用户名: 密码: 验证码:
基于IBIS模型模拟的中国东部南北样带植被NPP动态变化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气候变化对全球陆地生态系统相关过程产生了重要影响,已经成为陆地生态系统中碳循环研究的重要内容。集成生物圈模型(IBIS,Integrated Biosphere Simulator)将地表与水文过程、陆地生物地球化学循环,以及植被动态等整合到一个一体化的模型中,可以更加深入地分析全球碳循环过程受到生物物理学、生物地球化学和植被动态等时间尺度截然不同的自然过程的影响,得到较广泛的应用。
     本文通过以中国东部南北样带为对象,以大尺度陆面生态系统模型IBIS为工具,研究植被净初级生产力(NPP)的分布及动态变化规律,探讨东部南北样带植被碳源/汇格局,分析影响植被NPP变化的主要气候驱动因子,阐明气候因素对植被NPP分布格局形成机制的影响,并预测四种未来气候变化条件下的植被NPP分布规律。主要有以下研究结论:
     (1)东部南北样带植被NPP时空变化特征
     1957~2006年样带植被NPP年平均值分布总体上呈现随纬度升高而降低的趋势;各气候区中,植被NPP年平均值最高的是中亚热带(761.7 gC/m2/Yr),最低的是南温带(193.6 gC/m2/Yr);不同植被类型中,热带落叶林(773.2 gC/m2/Yr)NPP年平均值最高,热带稀树草原(157.3gC/m2/Yr)最低。
     1957~2006年样带植被NPP总量年际变化总体呈显著增加趋势,50年间NPP总量的变化范围为1.41 Gt C/Yr至1.72Gt C/Yr,50年间NPP总量多年平均值为1.54Gt C/Yr,约占全国NPP总量的80%;季节变化尺度上,NPP增长最快的夏季和春季,分别平均增长0.0014Gt C/Yr和0.0012Gt C/Yr,占全年NPP增长的46.67%和40.00%,秋季、冬季NPP增长较慢,共占全年增长比例的13.33%;植被NPP月际变化呈现正态单峰曲线分布,最大值出现在6月份,达到0.24 Gt C/Yr,其次是7月份和5月份,最低是12月份。
     1957~2006年东部南北样带植被年平均NPP值增加区域占整个样带的83.56%,减少区域只占16.44%,而且NPP增加达到显著性水平的占29.19%;植被NPP绝对增加量最大的类型是温带常绿针叶林、密灌丛和热带落叶林区,植被NPP相对增加最大的是北方常绿林、温带常绿针叶林和苔原区。
     各种植被类型在不同温度梯度上的植被NPP呈现不同的变化趋势。热带常绿林年平均NPP相对增加速率最大的是多年平均温度处于5℃~10℃的区域,热带落叶林年平均NPP相对增加速率最大的是多年平均温度处于5℃~10℃的区域,温带常绿针叶林年平均NPP相对增加速率最大的是多年平均温度处于10℃~15℃的区域,温带落叶林年平均NPP相对增加速率最大的是多年平均温度处于0℃~5℃的区域,北方常绿林年平均NPP相对增加速率最大的是多年平均温度处于-10℃~0℃的区域,混交林年平均NPP相对增加速率最大的是多年平均温度处于0℃~5℃的区域,热带稀树草原年平均NPP相对增加速率最大的是多年平均温度处于0℃~5℃的区域,草地年平均NPP相对增加速率最大的是多年平均温度处于15℃~20℃的区域,密灌丛年平均NPP相对增加速率最大的是多年平均温度处于5℃~10℃的区域,苔原年平均NPP相对增加速率最大的是多年平均温度处于-10℃~0℃的区域。
     (2)东部南北样带植被NPP变化与气候变化关系
     1957~2006年中国东部南北样带年平均气温、四季平均气温总体上均呈上升趋势,北部地区上升趋势高于南部。50年来,样带最北部和中南部地区降水增多,尤其以中南部降水增加的幅度最大(0~51.39mm/10a),样带中部地区降水呈明显降低的趋势(-30~0mm/10a)。
     气候变化对植被NPP年平均值空间分布格局影响上,占整个样带28.14%的区域为温度型,即NPP的时间变异只与年均温度呈显著性相关关系;5.54%的区域为降水型,即NPP时间变异只与年降水量呈显著性相关关系;2.07%的区域为温度、降水型,即与年均温呈显著相关关系,又与年降水量呈显著相关关系;64.25%的区域为复杂型,它与年均温度、年降水量均无显著相关关系,NPP的影响制约因素较多。
     东部南北样带植被NPP的时间变化趋势主要受温度控制。一年四季温度变化对植被NPP时间变化趋势影响较大,其中春季、夏季平均温度与植被NPP时间变化趋势都呈显著相关关系,而秋季、冬季未达到显著关系。一年四季平均降水量对植被NPP时间变化趋势的影响较小,都未达到显著相关关系。
     (3)不同气候变化情景下植被NPP格局变化的预测
     到本世纪末,四种未来气候变化情景中,CGCM3_SresA2气候情景时NSTEC植被年NPP平均值最大,达到1.64Gt C,其次是CGCM3_SresB1气候情景,为1.62 Gt C,最低的是HadCM3_HC3GG气候情景,为1.55 Gt C。
     四种未来气候变化情景下,东部南北样带植被NPP都呈现显著的增加趋势,但CGCM3_SresA2情景时,表现出最高的增加量,达到0.0006Gt C/Yr,增长最慢的是HadCM3_HC3GG情景,为0.0001Gt C/Yr。
