp C. What vibrations tell us about proteins. Quarterly Reviews of Biophysics,2002.35(4):369-430.
    [56]Hu X., Kaplan D. and Cebe P. Determining beta-sheet crystallinity in fibrous proteins by thermal analysis and infrared spectroscopy. Macromolecules,2006. 39(18):6161-6170.
    [57]Hu X., Kaplan D. and Cebe P. Dynamic protein-water relationships during beta-sheet formation. Macromolecules,2008.41(11):3939-3948.
    [58]Hu X., Lu Q., Kaplan D. L. and Cebe P. Microphase separation controlled beta-sheet crystallization kinetics in fibrous proteins. Macromolecules,2009.42(6): 2079-2087.
    [59]Zhou W., Chen X. and Shao Z. Z. Conformation studies of silk proteins with infrared and Raman spectroscopy. Progress in Chemistry,2006.18(11):1514-1522.
    [60]Riblett A. L., Herald T. J., Schmidt K. A. and Tilley K. A. Characterization of beta-conglycinin and glycinin soy protein fractions from four selected soybean genotypes. Journal of Agricultural and Food Chemistry,2001.49(10):4983-4989.
    [61]McGrath K and Kaplan D. L. Protein-based materials. Birkhauser Press: Boston,1996:103-133.
    [62]Noda I., Liu Y. L. and Ozaki Y. Two-dimensional correlation spectroscopy study of temperature-dependent spectral variations of N-methylacetamide in the pure liquid state.2. Two-dimensional Raman and infrared-Raman heterospectral analysis. Journal of Physical Chemistry,1996.100(21):8674-8680.
    [63]Peng X. N., Shao Z. Z., Chen X., Knight D. P., Wu P. Y. and Vollrath F. Further investigation on potassium-induced conformation transition of Nephila spidroin film with two-dimensional infrared correlation spectroscopy. Biomacromolecules,2005. 6(1):302-308.
    [64]Padermshoke A., Katsumoto Y., Harumi S. A., Ekgasit S., Noda I. and Ozaki Y. Melting behavior of poly(3-hydroxybutyrate) investigated by two-dimensional infrared correlation spectroscopy. Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy,2005.61(4):541-550.
    [65]Czarnecki M. A., Jordanov B., Okretic S. and Siesler H. W. Two-dimensional correlation analysis of time-resolved step-scan FT-IR spectra of a liquid crystalline guest-host system in an electric field. Applied Spectroscopy,1997.51(11): 1698-1702.
    [66]Brockhinke A., Plessow R., Dittrich P. and Kohse-Hoinghaus K. Analysis of the local conformation of proteins with two-dimensional fluorescence techniques. Applied Physics B-Lasers and Optics,2000.71(5):755-763.
    [67]Jung Y. M., Kim S. B. and Noda I. Application of two-dimensional correlation spectroscopy to chemometrics:Self-modeling curve resolution analysis of spectral data sets. Applied Spectroscopy,2003.57(11):1376-1380.
    [1]Su J. F., Wang X. Y., Huang Z., Yuan X. Y., Li M., Xia W. L. and Feng C. L. Heat-sealing properties of soy protein isolate/poly(vinyl alcohol) blend films:Effect of the heat-sealing temperature. Journal of Applied Polymer Science,2010.115(3): 1901-1911.
    [2]Su J. F., Huang Z., Yang C. M. and Yuan X. Y. Properties of soy protein isolate/poly(vinyl alcohol) blend "green" films:Compatibility, mechanical properties, and thermal stability. Journal of Applied Polymer Science,2008.110(6):3706-3716.
    [3]Park S. K., Hettiarachchy N. S. and Were L. Degradation behavior of soy protein-wheat gluten films in simulated soil conditions. Journal of Agricultural and Food Chemistry,2000.48(7):3027-3031.
    [4]Gao C. L., Stading M., Wellner N., Parker M. L., Noel T. R., Mills E. N. C. and Belton P. S. Plasticization of a protein-based film by glycerol:A spectroscopic, mechanical, and thermal study. Journal of Agricultural and Food Chemistry,2006. 54(13):4611-4616.
    [5]Choi S. G, Kim K. M., Hanna M. A., Weller C. L. and Kerr W. L. Molecular dynamics of soy-protein isolate films plasticized by water and glycerol. Journal of Food Science,2003.68(8):2516-2522.
    [6]Subirade M., Kelly I., Gueguen J. and Pezolet M. Molecular basis of film formation from a soybean protein:comparison between the conformation of glycinin in aqueous solution and in films. International Journal of Biological Macromolecules, 1998.23(4):241-249.
