用户名: 密码: 验证码:
大庆地区土地利用/覆被变化对植被和土壤碳氮储量的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
陆地生态系统碳贮量及其变化在全球碳循环和大气CO2浓度变化中起着非常重要的作用,因而是全球气候变化研究中的重要问题。正确地评估陆地生态系统中的土地利用/土地覆被对于评估区域和大陆的碳平衡正变得日益重要。土地利用变化,主要通过自然植被转变为耕地或者通过放牧,可以影响很多自然现象和生态进程,导致土壤属性发生显著的变化。精确地评估区域尺度的土壤有机碳储量以及由人类活动引起的变化是必要的,特别是以野外实地测量的大量碳密度数据为基础的研究,这将为我们提供很好地理解未来陆地生态系统与大气之间碳流动的基础。土地退化是碳循环研究的一个热点问题。大庆地区是区域土地退化的典型地区,因而本文利用1978年MSS多光谱数据,1988、1992、1996和2001年TM数据,2008年中国资源卫星数据、第二次全国土壤普查数据和2009年土壤野外实验数据,分别对大庆地区土地利用/覆被动态变化、植被碳储量动态变化、土壤碳氮储量动态变化、土地覆被土壤碳氮库及其影响因子、植被和土壤碳氮储量动态变化预测进行了研究。结果表明:
     耕地始终占据了各类土地覆被类型面积的首位,大庆的林地在1978-2008年间呈逐年增加的趋势,耕地和草地是向林地转换的主要土地覆被类型。大庆地区土地覆被动态变化的生态环境效应表现为:草地不断退化;沼泽地大面积减少,功能减退;沙化和盐碱化日趋严重。草地→盐碱地和草地→耕地这两个转移过程是大庆地区土地覆被变化的驱动因素,是引起大庆地区生态环境效应的根本原因。草地在研究时段内的剧烈调整是该研究区土地覆被动态变化的主线;油田的开发过程是本地区土地覆被结构变化的主要动因;农业生产经营的稳定性需求是耕地持续增加的直接原因;盲目开垦,过度放牧以及一些水利工程的负效应等加强了土地覆被转移过程。
     大庆地区耕地、林地、草地和沼泽地植被碳密度分别为0.57 kg·m-2、5.70 kg·m-2、0.129 kg·m-2和0.41 kg·m-2。大庆地区1978年和2008年植被碳密度分别为0.58 kg·m-2和0.67 kg·m-2。1978和2008年植被碳储量分别为9.38×106t和10.40×106 t,30年期间植被碳储量增加了1.02×106t,是“碳汇”。大庆地区的平均植被碳密度低于中国的平均水平。
     大庆地区1979年平均土壤碳氮密度分别为9.26±1.73 kg·m-3和0.62±0.17 kg·m-3,2009年平均土壤碳氮密度分别为8.18±1.65 kg·m-3和0.37±0.11 kg·m-3,30年期间大庆地区的平均土壤碳氮密度分别减小了1.08 kg·m-3和0.25 kg·m-3。大庆地区的平均土壤碳氮密度低于中国的平均水平。大庆地区1979年土壤总碳氮量分别为187.19±34.95×106t和125.78±33.61×105t,2009年分别为165.28±33.30×106t和75.52±21.48×105t,30年期间土壤总碳氮量分别减少了21.91×106t和50.26×105t,是“碳氮源”。
     大庆地区1979年土地覆被下平均土壤碳氮密度分别为8.10±2.34 kg·m-3和0.50±0.11kg·m-3,2009年分别为7.53±2.16 kg·m-3和0.33±0.16 kg·m-3。30年期间大庆地区土地覆被下土壤平均碳氮密度分别减小了0.57 kg·m-3和0.17 kg·m-3。大庆地区土地覆被下土壤平均碳氮密度低于中国的平均水平。1979年全区土地覆被下土壤总碳氮量分别为163.68±47.34×106 t和102.00±22.55×105t,2009年分别为152.19±43.74×106t和67.44±33.23×105t,30年期间大庆地区土地覆被下土壤总碳氮量分别减少了11.49×106t和34.56×105 t,是“碳氮源”。大庆地区耕地、林地、草地、沙地、盐碱地和沼泽地的土壤碳库影响因子分别为0.07、-0.24、0.70、0.89、3.67和0.77,土壤氮库影响因子分别为-0.65、-0.18、1.41、0.23、0.35和0.89。
     据马尔可夫模型预测,到2158年,大庆地区耕地、林地、草地、水域、居民工矿用地、沙地、盐碱地和沼泽地面积所占比例分别为56.48%、5.94%、10.91%、4.08%、5.48%、0.63%、13.60%和2.88%。1978-2158年期间,大庆地区植被总碳储量增加5.12×106t;土地覆被下总土壤碳氮储量分别减少21.64×106t和28.10×105t;植被和土壤总碳储量减少16.52×106t。
     最后,对大庆地区建立合理有效的土地利用模式提出了一些建议。
     大庆地区植被和土壤碳氮储量的变化是土地覆被变化和土壤退化综合作用的结果。本文计算的土壤碳氮库影响因子的数值需要实测土壤资料的进一步验证。马尔可夫模型的预测结果可以为大庆地区政府部门实施保护草原和湿地、防止土地进一步荒漠化、多植树造林等决策提供一些参考。
Terrestrial ecosystem carbon storage and it's changes play a very important role in the global carbon cycle and atmospheric CO2 concentration changes, so it is an important issue in global climate change research. It is becoming increasingly important to assess land use/cover Correctly in the terrestrial ecosystem for assessing regional and continental carbon balance. Land use changes, mainly through natural vegetation changing into farmland or grazing, may influence many natural phenomena and ecological processes, result in significant changes in soil properties. Accurately assessing soil organic carbon storage and it's changes caused by human activity in regional scale are necessary, especially research based on a large number of carbon density data of field measurement. This will provide us with a good understanding of the future terrestrial ecosystem-atmosphere carbon flow basis. Land degradation is a hot issue in carbon cycle study. Daqing is soil degradation typical area, thus this paper used the MSS multi-spectral data in 1978, TM data in 1988,1992,1996,2001, Chinese resources satellite data in 2008, the second soil general survey data and field soil experiment datas in 2009, studied on land use/cover dynamic changes, vegetation carbon storage dynamic changes, soil carbon and nitrogen storage dynamic changes, land cover soil carbon and nitrogen reserviors and their impact factors, vegetation and soil carbon/nitrogen storage dynamic changes forecast, respectively in Daqing. The results show:
     Arable having always occupied the first place in various land cover type areas, Daqing's woodland showed an increasing trend year by year during 1978-2008, arable and grassland were main land cover types which changed into woodland. Eco-environmental effects caused by land cover dynamic change in Daqing expressed as:grassland degradation, marshland retreat, desertification, salinification and basification. Grassland changing into saline and alkaline land and arable drived land cover changes, caused eco-environmental effects. Dramatic adjusting in grassland was the main line of land cover dynamic changes in the study area. Oilfield development process drived land cover structure changes in this region. The stable demand of agricultural production and management were the direct cause of continuous arable increasing. Blind land reclamation, overgrazing and the negative effect of a number of water conservancy projects intensified land cover transfer process.
     Vegetation carbon densities of arable, woodland, grassland and marshland in Daqing were 0.57 kg·m-2,5.70 kg·m-2,0.129 kg·m-2 and 0.41 kg·m-2, respectively. The average vegetation carbon densities in Daqing were 0.58 kg·m-2 in 1978 and 0.67 kg·m-2 in 2008. Vegetation carbon storages were 9.38×106t in 1979 and 10.40×106t in 2008, vegetation carbon storage increased 1.02×106 t in 30 years period, was "carbon sequestration". Daqing's average vegetation carbon density is lower than Chinese average level.
     The average soil carbon/nitrogen densities in Daqing were 9.26±1.73 kg·m-3 and 0.62±0.17 kg·m-3 in 1979,8.18±1.65 kg·m-3 and 0.37±0.11 kg·m-3 in 2009, respectively. Average soil carbon/nitrogen densities decreased 1.08 kg·m-3 and 0.25 kg·m-3 in 30 years period, respectively. Daqing's average soil carbon/nitrogen densities are lower than Chinese average levels. Total soil carbon/nitrogen in Daqing were 187.19±34.95×106 t and 125.78±33.61×105t in 1979,165.28±33.30×106t and 75.52±21.48×105t in 2009, respectively. Total soil carbon/nitrogen storages decreased 21.91×106t and 50.26×105t in 30 years period, respectively, were "carbon/nitrogen source".
     Average soil carbon/nitrogen densities under land cover in Daqing were 8.10±2.34 kg·m-3 and 0.50±0.11 kg·m-3 in 1979,7.53±2.16 kg·m-3 and 0.33±0.16 kg·m-3 in 2009, respectively. Average soil carbon/nitrogen densities under land cover decreased 0.57 kg·m-3 and 0.17 kg·m-3 in 30 years period, respectively. Daqing's average soil carbon/nitrogen densities under land cover are lower than Chinese average levels. Total soil carbon/nitrogen under land cover were 163.68±47.34×106t and 102.00±22.55×105t in 1979,152.19±43.74×106 t and 67.44±33.23×105t in 2009, respectively. Total soil carbon/nitrogen storages under land cover decreased 11.49×106t and 34.56×105t in 30 years period, respectively, were "carbon/nitrogen source" Arable, Woodland, Grassland, Sand, Saline and alkaline land and Marshland C reservoir impact factors in Daqing were 0.07,-0.24,0.70,0.89,3.67,0.77, and their N reservoir impact factors were-0.65,-0.18,1.41,0.23,0.35,0.89, respectively.
