用户名: 密码: 验证码:
生物质常温开模致密成型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物质常温开模挤压成型块状燃料技术是制造生物质成型燃料技术之一,比加热成型技术和常温闭模成型技术工艺更加简化,生产过程更加节能,论文首次对这种成型方式进行探索性试验研究,力求找到一些适合的工艺参数。
     论文以林业公益性行业专项“木本灌木资源产业化促进沙荒地植被恢复技术研究”为依托,以“948”引进项目“生物质成型燃料高压致密成型技术引进”的成果为基础,在实验室自行研制的生物质常温开模成型试验台上,进行多种生物质原料的压缩成型和应力松弛实验,利用SPSS18和Excel2007对数据进行分析;借助德国LeicaS8 APO型体视显微镜,对成型块的端面显微结构图像进行了研究;用ZDWH-8型高精度微机全自动量热仪,对成型块的热值进行了测试。试验结论如下:
     1.随着生物质原料含水率增加,成型块密度和成型压力都是由小变大再变小,在原料含水率不变的情况下,随模具锥度增大、长度减小成型块密度降低,当原料含水率大到一定值时,不能成型。首次得出草坪草原料含水率在8%17%,模具锥度15°—25°时,挤出的草坪草密度都在0.9g/cm~3以上,含水率11%、模具锥度25°时,成型块密度达到最大值1.10g/cm~3,含水率在20%及以上时,挤出的草坪草密度都在0.9g/cm~3以下,成型效果差或不成型。
     2.生物质原料含不同大小颗粒的量如果比例适宜,有利于小颗粒填充在大颗粒的空隙之间,成型密度可达到最大值,成型效果最好。首次得出林木类生物质颗粒度在5mm——20mm,模具锥度40°、出口直径50mm时,可达到最大成型密度。
     3.相同模具时,秸秆类的玉米秸秆成型压力和成型密度最大,草坪草的成型压力和成型密度最小,林木类原料的成型压力和成型密度居中
     4.首次提出生物质常温开模致密成型过程中,成型块的应力松弛模力学拟模型是一个[M]并联一个[H],应力松弛方程式是σ(t)=Ae-t/T+σe。
     5.生物质原料愈靠近模腔壁受阻力愈大,愈接近轴心线受阻力愈小,轴心线附近的物料较外层物料运动速度快,由成型棒中心轴线向表面,密度逐渐增大,首次发现生物质常温开模成型块两端面,分别是内凹和外凸的曲面,首次在显微图像中发现,成型块芯部颗粒的间隙比边部大,挤压使生物质颗粒变形和纤维间相互缠结,相互嵌套不松散。
     6.林木生物质的氧弹热值最大,达到4000~4500卡/克;农作物秸秆(玉米秸)的次之,为3866卡/克;草类物料(草坪草)的最低,为3802卡/克。
The technology of biomass shaping with open mold in natural temperature is one kind of biomass shaping technologies. Compared with heat shaping and shaping with closed mold at room temperature, the craft of shaping with open mold is more simple and production processes are more energy-efficient. So experimental study on shaping way was carried out to find some suitable process parameters.
     The thesis is based on forestry nonprofit industry-specific "woody shrub resources to promote the industrialization of sandy wasteland restoration technology " and on the basis of the results of "948 " introduction project, "High density biomass. briquette shaping technology introduction ". The experiments on a variety of biomass materials for compression shaping and stress relaxation were carried out in self-developed test-bench, and the test data were analyzed by Exce12007 and SPSS18;The shape crack of the block and microstructure image of end-face have been studied respectively with an ordinary digital camera and the German-based Leica S8 APO stereo microscope. The calorific value of the molding blocks were tested with ZDWH-8 automatic high precision computer calorimeter. Test results are as follows:
     1.The results indicate that density and shaping pressure of block is first from small to big, and then to small, accompanying with the increase of moisture content in the same taper; Under a certain moisture content, the density decreases with taper increasing; When moisture content get to a certain value, the lawngrass cannot be formed,First come that when moisture content is at 8% to 17% with the mold taper is at 15°to 25°,the density of turfgrass is larger than 0.9 g/cm~3.when moisture content is at 11% and mold taper is at 25°,the density of block reaches max-1.10 g/cm~3; When raw material moisture content is at 20% or above, the density of lawn grass is smaller than 0.9 g/cm~3 and shaping effect is bad or the lawngrass cannot be formed.