Climate change is increasingly affecting land surface processes of terrestrial ecosystem, which has become one of research focuses in terrestrial carbon cycle. IBIS (Integrated Biosphere Simulator) model integrates the surface and hydrological processes, terrestrial biogeochemical cycles, and vegetation dynamics into a whole model. It is widely used for contributing to be more in-depth analysis of the global carbon cycle affected by bio-physics, biogeochemistry and vegetation dynamics.
     By means of IBIS model, the spatial distributions and dynamic change of vegetation NPP along the North South Transect of East China (NSTEC) were explored in order to identify the temporal and spatial patterns of vegetation carbon source and sink, and to ascertain the driving factors underlying the changes of vegetation NPP. The research results will help to improve the understanding of the mechanism of climatic change impact on vegetation NPP variation, and further to project the likely changes in vegetation NPP under various scenarios of climate changes in the future.
     The main results were as follows:
     1) Spatial-temporal variation of vegetation NPP along the North South Transect of East China
     In general, the annual mean NPP value tends to decline with latitude during the period from 1957 to 2006. Among the various climate zones, the highest annual mean NPP value (761.7 gC/m2/Yr) was in the middle subtropics, and the lowest (193.6 gC/m2/Yr) was in the South Temperate Zone. Among the various vegetation types, the highest (773.2 gC/m2/Yr) was the tropical deciduous forest had, while the lowest(157.3gC/m2/Yr)was in the savanna.
     Inter-annual vegetation NPP during the past 50 years showed an increasing trend, with the annual NPP value ranging from 1.41Gt C/Yr to 1.72 Gt C/Yr and the average of 1.54 Gt C/Yr, which accounted for 80% of the whole country. The seasonal patterns of NPP were found to increase rapidly in summer and spring, with about 0.0014Gt C/Yr and 0.0012Gt C/Yr increased, accounting for 46.67% and 40% of its annual increment, while NPP increased slowly in autumn and winter, accounting for 13.33%. Monthly vegetation NPP variation was characterized with a single peak curve of normal distribution (the peak of 0.24Gt C/Yr), which occurred in June, followed by in July and May, and the lowersest in December.
     The annual mean NPP in an area basis along the NSTEC during the past 50 years indicated that 83.56% of the total area increased while 16.44% declined. The absolute increment of NPP occurred in the temperate evergreen conifer forest, dense shrubland and tropical deciduous forest, while the relative increment of NPP occurred in the boreal evergreen forest, temperate evergreen conifer forest and tundra.
