用户名: 密码: 验证码:
额济纳天然胡杨林生态用水机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
额济纳绿洲是我国西北荒漠地带的重要生态屏障,胡杨(Populus euphratica)是支撑额济纳绿洲的建群乔木树种,在额济纳绿洲主要制约胡杨生存发展的因素就是“水”。本文针对胡杨的水分生理特征和胡杨林SPAC系统的水分循环机理进行了分析研究,希望通过揭示此机理能够为保护和恢复额济纳绿洲生态环境找到有效的方法并提供科学依据。主要结果如下:
     (1)额济纳天然胡杨的胸径、树高、材积等总生长进程可划分为3个阶段,即慢—快—慢,速生期在6–15年,速生点在第6年。胡杨胸径最优生长模型是吉田正男方程;树高最优生长模型方程是柯列尔方程;材积最优生长模型方程是混合型、其次为修正Weibull方程。根据标准样地调查结果将额济纳天然胡杨林划分为四种典型林型:即河漫滩地胡杨成过熟林、柽柳(Tamarix ramosissima)胡杨青壮林、沙枣(Elaeag nusangastifolia)柽柳胡杨幼林、荒漠化胡杨疏林。
     (2)对胡杨根系调查的结果是:胡杨根系的88.88%分布在40~100cm的土层中,距树干越近,根系分布越多,根系分布随距离的增加而减少;根系按不同直径级的总体分布特征是吸收根(d<2mm)约占总根长密度的92.21%,而输导根(d>2mm)仅占8.79%,这表明胡杨以庞大的吸收根系(d<2mm)从土壤中吸收生存所需要的水分,是胡杨抵御和适应极端干旱的一种表现。
     (3)天然胡杨林的单位叶面积指数比较高,为2.90m2/m2,因此光能利用效率较高。20年生的胡杨的总生物量为74.99t/hm2,年平均生产力为3.75t/hm2·a。
     (4)胡杨不同林型的土壤中沙粒含量普遍偏高,特别是粒径0.5~1.0㎜的粗沙含量大。在胡杨幼龄林深层土壤中含有粘粒。土壤含水率总的特点是:大约0~30㎝的表层有干沙层,土壤含水率几乎为零;在30~150㎝范围内,随土层深度的增加,土壤含水率逐渐增大,变化平缓,但在60~100cm深度内土壤含水率有明显的升高现象。各林型土壤含水率由高到低依次为河漫滩胡杨成过熟林>胡杨幼林>胡杨青壮林;土壤持水能力依次为河漫滩胡杨成过熟林>戈壁>胡杨青壮林;判断额济纳绿洲胡杨生长所利用的土壤有效含水率范围为1.18%~20.05%;测得的水饱和土壤的水压传导率Kfs的数值表明,当地土壤的入渗能力相当强。
     (5)胡杨光合、蒸腾速率日变化曲线可分为两类,即单峰型和双峰型,双峰型中出现了“午休”现象;不同年龄胡杨光合速率和水分利用效率季节变化均为7月>5月>9月;胡杨叶水势日变化规律是,黎明前后水势值最高,随着光照、气温的升高,空气相对湿度下降,叶水势开始下降,黎明时的水势由大到小为幼树>中树>老树,说明老树吸水能力最强,幼树最差;在生长季晴天,胡杨树干液流速率日变化呈单峰型曲线,不同径级胡杨不同季节变化规律是,大径级(60cm)和中径级(28cm)胡杨液流速率均5月>8月,而小径级(15cm)的8月>5月;对影响净光合速率(Pn)和蒸腾速率(E)和树干液流的主要因素气温(Ta)、叶温(Tl)、空气相对湿度(RH)、光合有效辐射(PAR)、气孔导度(Gs)、细胞间CO2浓度(Ci)、叶室水汽压亏缺(VPDL)、风速(WS)等进行多元线性回归分析后的结果是,与Pn的相关系数由大到小的顺序为PAR、Tl、RH、Ci、Ta、Gs。与E的相关系数由大到小的顺序为Gs、PAR、Tl、RH、Ta、VPDL。与树干液流的相关系数由大到小的顺序为E、PAR、WS、Tl、Pn、RH、Ci、Ta、Gs。
     (6)选择了适合的计算方法计算得出额济纳绿洲总的年用水量为3.1456亿m(3包括生产、生活、生态用水),计算得出绿洲可用水量为4.4155亿m3,所以,目前绿洲生态环境和生产生活用水基本能够得到满足。因此,每年黑河水来水量必须保证在3.2亿m3以上才可以确保绿洲生态不恶化,不会向着逆向进行演替。
     (7)土壤-胡杨-大气(SPAC系统)水势梯度在不同年龄胡杨中分别是土壤:老树:大气为1:94:2757;土壤:中树:大气为1:171:2757;土壤:小树:大气为1:140:2757。中龄胡杨的水势梯度最大,其次是小树,最小的是老树。说明中龄胡杨吸收水分最积极,能力也最强;幼龄胡杨虽然还比较幼嫩,但仍需要很多水分供给;老龄胡杨已经趋于衰退,新陈代谢慢,因此吸收水分的动力不足。
Ejina Oasis is an important ecological shelter for the desert zone in Northwest China, Populus euphratica is the dominant tree species of supporting Ejina Oasis, while "water" is the major restraining factor for survival and development of Populus euphratica in Ejina Oasis. In this paper, water physiological characteristics and water circulation mechanism of SPAC system of Populus euphratica were analyzed. We hope to find effective ways and provide scientific basis for the protection and restoration of ecological environment of Ejina Oasis through revealing this mechanism. The main results are as follows:
     (1) The total growth process of DBH, height and volumn of natural Populus euphratica in Ejina can be divided into three stages,namely slow - fast - slow,fast-growing period is from the 6th to15th years,fast-growing piont is in the sixth year. The optimal DBH growth model of Populus euphratica is Masao Yoshida equation; the optimal height growth model is Rолясрequation; the optimal volumn growth model is mixed equation, the second best model is Weibull equation. According to the survey results of standard plot, the natural Populus euphratica forest in Ejina could be divided into four typical forest types: namely the flood plain mature and over-mature stand of Populus euphratica, young and strong stand of Tamarix ramosissima and Populus euphratica, young stand of Elaeag nusangastifolia,Tamarix ramosissima and Populus euphratica, desertificated open forest of Populus euphratica.
     (2) The findings for the root system of Populus euphratica are: 88.88% of the root system of Populus euphratica distributes in the soil layers of 40~100cm, the more the soil layers close to the trunk, the more roots distribute. Root distribution amount reduces along with the increase of the distance from the trunk; the overall distribution characteristic of the roots with different level of diameter is that assimilating roots(d<2mm)approximately take up 92.21% of the total root length density, and transporting roots(d>2mm)only take up 8.79%, which indicates that Populus euphratica absorb necessary water for survival using the huge assimilating root system(d<2mm)from the soil, it is a kind of resisting and adapting performance of Populus euphratica to extreme drought.
     (3) The unit leaf area index of natural Populus euphratica is quite high, which can be 2.90m2/m2, therefore, the energy utilization efficiency is relatively high. The total biomass of 20 years old Populus euphratica is 74.99t/hm2, its annual mean productivity could be 3.75t/hm2·a.
     (4) The soil sand grain contents of different forest types of Populus euphratica are generally on the high side, especially the content of coarse sand with 0.5 ~ 1.0 mm grain diameter is large. The deep soil in young forest of Populus euphratica contains clay particles. The general characteristics of soil moisture content is: the surface soil of 0~30 cm has dry sand bed, the soil moisture content is almost zero; in the range of 30~150 cm, the soil moisture content gradually increases, while varied gently along with the increase of soil depth, however, the phenomenon of obviously rise in the depth of 60~100cm could be observed. The soil moisture contents of various forest types, in the order from high to low, are: flood plain mature and over-mature forest of Populus euphratica > young stand of Populus euphratica > young and strong forest of Populus euphratica; the order of the water holding capacities of the soils are: flood plain mature and over-mature forest of Populus euphratica > Gobi> young and strong forest of Populus euphratica; the scope of effective soil moisture content for judging the growth of Populus euphratic in Ejina Oasis is between 1.18%~20.05%; the measured numerical value of hydrolic pressure conductivity Kfs of water saturated soil shows that the infiltration capacity of the local soil is quite strong.