     2.If the ratio of the amount of particles of different sizes is suitable,small particles will fill the spaces between the larger particles, and shaping density reaches its maximum, so shaping effect is the best; it draws the conclusion: the particle size of forest biomass is 5mm-20mm, when mold taper is at 40°and outlet diameter is 50mm,the density reach the maximum.
     3.With the same mold, shaping pressure and shaping density of corn stalks are the largest, shaping pressure and shaping density of turfgrass is the least,and shaping pressure and shaping density of forest-based raw materials is between the lest and the largest.
     4.In the process of biomass shaping with open mold at room temperature, the model of stress relaxation is one【M】model paralleling one【H】model, the constitutive equation of stress relaxation isσ(t)=Ae-t/T+σe.
     5.Biomass feedstock is closer to the parietal, and the frictional resistance is larger, biomass feedstock is closer to the axis, and the frictional resistance is smaller,the material near the axis move faster than the outer materials; from the central axis to the surface, the density of biomass feedstock increases, two end faces of biomass block are concave face and convex face respectively. In microscopic image, the gap of the core particles is large than the edge particles.The microstructure of briquette end-face shows that the mechanism of room-temperature opening-mold shaping is making biomass particles extrusion deformation and fiber entanglement with each other, nested within each other is not loose.
     6.Calorific value of forest biomass is the largest, reaching 4,000 to 4,500 cal/g; the calorific value of crop stalks (corn stalks) is the second, to 3866 cal/g; and the calorific value of Grass material (lawn grass) was the lowest-3802 cal/g.
引文
1.毕于运,王亚静,高春雨.中国主要秸秆资源数量及其区域分布[J].农机化研究,2010,3(3):1-7
    2.边秀举,张训忠.草坪学基础[M]中国建材工业出版社,北京:2005
    3.车战斌.生物质就地及时压缩成型技术[J].新能源技术,2005(1):28-31.
    4.车战斌.生物质就地及时压缩成型技术—Highzones技术[J].中国能源,2005,27(1)::28-31.
    5.车战斌.松散状生物质可成型材料的成型机:中国,03277208.4[P].2004-09-08.
    6.陈瑞英,魏萍,刘景宏.压前含水率对杉木间伐材压缩木性能的影响[J].林产工业,2006,33(1):10-13.
    7.陈晓青,陆萍,董玉平等.生物质固化成型制品表面裂纹试验研究[J].农机化研究,2010,2(2):185-190
    8.陈彦宏,武佩,田雪艳,等.生物质致密成型燃料制造技术研究现状[J].农机化研究2010(1):206-211
    9.陈永生,沐森林,等.生物质成型燃料产业在我国的发展[J].太阳能,2006,4:15-18.
    10.陈永生.试论如何推动我国生物质成型燃料产业的发展[A].第二届中国农业机械化论坛论文集[C],2007,42-46
    11.董玉平,邓波,景元琢,等.中国生物质气化技术的研究和发展现状[J].山东大学学报(工学版),2007(2):1-7.
    12.邓焱,王磊LabVIEW 7.1测试技术与仪器应用[M].北京:机械工业出版社,2004,6.
    13.杜德利,王镇.生物质致密成型产品的生产及应用[J].农业工程学报2006,22(增1):146-150.
    14.杜健民.新鲜草物料压缩过程的流变学研究[D].呼和浩特:内蒙古农业大学,2005.
    15.樊峰鸣,张百良.生物质成型燃料的技术及产业化前景分析[J].河南农业大学学报,2005.39(1):111-115.
    16.高洁,汤烈贵.纤维素科学[M].北京:科学出版社,1996.
    17.郭康权,杨中平,等.玉米秸颗粒燃料成型的试验研究[J].西北农业大学学报,1995,23(2):106-108
    18.郭康权,赵东等.玉米秆粉粒体压制成型模型研究[J].西北农业大学学报1998,5(10):44-47
    19.郭康权,赵东,等.植物材料压缩成型时粒子的变形及结合形式[J].农业工程学报,1995,11(1):138-143
    20.郭康权,赵东,等.植物秸秆模压成型流变特性的试验研究[J].西北农业大学学报,1995,23(3):11-15.
    21.郭康权,左竹隆显,吉崎繁.农林废弃植物粉碎后的压缩特性[J].农业工程学报.1994(10).9:140-145.