     NPP patterns varied with vegetation types and temperature gradients. The most relative increment rate of the annual mean NPP of tropical evergreen forest and tropical deciduous forest occurred in the area where the annual average temperature (AAT) was 5~10℃. For the temperate evergreen conifer forest and the temperate deciduous forest, AATs were 10~15℃and 0~5℃, respectively. The AAT for the boreal evergreen forest was -10~0℃, while for mixed forest, AAT was 0~5℃. The AATs of the Savanna and grassland were 0~5℃and 15~20℃A, respectively. For dense shrubland and tundra, their AATs were 5~10℃and -10~0℃, respectively.
     2) Relationship between vegetation NPP changes and climate changes along the NSTEC. Both Annual and seasonal mean temperature showed an increasing trend during the past 50 years, with notable increment in the Norther areas. Precipitation increased in the northern part and central southern regions, while decreased significantly in the the central area of the NSTEC.
     Based on the spatial distribution of annual mean NPP affected by climate changes, it indicated that the temperature based NPP impact accounted for 28.14% of the total transect area, suggesting the temporal variation of NPP was significantly affected by AAT. Precipitation based NPP impact accounted for 5.54% of the total transect areas, showing that the temporal variation of NPP was significantly affected by annual precipitation. The combined temperature and precipitation based NPP impacts accounted for 2.07% of the total transect area, indicating the temporal variation of NPP were significantly affected by AAT and annual precipitation as well. The complex components accounted for 64.25%, which was affected by other factors in addition to AAT and annual precipitation.
     Temporal variation of NPP along the NSTEC was mainly controlled by temperature. The temporal variations of NPP in spring and summer were significantly correlated to its seasonal mean temperature. Annual precipitation had less influence on the temporal variation of NPP.
     3) Projections of NPP pattern change under climate change scenarios in future
     Among the four scenarios of climate changes in future, the maximum vegetation NPP of the NSTEC occurs under the CGCM3_SresA2, with the value of 1.64Gt C, follows by cenario CGCM3_SresB1 with the value of 1.62Gt C, and the lowest occurs under the HadCM3_HC3GG with the value of 1.55 Gt C.
     For the four scenarios, vegetation NPP of the NSTEC shows an increasing tendency, with the largest increment value of 0.0006Gt C/Yr under the CGCM3_SresA2 and the lowest incement value of 0.0001Gt C/Yr under the HadCM3_HC3GG.
引文
[1] IPCC.Climate Change 2007: The physical Science Basis.Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge,United Kingdom and New York,NY,USA,2007a
    [2] IPCC.Summary for Policymakers. S.Solomon, D.Qin, M.Manning, Z.Chen, M.Marquis, K.B.Averyt, M.Tignor,and H.L.Miller. Climate Change 2007: The Physical Science Basis.Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge,United Kingdom and New York,NY,USA,2007b
    [3] IPCC. Summary for Policymaker.M.L.Parry, O.F.Canziani, J.P.Palutikof, P.J.v.d.Linden, and C.E.Hanson. Climate Change 2007: The Physical Science Basis.Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge,UK:Cambridge University Press,2007c.
    [4]中国国家发展和改革委员会.中国应对气候变化国家方案. 2007
    [5]方精云,柯金虎,唐志尧等.生物生产力的“4P”概念、估算及其相互关系.植物生态学报,2001,25(4):414~418
    [6]李慧.福建省森林生态系统NPP和NEP时空模拟研究.福建师范大学博士论文,2008,3~4
    [7] Ruimy.A,Saugier.B, and Dedieu.G.Methodology for the Estimation of Terrestrial Net Primary Production from Remotely Sensed Data.Journal of Geophysical Research,1994,99:5263-5283.
    [8] Lieth, H. Modelling the Primary production of the world, in primary production of the biosphere, H.Lieth and R.H. Whittaker, Editors. New York: Springer-Verlag, 1975:237~263.