    [7]Chen X., Knight D. P., Shao Z. Z. and Vollrath F. Conformation transition in silk protein films monitored by time-resolved Fourier transform infrared spectroscopy: Effect of potassium ions on Nephila spidroin films. Biochemistry,2002.41(50): 14944-14950.
    [8]Chen X., Shao Z. Z., Knight D. P. and Vollrath F. Conformation transition kinetics of Bombyx mori silk protein. Proteins-Structure Function and Bioinformatics, 2007.68(1):223-231.
    [9]Chen X., Shao Z., Marinkovic N. S., Miller L. M., Zhou P. and Chance M. R. Conformation transition kinetics of regenerated Bombyx mori silk fibroin membrane monitored by time-resolved FTIR spectroscopy. Biophysical Chemistry,2001.89(1): 25-34.
    [10]Hu X., Kaplan D. and Cebe P. Dynamic protein-water relationships during beta-sheet formation. Macromolecules,2008.41(11):3939-3948.
    [11]Hu X., Kaplan D. and Cebe P. Determining beta-sheet crystallinity in fibrous proteins by thermal analysis and infrared spectroscopy. Macromolecules,2006. 39(18):6161-6170.
    [12]Pyda M., Hu X. and Cebe P. Heat capacity of silk fibroin based on the vibrational motion of poly(amino acid)s in the presence and absence of water. Macromolecules,2008.41(13):4786-4793.
    [13]Wunderlich B, Cheng S Z D and Loufakis K. Thermodynamic properties in encyclopedia of polymer science and engineering. Wiley Interscience, New York, 1989. Volume 16.
    [14]Porter D. Group interaction modelling of polymer properties, Marcel Dekker, New York,1995.
    [15]Ping Z. H., Nguyen Q. T., Chen S. M., Zhou J. Q. and Ding Y. D. States of water in different hydrophilic polymers-DSC and FTIR studies. Polymer,2001. 42(20):8461-8467.
    [16]Porter D. and Vollrath F. The role of kinetics of water and amide bonding in protein stability. Soft Matter,2008.4(2):328-336.
    [17]Porter D., Vollrath F., Tian K., Chen X. and Shao Z. Z. A kinetic model for thermal degradation in polymers with specific application to proteins. Polymer,2009. 50(7):1814-1818.
    [18]Porter D., Group interaction modelling of polymer properties.1995, New York: Marcel Dekker.
    [1]Qiu Y. and Park K. Environment-sensitive hydrogels for drug delivery. Advanced Drug Delivery Reviews,2001.53(3):321-339.
    [2]Calvert P. Hydrogels for soft machines. Advanced Materials,2009.21(7): 743-756.
    [3]Kumar A., Srivastava A., Galaev I. Y. and Mattiasson B. Smart polymers: Physical forms and bioengineering applications. Progress in Polymer Science,2007. 32(10):1205-1237.
    [4]Mohammed J. S. and Murphy W. L. Bioinspired design of dynamic materials. Advanced Materials,2009.21(23):2361-2374.
    [5]Lei M., Gu Y. D., Baldi A., Siegel R. A. and Ziaie B. High-resolution technique for fabricating environmentally sensitive hydrogel microstructures. Langmuir,2004. 20(21):8947-8951.
    [6]Han I. S., Han M. H., Kim J., Lew S., Lee Y. J., Horkay F. and Magda J. J. Constant-volume hydrogel osmometer:A new device concept for miniature biosensors. Biomacromolecules,2002.3(6):1271-1275.
    [7]Peppas N. A., Hilt J. Z., Khademhosseini A. and Langer R. Hydrogels in biology and medicine:From molecular principles to bionanotechnology. Advanced Materials, 2006.18(11):1345-1360.
    [8]Kim H. I., Gu B. K., Shin M. K., Park S. J., Yoon S. G., Kim L., Kim S. I. and Kim S. J., Electrical response characterization of Interpenetrating Polymer Network hydrogels as an actuator, in Smart Structures and Materials 2005:Electroactive Polymer Actuators and Devices(EAPAD), Cohen Y. B., Editor.2005. p.447-453.
    [9]Kim S. J., Kim I. Y. and Kim S. I., Electroactive polymer hydrogels for bio-inspired actuators, in Smart Structures and Materials 2005:Electroactive Polymer Actuators and Devices(EAPAD), Cohen Y. B., Editor.2005. p.144-152.
    [10]Kim S. J., Kim M. S., Kim S. I., Spinks G. M., Kim B. C. and Wallace G. G. Self-oscillatory actuation at constant DC voltage with pH-sensitive chitosan/polyaniline hydrogel blend. Chemistry of Materials,2006.18(24): 5805-5809.
    [11]Liang H. F., Hong M. H., Ho R. M., Chung C. K., Lin Y. H., Chen C. H. and Sung H. W. Novel method using a temperature-sensitive polymer (methylcellulose) to thermally gel aqueous alginate as a pH-sensitive hydrogel. Biomacromolecules,2004. 5(5):1917-1925.