    22.胡建军,雷廷宙,何晓峰,等.小麦秸秆颗粒燃料冷态压缩成型参数试验研究[J].太阳能学报,2008(2):241-245.
    23.回彩娟,俞国胜.影响生物质块状燃料常温高压致密成型因素的研究[J].林业机械与木工设备,2005,33(11):10-14.
    24.回彩娟,俞国胜.影响生物质块状燃料常温高压致密成型因素的研究[J].林业机械与木工设备,2005(11):10-14.
    25.回彩娟.生物质燃料常温高压致密成型技术及成型机理研究[D].北京林业大学,2006
    26.洪浩,尤玉平,严德福.我国林业生物质成型燃料产业化实证研究[J].中国工程科学, 2011(2):66-71.
    27.蒋剑春,应浩,孙云娟.德国,瑞典林业生物质能源产业发展现状[J].生物质化学工程,2006(9):31-36.
    28.孔雪辉,王述洋,黎粤华.生物质燃料固化成型设备发展现状及趋势[J].机电产品开发与创新,2010(2):12-13.
    29.李保谦,张百良,夏祖璋.PB-Ⅰ型活塞式生物质成型机的研制[J].河南农业大学学报,1997(2):112-116.
    30.李美华,愈国胜.生物质成型技术研究现状[J].木材加工机械,2005(2):36-40.
    31.李美华.生物质燃料压缩成型技术的研究[D]北京:北京林业大学,2005.
    32.李旭英.草物料压缩流变动力学特性研究及压缩过程优化[D].呼和浩特:内蒙古农业大学,2006.
    33.梁莉,郭玉明.作物茎秆生物力学性质与形态特性相关性研究[J].农业工程学报2008,24(7):1-6.
    34.刘福.我国生物质固体成型燃料技术已获突破[EB/OL].http://www.farmer.com.cn/wlb/nmrb/nb7/ 200909090075. htm,2009-09-09
    35.刘瑾,邬建国.生物燃料的发展现状与前景[J].生态学报,2008(4):1339-1353.
    36.刘圣勇.国内外生物质致密成型燃料及燃烧设备研究与开发现状[J].可再生能源,2002(4):14-15.
    37.刘延春,等.生物质固化成型技术研究进展[J].世界林业研究,2008,8:41-47.
    38.刘一星,赵广杰.木质资源材料学[M].北京:中国林业出版社2004.
    39.吕江南,王建辉.红麻料片的压缩特性及压力与压缩密度的数学模型[J].农业机械学报.1998.29(2):83-86.
    40.吕文,王春峰,王国胜,等.中国林木生物质能源发展潜力研究[J].中国林产工业,2006(1):6-11.
    41.吕文,俞国胜,等.初探开发林木生物质成型燃料的潜力[J].探索,2006,10:31-32.
    42.马孝琴,尤希风,张百良.HPB-Ⅰ型液压秸秆成型机的大型优化设计[J].可再生能源,2006,127(3):33-36.
    43.《小材学》编写组.小材学[M].北京:中国林业出版社1997.
    44.日本能源学会编.史仲平,华兆哲译.生物质和生物能源手册[M].北京:化学工业出版社2006.
    45.生物燃料[EB/OL]. http://re.emsd.gov.hk/sc—chi/other/biofuel/bio_tech/html,2007.
    46.生物质能综述[EB/OL]. http://www.newenergy.org.cn/energy/biomass/2007.
    47.盛奎川,Gomaa,H棉秆切碎及压缩成型的试验研究[J].农业工程学报.1999.15(4).221-225.
    48.盛奎川,吴杰.生物质成型燃料的物理品质和成型机理的研究进展[J].农业工程学报,2004,20(2):242-245.
    49.盛奎川.棉秆切碎及压缩成型的试验研究[J].农业工程学报,1999,12(4):221-224.
    50.石元春,汪燮卿,尹伟伦,等.中国可再生能源发展战略研究丛书 生物质能卷[M].北京:中国电力出版社,2008.
    51.束霞霞,余梅,洪勇,等.生物质材料机制炭工艺的优化研究[J].节能,2010(8):29-31.
    52.田宜水,赵立欣,孟海波,孙丽英,姚宗路.中国生物质固体成型燃料标准体系的研究[J].可再生能源2010,28(1):1-5.