     According to Markov model prediction, to 2158, arable, woodland, grassland, waters, residents and industrial mining land, sand, saline and alkaline land and marshland area proportions in Daqing will be 56.48%,5.94%,10.91%,4.08%,5.48%,0.63%,13.60%and 2.88%, respectively. During 1978-2158 in Daqing, total vegetation carbon storages will increase 5.12×106 t, total soil carbon/nitrogen storages under land cover will decrease 21.64×106t and 28.10×105t respectively, total vegetation and soil carbon storages will decrease 16.52×106t.
     At last, gave some proposals for establishing fair and effective land use patterns in Daqing region.
     Vegetation and soil carbon/nitrogen storage changes in Daqing are the result of the combined action in land cover changes and soil degradation. This calculation of soil carbon/nitrogen reservior impact factor values need further validation based on measured soil data. Markov model prediction results can provide some references to the decision-making for government departments, such as Protecting grassland and wetland, preventing further land desertification, multi-afforestation,etc.
引文
[1]IPCC. Land Use, Land-Use Change, and Forestry. Cambridge:Cambridge University Press, 2000:1-51
    [2]Prentice, I.C. The Carbon Cycle and Atmospheric Carbon Dioxide. In:Climate Change 2001:The Scientific Basis(IPCC). Cambridge:Cambridge University Press,2001:184-237
    [3]Cruickshank, M.M., Tomlinson, R.W., Trew, S. Application of CORINE Land Cover Mapping to Estimate Carbon Stored in the Vegetation of Ireland. Journal of Environmental Ma-nagement,2000,58:269-287
    [4]Roelandt, C. Coupled Simulation of Potential Natural Vegetation, Terrestrial Carbon Balance and Physical Land-surface Properties with the ALBIOC Model. Ecological Modelling,2001,143:191-214
    [5]Tate, K.R., Scott, N.A., Saggar, S., et al. Land-Use Change Alters New Zealand's Terrestrial Carbon Budget:Uncertainties Associated with Estimates of Soil Carbon Change between 1990-2000. Tellus,2003,55B:364-377
    [6]Halliday, J.C., Tate, K.R., McMurtrie, R.E., et al. Mechanisms for Changes in Soil Carbon Storage with Pasture to Pinus Radiata Land-Use Change. Global Change Biology,2003,4: 1294-1308
    [7]Bradley, R.I., Milne, R., Bell, J., et al. A Soil Carbon and Land Use Database for the United Kingdom. Soil Use and Management,2005,21:363-369
    [8]康惠宁,马钦彦,袁嘉祖.中国森林C汇功能基本估计.应用生态学报,1996,7(3):230-234
    [9]王绍强,周成虎.中国陆地土壤有机碳库的估算.地理研究,1999,18(4):349-356
    [10]王绍强,周成虎,李克让,等.中国土壤有机碳库及空间分布特征分析.地理学报,2000,55(5):533-544
    [11]刘国华,傅伯杰,方精云.中国森林碳动态及其对全球碳平衡的贡献.生态学报,2000,20:733-740
    [12]Fang, J.Y., Chen, A.P., Peng, C.H., et al. Changes in Forest Biomass Carbon Storage in China between 1949 and 1998. Science,2001,292:2320-2322
    [13]Piao, S.L., Fang, J.Y., Zhu, B., et al. Forest Biomass Carbon Stocks in China over the Past 2 Decades:Estimation Based on Integrated Inventory and Satellite Data. J Geophys Res, 2005
    [14]Wang, S.Q., Zhou, C.H., Liu, J.Y., et al. Carbon Storage in Northeast China as Estimated from Vegetation and Soil Inventories. Environmental Pollution,2002,116:S157-S165
    [15]刘纪远,王绍强,陈镜明等.1990-2000年中国土壤碳氮蓄积量与土地利用变化.地 理学报,2004,59(4):483-496
    [16]Wang, GX., Ma, H.Y., Qian, J., et al. Impact of Land Use Changes on Soil Carbon, Nitrogen and Phosphorus and Water Pollution in an Arid Region of Northwest China. Soil Use and Management,2004,20:32-39
    [17]Hu, H.Q., Liu, Y.C., Jiao, Y. Estimation of the Carbon Storage of Forest Vegetation and Carbon Emission from Forest Fires in Heilongjiang Province, China. Journal of Forestry Research,2007,18(1):17-22
    [18]李克让,王绍强,曹明奎.中国植被和土壤碳贮量.中国科学(D辑),2003,33(1):72-80
    [19]丁圣彦,梁国付.近20年来洛宁县森林植被碳储量及动态变化.资源科学,2003,26(3):105-108
    [20]吕超群,孙书存.陆地生态系统碳密度格局研究概述.植物生态学报,2004,28(5):692-703
    [21]方精云,陈安平.中国森林植被碳库的动态变化及其意义.植物学报,2001,43(9):967-973