    [9]张宪洲等.我国自然植被净第一性生产力的估算与分布.资源科学,1993(1):15~21
    [10]孙长忠,沈国舫.我国主要树种人工林生产力现状及潜力的调查研究?:杉木、马尾松人工林生产力研究.林业科学研究,2000,13(6):613~621
    [11]朱志辉.自然植被净第一性生产力估计模型.科学通报,1993,38(15):1422~1426
    [12]周广胜,张新时.自然植被净第一性生产力模型初探.植物生态学报,1995,19(3):193~200
    [13]周广胜,张新时.全球气候变化的中国自然植被的净第一性生产力研究.植物生态学报,1996,20(1):11~19
    [14]张新时,杨奠安,倪文革.植被的PE(可能蒸散)指标与植被-气候分类(三)几种主要方法与PEP程序介绍.植物生态学与地植物学学报,1993,17(2):97~109
    [15] Zhou, G, Y,Wang, Y. Jiang, et al. Estimating biomass and net primary production from forest inventory data: a case study of China’s Larix Forests. Forest Ecology and Management, 2002, 169(2): 149~157
    [16]常顺利,杨洪晓,葛剑平.净生态系统生产力研究进展与问题.北京师范大学学报(自然科学版),2005,41(5):517~521
    [17]陈新芳,安树青,陈镜明等.森林生态系统生物物理参数遥感反演研究进展.生态学杂志,2005,24(9):1074~1079
    [18]孙睿,朱启疆.陆地植被净第一性生产力的研究.应用生态学报,1999,10(6):757~760
    [19] Prince,S.D., S.N. Goward. Global primary production: a remote sensing approach. Journal of Biogeography, 1995, 22:815~835
    [20] Running, S.W., P.E.Thornton, R. Nemani, et al. Global terrestrial gross and net primary productivity from the earth observing system, in methods in ecosystem science, O. Sala, R. Jackson, and H.Mooney, Editors. New York: Springer-Verlag, 2000: 44~57.
    [21]朱文泉,陈云浩,徐丹等.陆地植被净初级生产力计算模型研究进展.生态学杂志,2005,24(3):296~300
    [22]王宗明,梁银丽.植被第一性生产力模型研究进展.西北林学院学报,2002,17(2):22~25
    [23]于贵瑞.全球变化与陆地生态系统碳循环和碳蓄积.北京:气象出版社,2003
    [24]徐小锋,田汉勤,万师强.气候变暖对陆地生态系统碳循环的影响.植物生态学报,2007,31(02):175~188
    [25] Melillo, J.M., McGuire, A.D., Kicklighter, D.W. et al. Global climate change and terrestrial net primary production. Nature, 1993, 363:234~240
    [26] Parton, W.J., Scurlock, J.M.O., Ojima, D.S. et al. Observations and modeling of biomass and soil organic matter dynamics for the grassland biome worldwide. Global Biogeochemical Cycles, 1993,7:785~809
    [27] Perruchoud, D.O., Fisxhlin, A. The response of the carbon cycle in undisturbed forest ecosystems to climate change: A review of plant-soil models. Journal of Biogeography, 1995, 22(4-5): 759~774
    [28] Tian, H.Q., Melillo, J.M., Kicklighter, D.W. et al. Effect of interannual climate variability on carbon storage in Amazonian ecosystems. Nature, 1998,396(6712):664~667
    [29] Peng, C.H., Apps, M. J. Simulating carbon dynamics along the Boreal Forest Transect Case Study (BFTCS) in central Canada– 2. Sensitivity to climate change. Global Biogeochemical Cycles, 1998a,12(2): 393~402
    [30] Peng, C.H., Apps, M. J., Price, D.T. et al. Simulating carbon dynamics along the Boreal Forest Transect Case Study (BFTCS) in central Canada– 1. Model testing. Global Biogeochemical Cycles, 1998b, 12(2): 381~392.
    [31] Cao, M. K., Woodward, F. I. Dynamic responses of terrestrial ecosystem carbon cycling to global climate change. Nature, 1998, 393(6682): 249~252
    [32] Price, D. T., Peng, C. H., Apps, M. J. et al. Simulating effects of climate change on boreal ecosystem carbon pools in central Canada. Journal of Biogeography, 1999, 26(6): 1237~1248
    [33] Liu, J. X., Peng, C.H., Apps, M. et al. (2000). Historic carbon budgets of Ontario’s forest ecosystems (Edmonton, Canada, Elservier Science Bv)
    [34] Schimel, D., Melillo, J., Tian, H. Q. et al. Contribution of increasing CO2 and climate to carbon storage by ecosystems in the United States. Science, 2000, 287(5460): 2004~2006
    [35] Cramer, W., Bondeau, A., Woodward, F. I. Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Global Change Biology, 2001, 7: 357~373.