    53.田宜水.生物质固体成型燃料标准体系研究进展[A].2009生物质成型燃料设备与应用技术国际研讨会[C],2007,42-46.
    54.王春光,杨明韶,高焕文.农业纤维物料压缩流变研究现状[J].农业机械学报,1998,29(1):141-143.
    55.王春光.牧草在高密度压捆过程中的流变研究[D].北京:中国农业大学,1998.
    56.王飞.沙生灌小圆锯片平茬锯切性能研究[硕士学位论文][D].北京:北京林业大学,2009.
    57.王洪波.羊草可压缩性及其应力松弛特性的虚拟样机分析研究[D].呼和浩特:内蒙古农业大学,2007.
    58.王建祥,蔡红珍.生物质压缩成型燃料的物理品质及成型技术[J].农机化研究,2008(1):203-205.
    59.王久臣,戴林,田宜水.中国生物质能产业发展现状及趋势分析[J].农业工程学报,2007,23(9):276-282.
    60.闫文刚,压缩速度对农业物料压缩过程影响的试验研究[D].呼和浩特:内蒙古农业大学,2005.
    61.闫文刚,俞国胜,张海鹰,等.生物质致密成型技术研究[J].黑龙江农业科学.2010(7):135-138.
    62.杨明韶.农业物料流变学[M].北京:中国农业出版社2010.
    63.俞国胜,侯孟.生物质成型燃料加工装备发展现状及趋势[J].木工机械与设备,2009,37(2):4-8.
    64.俞国胜,袁湘月,等.中国林木生物质能源开发利用技术设备研究[J].中国林业产业,2006(1):22-29.
    65.俞国胜,张海鹰,闫文刚,等.常温开模压缩成型机[P].中国专利:ZL 201020246147.6,2011-02-02.
    66.张百良,李宝谦,等.HPB-1型生物质成型机的试验研究[J].农业工程学报.1999.15(3).133-136.
    67.张百良,任天宝,徐桂转,李保谦.中国固体生物质成型燃料标准体系[J].农业工程学报2010,26(2):257-262.
    68.张百良,王吉庆,徐桂转,等.中国生物能源利用的思考[J].农业工程学报,2009,25(9):226-231.
    69.张百良.农村能源工程学[M].北京:中国农业出版社1999.
    70.张大雷.生物质成型燃料开发现状及应用前景[A].2008中国农村生物质能源国际研讨会暨东盟与中日韩生物质能源论坛论文集[C],2008,181-188.
    71.张海鹰,俞国胜,闫文刚,等.生物质固体燃料成型装备研究[J].黑龙江农业科学.2010(10):113-115.
    72.张克芮.GB/T21923—2008《固体生物质燃料检验通则》制定的基础和依据[J].煤质技术,2009,7(4):23-25.
    73.张义同.热粘弹性理论[M].天津:天津大学出版社2002.
    74.赵东,郭康权.玉米秸粉粒体压制成型的力学分析[J].农机与食品机械1998,1:9-12.
    75.赵东,黄文彬,郭康权.玉米秆粉粒体压制成型模型研究[J].西北农业大学学报1998,5(10):44-47.
    76.赵东,黄文彬.玉米秆粉粒体塑性压缩成型过程的有限元分析[J].力学与实践2001,23:48-50.
    77.赵军,王述洋.我国生物能资源与利用[J].太阳能学报,2008,29(1):90-93.
    78.赵仁杰,喻云水.小质材料学[M].北京:中国林业出版社2003.
    79.赵廷林,等.生物质致密成型技术研究现状与发展.中国论文下载中心,2008-6-15.
    80.中国国家发展和改革委员会.国际可再生能源现状与展望[M].北京:中国环境科学出版社,2007.
    81.Osbov V I.Theoretical Principles of Compressing Fibrous PLANT Materials.Trudy Viskhom,1967,55(4):221-265.
    82.Angelo Mazzu.Study,design and prototyping of an animaltraction cam based press for biomass densification[J].Mech-anism and Machine Theory,2007,42(6):652-667.
    83.Ayhan Demiras, Ayse Sahinl Evaluation of Biomass Reside (1) Briqueting Waste Paper and Wheat Straw Mixtures [J]. Fuel Processing Technol,1998, (55):185-193.