    [22]王绍强,刘纪远,于贵瑞.中国陆地土壤有机碳蓄积量估算误差分析.应用生态学报,2003,14(5):797-802
    [23]郭志华,彭少麟,王伯荪.利用TM数据提取粤西地区的森林生物量.生态学报,2002,22(11):1832-1839
    [24]Donga, J., Robert, K.K., Ranga, B.M., et al. Remote Sensing Estimates of Boreal and Temperate Forest Woody Biomass:Carbon Pools, Sources and Sinks. Remote Sensing of Environment,2003,84:393-410
    [25]杨金艳.东北天然次生林生态系统地下碳动态研究.东北林业大学博士论文.2005:1-2
    [26]王绍强,周成虎,罗承文.中国陆地自然植被碳量空间分布特征探讨.地理科学进展,1999,18(3):238-244
    [27]方精云.中国陆地生态系统碳库.现代生态学的热点问题研究.北京:中国科学技术出版社,1996:251-267
    [28]Post, W.M., Pastor, J., Zinke, P.J., et al. Global Patterns of Soil Nitrogen Storage. Nature, 1985,317:613-616
    [29]Post, W.M., Peng, T.H., Emanuel, W.R., et al. The Global Carbon Cycle. American Scientist,1990,78:310-326
    [30]Kern, J.S. Spatial Patterns of Soil Organic Carbon in the Contiguous United States. Soil Sci Soc Am J,1994,58:439-455
    [31]Batjes, N.H. Total Carbon and Nitrogen in the Soils of the World. Europ J Soils Sri,1996, 47:151-163
    [32]King, A.W., William, R.E., Stan, D.W., et al. In Search of the Missing Carbon Sink:A Model of Terrestrial Biospheric Response to Land-Use Change and Atmospheric CO2. Tellus,1995,47B:501-519
    [33]Franzmeier, D.P., Lemme, G.D., Miles, R.J. Organic Carbon in Soils of North Central United States. Soil Sci Soc Am J,1985,49:702-708
    [34]DeBusk, W.F., White, J.R., Reddy, K.P.Carbon and Nitrogen Dynamics in Wetland Soils. In:Shaffer M J, Ma L, and Hansed S eds. Modeling Carbon and Nitrogen Dynamics for Soil Management. Roca Rton:Lew Is Publishers.2001:27-53
    [35]Shaffer, M.J., Ma, L. Carbon and Nitrogen Dynamics in Upland Soils. In:Shaffer M J, Ma L, Hansed S, eds. Modeling Carbon and Nitrogen Dynamics for Soil Management. Boca Raton:Lewis Publisbers.2001:11-26
    [36]Burke, I.C., Yonkr, C.M., Parton, W.J., et al. Texture, Climate, and Cultivation Effects on Soil Organic Matter Content in U.S. Grassland Soils. Soil Sci Soc Am J,1989,53:800-805
    [37]Jean, P.C., Anver, G. The Role of the European Union in Global Change Research. AMBIO,1994,23(1):101-103
    [38]Watson, R.T., Bolin, B. Land Use, Land Use Change and Forestry:A Special Report of the PCC. Cambridge, UK:Cambridge University Press,2000:189-217
    [39]Sombroek, W.G., Nachtergaele, F.O., Hebel, A. Amount Dynamics and Sequestering of Carbon in Tropical and Subtropical Soils. AMBIO,1993,22(7):417-425
    [40]王义祥,翁伯琦,黄毅斌.土地利用和覆被变化对土壤碳库和碳循环的影响.亚热带农业研究,2005,1(7):44-51
    [41]Mann, L.K. Changes in Soil Carbon Storage after Cultivation. Soil Science,1986,142: 279-288
    [42]Bruce, J.P., Frome, M., Haites, E., et al. Carbon Sequestration in Soils. Journal of Soil Water Conservation,1999,54:382-389
    [43]Murty, D., Kirschbaum, M.F., Mcmurtrie, R.E., et al. Does Conversion of Forest to Agricultural Land Change Soil Carbon and Nitogen? A Review of the Literature. Global Change Biol,2002,8:105-123
    [44]Veldkamp, E. Organic Carbon Turnover in Three Tropical Sails under Pasture after Defore-station. Soil Sci. Soc. Am. J.,1994,58:175-180
    [45]Neill, C., Melillo, J.J., Steudler, P.A., et al. Soil Carbon and Nitrogen Stacks Following Forest Clearing for Pasture in the Southwestern Brazilian Amazon. Ecological Applications, 1977,7:1216-1225
    [46]Rhoades, C.C., Eckept, G.E., Coleman, D.C. Soil Carbon Differences among Forest, Agriculture, and Secondary Vegetation in Lower Montane Ecuador. Ecological Applications,2000,10(2):497-505
    [47]Gregorich, E.G., Janzen, H.H. Storage of Soil Carbon in the Light Fraction and Macroorganic Matter. In:Carter M R, Stewart B A (eds). Structure and Organic Matter Storage in Soils. Lewis Publishers:CRC Press, Boca Raton, FL.1996:167-190
    [48]王绍强,刘纪远.土壤碳蓄积量变化的影响因素研究现状.地球科学进展,2002,17(4):528-534
    [49]Post, W.M., Kwon, K.C. Soil Carbon Sequestration and Land-Use Change. Global Change Biology,2000,6:317-327