    [36] Berthelot, M., Fridlingstein, P., Ciais, P. et al. Global response of the terrestrial biosphere to CO2 and climate change using a coupled climate-carbon cycle model. Global Biogeochemical Cycles, 2002
    [37] Friedlingstein, P., Dufresne, J.L., Cox, P.M. et al. How positive is the feedback between climate change and the carbon cycle?. Tellus Series B-Chemical and Physical Meteorology, 2003, 55(2):692~700
    [38] Jones, C., McConnell, C., Coleman, K. et al. Global climate change and soil carbon stocks; predictions from two constrasting models for the turnover of organic carbon in soil. Global Change Biology, 2005, 11(1):154~166
    [39] Lagergren, F., Grelle, A., Lankreijer, H. et al. Current carbon balance of the forested area in Sweden and its sensitivity to global change as simulated by Biome-BGC. Ecosystems, 2006,9(6):894~908
    [40] Smithwick, E. A. H., Ryan, M.G., Kashian, D.M. et al. Modeling the effects of fire and climate change on carbon and nitrogen storage in lodgepole pine (Pinus contorta) stands. Global Change Biology, 2009, 15(3):535~548
    [41] Jiang, H., Apps, M. J., Zhang, Y. L. et al. Modelling the spatial pattern of net primary productivity in Chinese forests. Ecological Modelling, 1999a, 122(3):275~288
    [42] Jiang, H., Peng, C., Apps, M.J. et al. Modelling the net primary productivity of temperate forestecosystems in China with a GAP model[J]. Ecological Modelling, 1999b, 122: 255~238
    [43] Ni, J. Net primary production, carbon storage and climate change in Chinese biomass. Nordic Journal of Botany, 2000, 20(4):415~426
    [44]朴世龙,方精云,郭庆华.1982-1999年我国植被净第一性生产力及其时空变化.北京大学学报(自然科学版), 2001, 37(04):563~569
    [45] Ni, J. Effects of climate change on carbon storage in boreal forest of China: A local perspective[J]. Climatic Change, 2002,55(1-2): 61~75
    [46]杨昕,王明星,黄耀.地-气间碳通量气候响应的模拟Ⅰ:近百年来气候变化.生态学报,2002,22:270~277
    [47]柯金虎,朴世龙,方精云.长江流域植被净第一性生产力及其时空格局研究.植物生态学报,2003,27(6):764~770
    [48] Cao, M. K., Prince, S. D., Li, K. et al. Response of terrestrial carbon uptake to climate interannual variability in China. Global Change Biology, 2003a, 9: 536~546
    [49] Cao, M. K., Tao, B., Li, K. R. et al. Interannual variation in terrestrial ecosystem carbon fluxes in China from 1981 to 1998. Acta Botanica Sinica, 2003b, 45(5): 552~560
    [50]陶波,李克让,邵雪梅等.中国陆地净初级生产力时空特征模拟.地理学报,2003,58(03):372~380
    [51]陶波,曹明奎,李克让等.1981~2000年中国陆地净生态系统生产力空间格局及其变化.中国科学(D辑:地球科学), 2006, 36(12): 1131~1139
    [52] Gao, W., Gao, Z.Q., Slusser, J. et al. The responses of net primary production (NPP) to different climate scenarios with Biome-BGC model in oasis areas along the Tianshan Mountains in Xinjiang, China. Ecosystems Dynamics, Ecosystem-Society Interactions, and Remote Sensing Applications for Semi-Arid and Arid Land, Pts1 and 2, 2003, 4890:141~150
    [53]高志强,刘纪元,曹明奎等.土地利用和气候变化对区域净初级生产力的影响.地理学报,2004a,59(04):581~591
    [54]高志强,刘纪元,曹明奎等.土地利用和气候变化对农牧过渡区生态系统生产力和碳循环的影响.中国科学(D辑:地球科学),2004b,34(10):946~957
    [55]何勇,董文杰,郭晓寅等.1971-2000年中国陆地植被净初级生产力的模拟.冰川冻土,2007,29(02):226~232
    [56]谷晓平,黄玫,季劲钧等.近20年气候变化对西南地区植被净初级生产力的影响.自然资源学报,2007,22(02):251~259
    [57] Ju, W.M., Chen, J.M., Harvey, D. et al. Future carbon balance of China’s forests under climate change and increasing CO2. Journal of Environmental Management, 2007, 85: 538~562
    [58] Mu, Q.Z., Zhao, M.S., Running, S.W. et al. Contribution of increasing CO2 and climate change to the carbon cycle in China’s ecosystems. Journal of Geophysical Research-Biogeosciences, 2008, 113(G1)
    [59]季劲钧,黄玫,李克让.21世纪中国陆地生态系统与大气碳交换的预测研究.中国科学(D辑:地球科学),2008,38(02):211~223.