     (5) The diurnal variation curves of photosynthetic rate and evaporation rate for Populus euphratic can be divided into two types, namely the single-peak type and the double-peak type, and midday depression phenomenon emerged in the double-peak type; The seasonal variations of photosynthetic rate and water utilization efficiency for Populus euphratic with different ages are both in the orders of July> May> September; The diurnal variation law of the leaf water potential for Populus euphratic is that the highest water potential value emerged at the approximate time of the dawn, it began to decrease along with the rising of light intensity and air temperature and the declining of relative air humidity, the order of the leaf water potential at the daybreak time was young trees>middle age trees>old trees, which indicates that the water absorbing capacity of the old trees is the strongest, that of the young trees is the weakest; The diurnal variations of sap flow velocity for the tree trunks of Populus euphratic appears to be a single-peak curve in the sunny days of the growing season, seasonal variation laws of sap flow velocity for Populus euphratic with different diameter levels are as follows: that of Populus euphratic with large (60cm) and middle (28cm) diameter levels are both in the order of May>August, that of Populus euphratic with small diameter level is in the order of August > May; A multivariate linear regression analysis was carried out for the major influencing factors of net photosynthetic rate (Pn), evaporation rate (E) and sap flow of the tree trunks, including air temperature (Ta), leaf temperature (Tl), relative air humidity (RH), photosynthetic active radiation (PAR), stomatal conductance (Gs), intercellular CO2 concentration (Ci), vapor pressure deficit of leaf (VPDL) and wind speed (WS), the result shows that the correlation coefficients between Pn, in the order from large to small, are PAR, Tl, RH, Ci, Ta, Gs; the correlation coefficients between E, in the order from large to small, are Gs, PAR, Tl, RH, Ta, VPDL; the correlation coefficients between the sap flow of the tree trunks, in the order from large to small, are E, PAR, WS, Tl, Pn, RH, Ci, Ta, Gs.
     (6) Through selecting a suitable calculating method, a conclusion was made that the total water consumption of Ejina Oasis was 314.56 million m3, which includes water consumption for production, survival and ecological purposes, the water availability of the Oasis was 441.55 million m3, therefore, the water for ecological, production and survival purposes of the Oasis could basically be satisfied at present. The annual water inflow of Heihe River has to be guaranteed over than 320 million m3, in that case, the ecological environment would not get worse and adverse succession could be prevented.
     (7) The water potential gradients of Soil-Populus euphratic-Atmosphere (SPAC system) in Populus euphratic with different ages are, respectively, in the system of soil-old tree-atmosphere, 1:94:2757; in that of soil-middle aged tree-atmosphere, 1:171:2757; in that of soil-young tree–atmosphere, 1:140:2757. The water potential gradient of the middle aged Populus euphratic is the maximum, the second is that of the young trees, the smallest is that of the old trees, which indicates that the middle aged Populus euphratic is the most active for absorbing water, and its absorbing capacity is the strongest; the young aged Populus euphratic, though relatively tender, still needs a lot of water supply; the old aged Populus euphratic, with slow metabolism, is tending towards recession, therefore, the power of absorbing water is inadequate.