    [50]Houghton, R.A., Hobbie, J.E., Melillo, J.M., et al. Change in the Carbon Content of Terrestrial Biota and Soils between 1860 and 1980:A Net Release of CO2 to the Atmosphere. Eco-logical Monographs,1983,53:235-262
    [51]Lugo, A.E. Land Use and Organic Carbon Content of Some Subtropical Soils. Plant and Soil Science,1986,96:185-196
    [52]Scott, N.A., Tate, K.R. Soil Carbon Storage in Plantation Forests and Pastures. Tellus, 1999,51 B:326-335
    [53]Polglasc, P.J.K. Change in Soil Carbon Following Afforestation or Reforestation. National Carbon Accounting System Technical Report, No.20. Commonwealth of Australia, Canberra. Printed in Australia for the Australian Greenhouse Office,2000:1-119
    [54]Wang, Y. The Impacts of Land Use Change on C Turnover in Soils. Global Biogeochemic-al Cycles,1999,13(1):47-57
    [55]Cihacek, L.J., Ulmer, M.G Effects of Tillage on Profile Soil Carbon Distribution in the Northern Great Plains of the U.S. In:Lal R, Kimble J M. Management of Carbon Sequestration in Soil. Boca Raton, Florida:CRC Press,1998:83-91
    [56]Houghton, R.A. The Annual Net Flux of Carbon to the Atmosphere from Changes in Land Use 1850-1990. Tellus,1999,50B:298-313
    [57]Lal, R. Carbon Sequestration in Drylands. Annals of Arid Zone,2000,39(1):1-10
    [58]Schlesinger, W.H., Reynolds, J.F., Cuningham, GL., et al. Biological Feedbacks in Global Desertification. Science,1990,247:1043-1028
    [59]Charreau, C., Nicou, R. Lamelioration du Profil Cultural Dens Les Sols Raleux et Stable-argileux de la Zone Tropicale Seche Ouestafricaine et Incidences Agronomiques, IRAT, Paris. Bulletin Agronomy,1971,23:254
    [60]樊恒文,贾晓红,张景光,等.干旱区土地退化与荒漠化对土壤碳循环的影响.中国沙漠,2002,22(6):525-533
    [61]Adams, J.M., Faure, H. A New Estimate of Changing Carbon Storage on Land since the Last Glacial Maximum, Based on Global Land Ecosystem Reconstruction. Global and Planetary Change,1998,16-17:3-24
    [62]Guo, L.B., Gifford, R.M. Soil Carbon Stocks and Land Use Change:A Meta Analysis. Global Change Biology,2002,8:345-360
    [63]Eve, M.D., Sperowb, M., Paustian, K. National-Scale Estimation of Changes in Soil Carbon Stocks on Agricultural Lands. Environmental Pollution,2002,116:431-438
    [64]Martens, D.A., Reedy, T.E., Lewis, D.T. Soil Organic Carbon Content and Composition of 130-Year Crop, Pasture and Forest Land-Use Managements. Global Change Biology,2003, 10:65-78
    [65]Woomer, P.L., Tieszen, L.L., Tappan, G., et al. Land Use Change and Terrestrial Carbon Stocks in Senegal. Journal of Arid Environments,2004,59:625-642
    [66]Powers, J.S. Changes in Soil Carbon and Nitrogen after Contrasting Land-Use Transitions in Northeastern Costa Rica. Ecosystems,2004,7:134-146
    [67]Grunzweig, J.M., Sparrow, S.D., Yakir, D., et al. Impact of Agricultural Land-Use Change on Carbon Storage in Boreal Alaska. Global Change Biology,2004,10:452-472
    [68]Batjes, N.H. Soil Carbon Stocks and Projected Changes According to Land Use and Management:A Case Study for Kenya. Soil Use and Management,2004,20:350-356
    [69]Leifeld, J., Bassin, S., Fuhrer, J. Carbon Stocks in Swiss Agricultural Soils Predicted by Land-Use, Soil Characteristics, and Altitude. Agriculture, Ecosystems and Environment, 2005,105:255-266
    [70]Yimer, F., Ledin, S., Abdelkadir, A. Changes in Soil Organic Carbon and Total Nitrogen Contents in Three Adjacent Land Use Types in the Bale Mountains, South-Eastern High-lands of Ethiopia. Forest Ecology and Management,2007,242:337-342
    [71]Box, E.O., Holben, B.N., Kalb, V. Accuracy of the AVHRR Vegetation Index as a Predict-or of Biomass, Primary Productivity and Net CO2 Flux. Vegetatio,1989,80:71-89
    [72]Ross, D.J., Tate, K.R., Scott, N.A., et al. Land-Use Change:Effects on Soil Carbon, Nitro-gen and Phosphorus Pools and Fluxes in Three Adjacent Ecosystems. Soil Biology and Biochemistry,1999,31:803-813