    84.Ayhan Demirbas.Combustion characteristics of different bio-mass fuels[J].Progress in Energy and Combustion Science,2004,30(2):219-230.
    85.Biomass Research and Development Technical Advisory Committee. Vision for bioenergy & biobased products in the United States[R]. Arlington:U. S. Department of energy and U. S. Department of Agriculure,2002.
    86.BP.BP Statistical Review of World Energy June 2010[EB/OL]. http://www.eedu. org. cn/Soft/tools/guide/200907/379. html,2010-07-21.
    87.Cliffe K R, Patumsawad S. Co-combustion of waste from olive oil production with coal in a fluidized bed[J].Waste Management,2001,21(1):49-53.
    88. Dai Lin.The development and prospective of bioenergy technology in China[J].Biomass and Bioenergy,1998,15(2):181-186.
    89.DEM1RBAS,AYHAN,SAH1N-DEM1RBAS. Briquetting properties of biomass waste materials[J]. Energy Sources,2004,26(1):83-91.
    90. Dogherty M. J. A Review of the mechanical Behaviour of Straw When Compressed to high Densities [J].J, Agric. Engng. Res,1989,44:243-285.
    91.E.Granada,LM.Lopez Gonzalez,J.LMiguez,et al.Fuel lignocellulosic briquettes,die design and productsstudy[J].Renewable Energy,2002,27(4):561-573.
    92.Faborode M.0, Callaghan J. R. Optimizing the compression Briquetting of Fibrous Agricultural Materials [J]Journal of Agricultural Engineering Research,1987,38 (4):245-262.
    93.Faborode M.0, Callaghan J. R. Theoretical Analysis of the Compression of Fibrous Agricultural Materials [J].Journal of Agricultural Engineering Research 1986,35 (3):170-190.
    94.GB/T 21923—2008,《固体生物质燃料检验通则》[S].
    95J.Werther,M.Saenger, E.U.Hartge,et al.Combustion of agricultural residues[J].Progress in Energy and Combustion Science,2000,26(1):1-27.
    96.Launhardt Thomas. How Clean Do Chip Furnacel Burnmeasuring Emissions from Domestic Wood Chip Furnaces All Across Bavaria [J]. Lan Dtechnik,1999,54 (1):28-35
    97. MALANIN V I,MAKSIMOV A A,KVASHNIN. Method and apparatus for briquetting of lignin-containing materials:RU 2191799[P].2002.
    98. Martin Junginger,Torjus Bolkesj,Douglas Bradley,et al.Developments in international bioenergy trade[J].Biomass and Bioenergy,2008,32:717-729.
    99. MASON M,DUMBLETON,FREDERICK J.Production of compact biomass fuel:WO 2003087276[P].2003.
    100. Mewes E,Verdichyung,GesetzmassigkeiteNach. Presstopfversuchen[J].Landtechn,1959,9 (3):68-76
    101. Mielenz J R. Ethanol production from biomass technology and commercialization status.Current Opinion Inmicrobiology,2001(4):324-329.
    102. Neale M. A. Research and Development for on-Faun Straw Packaging Machinesl Straw:A Valuable Material, Proceed-ings of International Conference, Cambridge England, October,1987,120-132.
    103. P. D Grover, S. KMishral Proceedings of the International Workshop on Biomass Briqueting [M]. New Delhi, India,1996:32-37.
    104. P.Y.H.Fung, M.U.F.Kirschbaum, R.J.Raison, etal.The potential for bioenergy production from Australianforests, its contribution to national greenhouse targets andrecent developments in conversion processes[J].Biomassand Bioenergy,2002,22:223-236.
    105. Reddy S, Painuly J P. Diffusion of renewable energy technologies-barriers and stakeholders perspectives[J].Renewable Energy,2004,29(9):1431-1447.
    106. REED,THOMAS B.Combined biomass pyrolysis and densification for manufacture of shaped biomass-derived solid fuels:US 2003221363[P].2003.
    107. Renwable Energy Policy Network for the 21 st Century.Renewables 2005 Global Status Report[R].Washington c D.C:World-Watch Institute,2005.
    108. WERNER, HANS. Process and apparatus for production of fuels from compressed biomass and use of the fuels:EP 1443096 [P].2004.
    109. Y.Li,H.Liu.High—pressure densification of wood resi-dues to form an upgraded fuel[J].Biomass and Bioenergy,2000,19:177-186.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700