引文
1 HEN L H(陈隆亨).The land desertification and its control in the lower reaches of Heihe River[J].Natural Resources(自然资源),1996,2:35~43(in Chinese)
    2 ANG G X(王根绪),QU Y G(曲耀光).et al. Environmental influence caused by the development of water resources in the Heihe River basin [J]. Journal Arid Land Resources and Environment(干旱区资源与环境),1997,11⑷:8~14(in Chinese)
    3 XU ZH X(徐兆祥).The deline reason and its management of vegetation in the Erjina plain of Inner Mongolia[J].Arid Zone Research(干旱区研究),1997,14⑶:33~36(in Chinese)
    4 LI X CH(李笑春).Environmental change and ecological crsis,countermeasures thinking for sustainable development for the Ejina oasis[J].Grassland of China(中国草地),1998,4:73~76(in Chinese)
    5 GONG J D(龚家栋),DONG G R(董光荣).Degeneration of physical environment and its control in Ejina oasis at the lower reaches at Hei-he River[J].Journal of Desert Research(中国沙漠),1998,18⑴:44~50(in Chinese)
    6 WANG G X(王根绪),CHENG G D(程国栋).Changes of hydrology and ecological environment during last 50 years in the Heihe River basin[J].Journal of Desert Research (中国沙漠),1998,18⑶:233~238(in Chinese)
    7 GONG J D(龚家栋),CHENG G D(程国栋).et al.Environment changes of Ejina region in the lower reaches of Heihe River[J].Advance in Earth Sciences(地球科学进展),2002,17⑷:491~495(in Chinese)
    8 SHEN Y X(申云霞).Climate, landforms, vegetation and the reconstruction of west environment [J]. Acta Bot.Boreal.Occident.Sin. (西北植物学报),2002,20⑵:317~320(in Chinese)
    9张惠昌.内蒙额济纳绿洲环境恶化的思考[J].水文地质工程地质,1994⑹:48~52
    10李笑春.额济纳绿洲环境变迁与生态危机及其可持续发展对策[J].中国草地,1998⑷:73~76
    11龚家栋,董光荣等.黑河下游额济纳绿洲环境退化及综合治理[J].中国沙漠,1998,18⑴:44~50
    12关永强,赵秀丽.封滩育林拯救了额济纳绿洲[J].内蒙古林业,1999.5:28
    13陶黎,张树礼.额济纳绿洲生态环境演变的研究[J].农村生态环境,1999,15⑶:17~19,32
    14潘高娃,张树礼等.额济纳绿洲生物多样性保护与可持续发展对策研究[J].内蒙古环境保护,2000,12⑶:16~19
    15董智,姚云峰等.额济纳绿洲生态环境现状与综合治理对策[J].干旱区资源与环境,2000,14⑸:1~4
    16王鸣远,王林和等.额济纳绿洲环境容量与生态风险评价[J].干旱区资源与环境,2000,14⑸:5~9
    17孙洪祥,王林和等.额济纳绿洲生态系统的演变与整治[J].干旱区资源与环境,2000,14⑸:15~18
    18孙洪祥,王林和等.额济纳绿洲植被封育更新现状分析[J].干旱区资源与环境,2000,14⑸:60~63
    19蓝登明,吴丽芝等.额济纳绿洲新疆杨硬枝扦插技术研究[J].干旱区资源与环境,2000,14⑸:64~68
    20孙洪祥,姚云峰.额济纳绿洲胡杨林更新复壮技术研究[J].干旱区资源与环境,2000,14⑸:69~73
    21李旭.黑河下游内蒙古额济纳绿洲生态抢救和保护建设刻不容缓[J].内蒙古水利,2001⑶:32~33
    22李旭.额济纳绿洲生态抢救和保护刻不容缓[J].中国水土保持,2001⑼:14~15
    23路京选,乔茂云等.黑河流域下游额济纳绿洲生态保护与移民安置工程[J].内蒙古水利,2002⑶:67~70
    24刘欣华,张春霞.额济纳绿洲植被现状与保护[J].内蒙古林业调查设计,2002,25⑷:34~35,47
    25杨炳禄.额济纳绿洲生态治理及渠道建设中的问题[J].内蒙古水利,2003⑴:99~100
    26吴丽芝,姚云峰等.额济纳绿洲生态环境综合整治对策[J].内蒙古农业大学学报,2003,24⑴:13~18