    [73]Houghton, R.A., Hackler, J.L., Lawrence, K.T. The US Carbon Budget:Contributions from Land-Use Change. Science,1999,285:574-578
    [74]Smith, W.N., Desjardins, R.L., Pattey, E. The Net Flux of Carbon from Agricultural Soils in Canada 1970-2010. Global Change Biology,2000,6:557-568
    [75]Priess, J.A., de Koning, G.H.J., Veldkamp, A. Assessment of Interactions between Land Use Change and Carbon and Nutrient Fluxes in Ecuador. Agriculture, Ecosystems and Environment,2001,85:269-279
    [76]Prasad, V.K., Kant, Y., Badarinath, K.V.S. Land Use Changes and Modeling Carbon Fluxes from Satellite Data. Adv. Space Res,2002,30(11):2511-2516
    [77]Houghton, R.A. Revised Estimates of the Annual Net Flux of Carbon to the Atmosphere from Changes in Land Use and Land Management 1850-2000. Tellus,2003,55B:378-390
    [78]Powers, J.S., Read, J.M., Denslow, J.S., et al. Estimating Soil Carbon Fluxes Following Land-Cover Change:A Test of Some Critical Assumptions for a Region in Costa Rica. Global Change Biology,2004,10:170-181
    [79]de Campos, C.P., Muylaert, M.S., Rosa, L.P. Historical CO2 Emission and Concentrations Due to Land Use Change of Croplands and Pastures by Country. Science of the Total Environment,2005,346:149-155
    [80]Bruce, K.W., Eugene, A.F., Tagir, G.G. Adaptive Data-Driven Models for Estimating car-bon Fluxes in the Northern Great Plains. Remote Sensing of Environment,2007,106:399-413
    [81]Dawson, J.J.C., Smith, P. Carbon Losses from Soil and Its Consequences for Land-Use Management. Science of the Total Environment,2007,382:165-190
    [82]de Araujo, M.S.M., Silva, C, de Campos, C.P. Land Use Change Sector Contribution to the Carbon Historical Emissions and the Sustainability—Case Study of the Brazilian Legal Amazon. Renewable and Sustainable Energy Reviews,2007
    [83]Howard, D.M., Howard, P.J.A., Howard, D.C. A Markov Model Projection of Soil Organ-ic Carbon Stores Following Land Use Changes. Journal of Environmental Management, 1995,45:287-302
    [84]Potter, C.S., Klooster, S.A. Global Model Estimates of Carbon and Nitrogen Storage in Litter and Soil Pools:Response to Changes in Vegetation Quality and Biomass Allocation. Tel-lus,1997,49B:1-17
    [85]Ito, A., Oikawa, T. A Simulation Model of the Carbon Cycle in Land Ecosystems (Sim-CYCLE):A Description Based on Dry-Matter Production Theory and Plot-Scale Validati-on. Ecological Modelling,2002,151:143-176
    [86]Kerr, S., Liu, S.G., Alexander, S.P.P., et al. Carbon Dynamics and Land-Use Choices: building a Regional-Scale Multidisciplinary Model. Journal of Environmental Management, 2003,69:25-37
    [87]Seaquist, J.W., Olsson, L., Ardo, J. A Remote Sensing-Based Primary Production Model for Grassland Biomes. Ecological Modelling,2003,169:131-155
    [88]Wang, D.H., Medley, K.E. Land Use Model for Carbon Conservation across a Midwestern USA Landscape. Landscape and Urban Planning,2004,69:451-465
    [89]Jung, M., Henkel, K., Herold, M., et al. Exploiting Synergies of Global Land Cover Produ- cts for Carbon Cycle Modeling. Remote Sensing of Environment,2006,101:534-553
    [90]Dendoncker, N., van Wesemael, B., Smith, P., et al. Assessing Scale Effects on Modelled Soil Organic Carbon Contents as a Result of Land Use Change in Belgium. Soil Use and Management,2008,24:8-18
    [91]王绍强,许君,周成虎.土地覆被变化对陆地碳循环的影响.遥感学报,2001,5(2):142-148
    [92]Wang, S.Q., Tian, H.Q., Liu, J.Y. Characterization of Changes in Land Cover and Carbon Storage in Northeastern China:An Analysis Based on Landsat TM Data. Science in China, 2002,45:40-47
    [93]Wu, H.B., Guo, Z.T., Peng, C.H. Land Use Induced Changes of Organic Carbon Storage in Soils of China. Global Change Biology,2003,9:305-315
    [94]Wang, S.Q., Tian, H.Q., Liu, J.Y., et al. Pattern and Change of Soil Organic Carbon Stora-ge in China:1960s-1980s. Tellus,2003,55B:416-427