    [60]黄玫,季劲钧,彭莉莉.青藏高原1981~2000年植被净初级生产力对气候变化的响应.气候与环境研究, 2008, 13(05): 608~616
    [61] Foley J A,Prentice I C,Ramankutty N,et a1.An integrated biosphere model ofland surface processes,terrestrial carbon balance,and vegetation dynamics.Global Biogeochemical Cycles,1996,10(4):603~628
    [62] Foley J A,Levis S,Prentice I C,et a1.Coupling dynamic models of climate and vegetation.Global Change Biology,1998,4:561~579
    [63] Delire C,Foley J A.Evaluating the performance of a land surface/ecosystem model with biophysical measurements from contrasting environments.Journal of Geophysical Research,1999,104(D14):16895~16909
    [64] Kueharik C J,Foley J A,Delire C,et a1.Testing the performance of a dynamic global ecosystem model:Water balance,carbon balance,and vegetation structure.Global Biogeochemieal Cycles,2000,14(3):795~826
    [65] Maayar M E,Price D T,Delire C,et a1.Validation of the integrated biosphere simulator over Canadian deciduous and coniferous boreal forest stands.Journal of Geophysical Research—Atmospheres,2001,106(D13):14339~14355
    [66] Li K Y,Coe M T,Ramankutty N.Regional hydrological modeling in Africa:Calibration and performance test of IBIS.Geophysieal Research Abstracts,2003,5:13006
    [67] Snyder P K,Foley J A,Hitehman M H,et a1.Analyzing the efects of complete tropical forest removal on the regional climate using a detailed three-dimensional energy budget:An application to Africa. Journal of Geophysical Research,2004,109(D21), D21102,DOI:10.1029/2003JD004462.
    [68] Cramer W,Bondeau A,Woodward F I,et a1.Global response of terrestrial ecosystem structure and function to CO2 and climate change:results from six dynamic global vegetation models.Global ChangeBiology,2001,7:357~373
    [69] Jiang J F,Yan X D,Huang Y,et a1.Simulation of CO2 and sensible/latent heat fluxes exchange between land surface and atmosphere over cropland and grassland in Semi-Arid Region.Climatic and Environmental Research,2006,11(3):414~422
    [70]王萍.基于IBIS模型的东北森林净第一性生产力模拟.生态学报,2009,29(6):3213~3220
    [71]孙龙,国庆喜,王晓春等.中国东部南北样带中南段典型植被类型NDVI变化分析.应用与环境生物学报,2003,9(5):449~454
    [72]腾菱,任海,彭少麟.中国东部陆地农业生态系统南北样带的自然概况.生态科学,2000,19(4):1~10
    [73] Foley, J.A., Colin, P.L., Ramankutty, N. et al. An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics. Global Biogeochemical Cycles, 1996, 10(4): 603~628
    [74] Kucharik, C.J., Foley, J.A., Delire, C. et al. Testing the performance of a dynamic global ecosystem model: water balance, carbon balance, and vegetation structure. Global Biogeochemical Cycles, 2000, 14(3):795~825
    [75] Pollard, D., Thompson, S.L. Use of a land-surface-transfer scheme (LSX) in a global climate model: the response to doubling stomatal resistance. Global and Plantary Change, 1995, 10: 129~161
    [76] Thompson, S. L., Pollard, D. A global climate model (GENESIS) with a Land-Surface Transfer Scheme(LSX). PartⅡ:CO2 Sensitivity. Journal of Climate, 1995a, 8:1104~1121
    [77] Thompson, S. L., Pollard, D. A global climate model (GENESIS) with a Land-Surface Transfer Scheme(LSX). PartⅠ: Present Climate Simulation. Journal of Climate, 1995b, 8:732~761
    [78] Campbell, G. S., Norman, J. M. An introduction to environment biophysics. Springer-Verlag, 1998. 286
    [79] Gale, M. R., Grigal, D. F. Vertical root distributions of northern tree species in relation to successional status. Canadian Journal of Forest Research, 1987,17: 829~834