    [12]Kopecek J. and Yang J. Y. Revie-Hydrogels as smart biomaterials. Polymer International.2007.56(9):1078-1098.
    [13]Shang J., Chen X. and Shao Z. Z. The electric-field-sensitive hydrogels. Progress in Chemistry,2007.19(9):1393-1399.
    [14]Kim S. J., Kim H. I. I., Park S. J. and Kim S. I. Shape change characteristics of polymer hydrogel based on polyacrylic acid/poly(vinyl sulfonic acid) in electric fields. Sensors and Actuators a-Physical,2004.115(1):146-150.
    [15]Kim H. I., Park S. J., Kim S. I., Kim N. G. and Kim S. J. Electroactive polymer hydrogels composed of polyacrylic acid and poly(vinyl sulfonic acid) copolymer for application of biomaterial. Synthetic Metals,2005.155(3):674-676.
    [16]Shiga T., Deformation and viscoelastic behavior of polymer gels in electric fields, in Neutron Spin Echo Spectroscopy Viscoelasticity Rheology.1997. p. 131-163.
    [17]Kim S. J., Yooon S. G., Lee Y. M., Kim H. C. and Kim S. I. Electrical behavior of polymer hydrogel composed of poly(vinyl alcohol)-hyaluronic acid in solution. Biosensors & Bioelectronics,2004.19(6):531-536.
    [18]Kim S. J., Kim H. I., Park S. J., Kim I. Y., Lee S. H., Lee T. S. and Kim S.1. Behavior in electric fields of smart hydrogels with potential application as bio-inspired actuators. Smart Materials & Structures,2005.14(4):511-514.
    [19]Yao L. and Krause S. Electromechanical responses of strong acid polymer gels in DC electric fields. Macromolecules,2003.36(6):2055-2065.
    [20]Kim S. J., Yoon S. G., Lee S. M., Lee S. H. and Kim S. I. Electrical sensitivity behavior of a hydrogel composed of polymethacrylic acid/poly(vinyl alcohol). Journal of Applied Polymer Science,2004.91(6):3613-3617.
    [21]Shang J., Shao Z. Z. and Chen X. Electrical behavior of a natural polyelectrolyte hydrogel:Chitosan/carboxymethylcellulose hydrogel. Biomacromolecules,2008.9(4):1208-1213.
    [22]Shang J., Shao Z. Z. and Chen X. Chitosan-based electroactive hydrogel. Polymer,2008.49(25):5520-5525.
    [23]Riblett A. L., Herald T. J., Schmidt K. A. and Til ley K. A. Characterization of beta-conglycinin and glycinin soy protein fractions from four selected soybean genotypes. Journal of Agricultural and Food Chemistry,2001.49(10):4983-4989.
    [24]Maruyama N., Sato R., Wada Y., Matsumura Y., Goto H., Okuda E., Nakagawa S. and Utsumi S. Structure-physicochemical function relationships of soybean beta-conglycinin constituent subunits. Journal of Agricultural and Food Chemistry, 1999.47(12):5278-5284.
    [25]Iwabuchi S. and Yamauchi F. Electrophoretic analysis of whey proteins present in soybean globulin fractions. Journal of Agricultural and Food Chemistry,1987. 35(2):205-209.
    [26]Tanaka T., Nishio I., Sun S. T. and Uenonishio S. Collapse of gels in an electric-field. Science,1982.218(4571):467-469.
    [27]Grimshaw P. E., Nussbaum J. H., Grodzinsky A. J. and Yarmush M. L. Kinetics of electrically and chemically-induced swelling in polyelectrolyte gels. Journal of Chemical Physics,1990.93(6):4462-4472.
    [28]Doi M., Matsumoto M. and Hirose Y. Deformation of ionic polymer gels by electric-fields. Macromolecules,1992.25(20):5504-5511.
    [29]Osada Y, Okuzaki H. and Hori H. A polymer gel with electrically driven motility. Nature,1992.355(6357):242-244.
    [30]Kwon I. C, Bae Y. H. and Kim S. W. Characteristics of charged networks under an electric stimulus. Journal of Polymer Science Part B-Polymer Physics,1994. 32(6):1085-1092.
    [31]Shiga T. and Kurauchi T. Deformation of polyelectrolyte gels under the influence of electric-field. Journal of Applied Polymer Science,1990.39(11-12): 2305-2320.
    [32]Shiga T., Hirose Y, Okada A. and Kurauchi T. Bending of poly(vinyl alcohol)-poly(sodium acrylate) composite hydrogel in electric-fields. Journal of Applied Polymer Science,1992.44(2):249-253.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700