    [95]张于光,张小全,肖烨.米亚罗林区土地利用变化对土壤有机碳和微生物量碳的影响.应用生态学报,2006,17(11):2029-2033
    [96]王春梅,刘艳红,邵彬,等.量化退耕还林后土壤碳变化.北京林业大学学报,2007,29(3):112-118
    [97]周绪,刘志辉,菊春燕,等.基于RS和GIS分析干旱区土地利用/覆盖变化对陆地植被碳储量的影响.干旱地区农业研究,2007,25(6):231-236
    [98]张镱锂,张玮,丁明军.基于土地利用/覆被分类系统估算碳储量的差异.地理科学进展,2004,23(6):63-70
    [99]Yan, H., Wang, S.Q., Wang, C.Y., et al. Losses of Soil Organic Carbon under Wind Erosion in China. Global Change Biology,2005,11:828-840
    [100]方精云,郭兆迪,朴世龙,等.1981-2000年中国陆地植被碳汇的估算.中国科学D辑:地球科学,2007,37(6):804-812
    [101]Fang, J.W., Zhong, H.P., Harris, W. Carbon Storage in the Grasslands of China Based on Field Measurements of above-and below-Ground Biomass. Climatic Change,2008,86: 375-396
    [102]王绍强,周成虎,刘纪远,等.东北地区陆地碳循环平衡模拟分析.地理学报,2001,56(4):390-400
    [103]潘根兴,曹建华,周运超.土壤碳及其在地球表层系统碳循环中的意义.第四纪研究,2000,20(4):325-334
    [104]Gregorich, E.G., Rochette, P., McGuire, S., et al. Soluble Organic Carbon and Carbon Dioxide Fluxes in Maize Fields Receiving Spring Applied Manure. J. Environ. Qual,1998, 27:209-214
    [105]Krankian, O.N., Harmon, M.E., Winjum, J.K俄罗斯森林中碳的贮藏和固定.李立高.人类环境杂志,1996,25(4):284-288
    [106]KolchuGina, T.P., Vinson, T.S俄罗斯森林在全球碳平衡中的作用.朱志辉.人类环境杂志,1995,24(5):258-264
    [107]IPCC/UNEP/OECD/IEA. Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. Reporting Instructions (V.1), Workbook (V.2). Intergovernmental Panel on Climate Change, United Nations Environment Programme, Organization for Economic Cooperation and Development, International Energy Agency,1997, Paris
    [108]Bernoux, M., Carvalho, M.D.C.S., Volkoff, B., et al. CO2 Emission from Mineral Soils Following Land-Cover Change in Brazil. Global Change Biol,2001,7:779-787
    [109]Schlamadinger, B., Marland, G The Kyoto Protocol:Provisions and Unresolved Issues Relevant to Land-Use Change and Forestry. Environmental Science and Policy,1998,1: 313-327
    [110]MacDonald, GJ. Treatment of Forests under Kyoto Protocol. Internal Memo,15 Jan. 1999. Laxenburg, Austria:IIASA,1999
    [111]Palmer, C.J., Smith, W.D., Conkling, B.L. Development of a Protocol for Monitoring Sta-tus and Trends in Forest Soil Carbon at a National Level. Environmental Pollution, 2002,116:209-219
    [112]刘纪远,布和敖斯尔.中国土地利用变化现代过程时空特征的研究.第四纪研究,2000,20(3):229-239
    [113]刘纪远,刘明亮,庄大方,等.中国近期土地利用变化的空间格局分析.中国科学(D),2002,32(12):1032-1040
    [114]Liu, J.Y., Liu, M.L., Deng, X.Z., et al. The Land Use and Land Cover Change Database and Its Relative Studies in China. Journal of Geographical Sciences,2002,12(3):275-282
    [115]Wang, S.Q., Tian, H.Q., Liu, J.Y., et al. Land-Use Change and Its Effect on Carbon Stor-age in Northeast China:An Analysis Based on Landsat TM data. Science in China(Series C),2002,47(suppl.):40-47
    [116]陈庆美,王绍强,于贵瑞.内蒙古自治区土壤有机碳、氮蓄积量的空间特征.应用生态学报,2003,14(5):699-704
    [117]曾辉,高凌云,夏洁.基于修正的转移概率力法进行城市景观动态研究.生态学报,2003,23(11):2201-2209
    [118]Turner, M.G, Ruscher, GL. Changes in Landscape Patterns in Georgia. Landscape Ecology,1988,1(4):241-251
    [119]Boerner, R.E.J., DeMers, M.N., Simpson, J.W. Markov Models of Inertia and Dynamism on Two Contiguous Ohio Landscapes. Geographical Analysis,1996,28(1):55-56
    [120]Lopez, E., Bocco, G, Mendoza, M., et al. Predicting Land-Cover and Land-Use Change in the Urban Fringe:A Case in Morelia City, Mexico. Landscape and Urban Planning, 2001,55:271-285
    [121]陈波,王良衍.陆地植被与全球变化中碳之间的关系.浙江林业科技,2001,21(3):1-4
    [122]罗天祥.中国主要森林类型生物生产力格局及其数学模型.北京:中国科学院自然资源综合考察委员会,1997
    [123]李建东,郑慧莹.松嫩平原盐碱化草地治理及其生物生态机理.北京:科学出版社,1997
    [124]王艳芬,陈佐忠,Tieszen, L.T.人类活动对锡林郭勒地区主要草原土壤有机碳分布的影响.植物生态学报,1998,22(6):545-551
    [125]Sampson, R.N., Apps, M., Brown, S., et al. Terrestrial Biosphere Carbon Fluxes Quantification of Sinks and Sources of CO2. Water, Air and Soil Pollution,1993,70:3-15
    [126]全国土壤普查办公室.中国土种志,第1-6卷.北京:中国农业出版社,1995
    [127]全国土壤普查办公室.中国土壤.北京:中国农业出版社,1998:1-1252