    [80] Jackson, R. B., Canadell, J., Ehleringer, J. R. et al. A global analysis of root distributions for terrestrial biomes. Oecologia, 1996, 108:389~411
    [81] Jackson, R. B., Mooney, H. A., Schulze, E.D. A global budget for fine root biomass, surface area, and nutrient contents. Ecology, 1997, 94: 7362~7366
    [82] Richardson, C. W. Stochastic simulation of daily precipitation, temperature, and solar radiation. Water Resources Research 1981, 17: 182~190
    [83] Richardson C.W., Wright, D.A. WGEN: A model for generating daily weather variables: U.S. Department of Agriculture, Agricultural Research Service. 1984
    [84] Geng, S., Vries, F.W.T.P.d., Supit, L. A simple method for generating rainfall data. Agricultural and Forest Meteorology, 1985, 36: 363~376
    [85] Farquhar, G. D., von Caemmerer, S., Berry, J.A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta, 1980, 149:78~90
    [86] Ball, J. T., Woodrow, I. E., Berry, J. A. (1986). A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental condition. Paper presented at : Progress in Photosynthesis Research (Martinus Nijhoff)
    [87] Collatz, G. J., Ball, J.T., Grivet, C. et al. Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: a model that includes a laminar boundary layer. Agricultural and forest meteorology, 1991, 54: 107~136
    [88] Botta, A., Viory, N., Ciais, P. et al. A global prognostic scheme of leaf onset using satellite data. Global Change Biology, 2000, 6: 709~725
    [89] Parton, W.J., Schimel, D.S., Cole, C.V.et al. Analysis of factors controlling soil organic matter levels in Great Plains Grasslands. Soil Science Society of America, 1987, 51: 1173~1179
    [90] Parton, W.J., Scurlock, J.M.O., Ojima, D.S. et al. Observations and modeling of biomass and soil organic matter dynamics for the grassland biome worldwide. Global Biogeochemical Cycles, 1993,7:785~809
    [91] Verberne(1990)(Verberne, E. L. J., Hassink, J., Willigen, P.D. et al. Modelling organic matter dynamics in different soils. Netherlands Journal of Agricultural Science, 1990, 38: 221~238
    [92] Gordon, C., Cooper, C., Senior, C. A. et al. The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Climate Dynamics, 2000, 16(2-3):147~168
    [93] Hutchinson, M. F. A summary of some surface fitting and contouring programs for noisy data. CSIRO Division of Mathematics and Statistics, Consulting Report ACT 84/6 Canberra, Australia, 1984
    [94] Hutchinson, M.F., Gessler, P.E. Splines-more than just a smooth interpolator. Geoderma, 1994, 62: 45~67
    [95] Price, D. T., McKenney, D. W. Nalder, I. A. et al. A comparison of two statistical methods for spatial interpolation of Canadian monthly mean climate data. Agricultural and Forest Meteorology, 2000,101(2-3): 81~94
    [96]阎洪.薄板光顺样条插值与中国气候空间模拟.地理科学, 2004, 24(2):163~16
    [97]刘志红, Li, L., McVicar, T. R.等.专用气候数据空间插值软件ANUSPLIN及其应用.气象学报, 2008, 34(2): 92~100
    [98] Luo, T. Patterns of net primary productivity for Chinese major forest types and their mathematical models. Beijing: Chinese Academy of Sciences, 1996
    [99]朱求安.气候变化条件下中国陆地生态系统水分平衡与碳收支时空格局模拟与分析.南京大学博士论文,2009
    [100] Ryan, M.G., Binkley, D., Fownes, J.H. Age-related decline in forest productivity: Pattern and process. Advances in Ecological Research,1997, 27:213~262

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700