    [128]中国科学院林业土壤研究所.中国东北土壤.北京:科学出版社,1980
    [129]Turner, M.G. Landscape Ecology:The Effect of Pattern and Process. Ann. Rev. Ecol. Syst,1989,20:171-197
    [130]Groenendijk, F.M., Condron, L.M., Rijkse, W.C. Effect of Afforestationon Organic Carbon, Nitrogen, and Sulfur Concentration in New Zealand Hill Country Soils. Geoderma, 2002,108:91-100
    [131]Paul, K.I., Polglase, P.J., Nyakuengama, J.G. Change in Soil Carbon Following Afforestation. For Ecol Manage,2002,168:241-257
    [132]Scott, N.A., Tate, K.R., Giltrap, D.J., et al. Monitoring Land-Use Change Effects on Soil Carbon in New Zealand:Quantifying Baseline Soil Carbon Stocks. Environ Pollut,2002, 116:167-186
    [133]Degryze, S., Six, J., Paustian, K., et al. Soil Organic Carbon Pool Changes Following Land-Use Conversion. Glob Change Biol,2004,10:1120-1132
    [134]Houghton, R.A., Skole, D.L., Nobre, C.A., et al. Annual Fluxes of Carbon from Defores-tation and Regrowth in the Brazilian Amazon. Nature,2000,403:301-304
    [135]Esser, G. Contribution of Monsoon Asia to the Carbon Budget of the Biosphere, Past and Future. Vegetatio,1995,121:175-188
    [136]Fearnside, P.M., Barbosa, R.I. Soil carbon changes from conversion of forest to pasture in Brazilian Amazonia. Forest Ecology and Management,1998,108:117-166
    [137]Houghton, R.A., Boone, R.D., Fruci, J.R., et al. The Flux of Carbon from Terrestrial Ecosystems to the Atmosphere in 1980 Due to Changes in Land Use:Geographic Distribution of the Global Flux. Tellus,1987,39B:122-139
    [138]Esser, G Sensitivity of Global Carbon Pools and Fluxes to Human and Potential Climatic Impacts. Tellus,1987,39B:245-260
    [139]Lal, R. World Soils and the Greenhouse Effect. IGBP Newsletter,1999,37:4-5
    [140]Scharpensell, H.W. Sustainable Land Use in the Light of Resiliency/Elasticity to Soil Organic Matter Fluctuations. In:Greenland D J, Szabolcs I (eds.), Soil Resilience and Sustainable Land Use. CAB International,1994,249-264
    [141]Janzen, H.H. Soil Carbon Dynamics in Canadian Agroecosystems. In:Lal R, Kimblc J, Follet R et al.(eds), Soil Processes and the Carbon Cycle. Advances in Soil Science, Boca Raton, FL, USA:Lewis Publishers, CRC Press,1998,57-80
    [142]Mann, L.K. Changes in Soil Carbon Storage after Cultivation. Soil Science,1986,142: 279-288
    [143]Boone, R.D. Stand and Soil Changes Along a Mountain Hemlock Death & Regrowth Sequence. Ecology,1988,69:714
    [144]Schiffman, P.M., Johnson, W.C. Phytomass and Detritus Storage during Forest Regrowth in the Southeastern United States Piedmont. Canadian Journal of Forest Research,1990,19: 69-78
    [145]de Camargo, P.B., Trumbore, S., Martinelli, L., et al. Soil Carbon Dynamics in Regrow-ing Forest of Eastern Amazonia. Global Change Biology,1999,5:693-702
    [146]Gilbert, G. Two Markov Models of Neighbourhood Housing Turnover. Environment and Planning,1972,4:133-146
    [147]Burnham, B.O. Markov Intertemporal Land Use Simulation Model. Southern Journal of Agricultural Economics,1973,5:253-258
    [148]Goldstein, G.S. Household Behavior in the Housing Market. In:Models of Residential Location and Relocation in the City (E G Moore, ed). Evanston, Illinois:Northwestern University,1973:101-118
    [149]Bourne, L.S. Monitoring Change and Evaluating the Impact of Planning Policy on Urban Structure:A Markov Chain Experiment. Plan Canada,1976,16:5-14
    [150]Muller, M.R., Middleton, J. A Markov Model of Land-Use Change Dynamics in the Nia-gara Region, Ontario, Canada. Landscape Ecology,1994,9:151-157
    [151]Vandeveer, L.R., Drummond, H.E. The use of Markov processes in estimating land use change. Oklahoma State University Agricultural Experiment Station, Technical Bulletin T-148,1978:1-20
    [152]王继富,刘兴土,陈建军.大庆市湿地退化的生态表征与保护对策研究.湿地科学, 2005,3(2):143-148

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700