    27刘普幸,张红侠.人类活动对额济纳绿洲演化的影响及协调对策[J].国土与自然资源研究,2004⑴:62~63
    28李森,李凡等.黑河下游额济纳绿洲现代荒漠化过程及其驱动机制[J].地理科学,2004,24⑴:61~67
    30 ZHONG H P(钟华平),LIU H(刘恒).et al.Relationship between Ejina oasis and water resources in the lower Heihe River basin [J].Advances in Water Sciences(水科学进展),2002,13⑵:223~228(in Chinese)
    31王根绪.黑河流域额济纳绿洲区水资源合理利用分析[J].兰州大学学报(自然科学版),1997,33⑶:111~116
    32李红丽,王林和等.额济纳绿洲滴灌棉田土壤水分动态变化研究[J].干旱区资源与环境,2000,14⑸:49~54
    33董智,李红丽等.额济纳绿洲棉田节水灌溉试验综合效益分析[J].干旱区资源与环境,2000,14⑸:55~59
    34苏春宏,樊忠成等.额济纳绿洲水资源优化探析[J].内蒙古水利,2002⑴:99~101
    35钟华平,刘恒等.西北干旱区额济纳绿洲水资源与生态环境保护对策[J].水利水电科技进展,2002,22⑷:9~11,69~70
    36苏春宏,任青山.非充分灌溉原理在额济纳绿洲水量配置上的应用[J].内蒙古科技与经济,2003⑺:65~66
    37刘敏,甘枝茂.黑河流域水资源开发对额济纳绿洲的影响及对策[J].中国沙漠,2004,24⑵:162~163
    38乌日根夫,战士宏等.额济纳旗天然胡杨林生物学、生态学抗旱机理与繁殖机理研究[J].内蒙古林业调查设计,2003,26⑷:1~5
    39季方,马英杰等.塔里木河冲击平原胡杨林的土壤水分状况研究[J].植物生态学报,2001,25⑴:17~21
    40韦东山,张秋良等.额济纳地区胡杨林可持续经营策略[J].内蒙古科技与经济,2003⑸:26~28
    41罗晓云,崔长勇.内蒙古额济纳地区胡杨林退化原因的探讨——以“怪树林”为例[J].地质科技情报,2004,23⑴:81~84
    42白云岗,宋郁东等.应用热脉冲技术对胡杨树干液流变化规律的研究[J].干旱区地理,2005,28(3):373~376
    43张小由.胡杨树干液流的时空变异性研究[J].中国沙漠,2004,24(4):489~492
    44司建华,冯起等.极端干旱区胡杨水势及影响因子研究[J].中国沙漠,2005,25(4):505~510
    45王兴鹏,张维江等.盐池沙地柠条的蒸腾速率与叶水势关系的初步研究[J].农业科学研究,2005,26(2):43~47
    46曾凡江,张希明等.塔克拉玛干沙漠南缘柽柳和胡杨水势季节变化研究[J].应用生态学报,2005,16(8):1389~1393
    47蒋进.极端气候条件下胡杨的水分状况及其与环境的关系[J].干旱区研究,1991,(2):35~38
    48苏培玺,张立新,杜明武等.胡杨不同叶形光合特性、水分利用效率及其对加富CO2的响应[J].植物生态学报,2003,27(1):34~40
    49谷瑞升,蒋湘宁.胡杨细胞和组织结构与其耐盐性关系的研究[J].植物学报,1999,41(6):576~579
    50马焕成,王沙生.胡杨膜系统的盐稳定及盐胁迫下的代谢调节[J].西北林学院学报,1998,18 (1):15~23
    51高照阳,张红梅等.国内外土壤水分监测技术[J].节水灌溉,2004⑵:28~29
    52 Petersen L W.High-Resolution time domain reflectometry:sensitivity dependency on probe design[J].Soil Science,1995,⑶:149
    53 laine Hanson.Soil Moisture Instruments[J].Irrigation Journal,1999,49⑶:14~15
    54 uo W H,Li B.et a1.Effects of different water stresses on eco-physiological characteristics of Hippophae rhamnoides seedlings[J].Acta Botanica Sinica,2003,45⑽:1238~1244
    55马履一.国内外土壤水分研究现状与进展[J].世界林业研究,1997⑸:26~32
    56龚元石,李子忠等.利用时域反射仪测定的土壤水分估算农田蒸散量[J].应用气象学报,1998,9⑴:72~78
    57雷志栋,胡和平等.土壤水研究进展与评述[J].水科学进展,1999,10⑶:311~318
    58孙强,高立方等.新型多功能土壤水分运动测试装置的测控系统研制[J].测控技术,1999,18⑶:41~44
    59孙玉龙,郝振纯.TDR技术及其在土壤水分及土壤溶质测定方面的应用[J].灌溉排水,2000,19⑴:37~41
    60陈家宙,陈明亮等.各具特色的当代土壤水分测量技术[J].湖北农业科学,2001⑶:25~28
    61伍永秋,刘宝元等.黄土高原土壤水分的自动监测——TDR系统及其应用[J].水土保持学报,2001,15⑵:108~111
    62郝艳如,劳秀荣.美国有关砂壤土采用节水灌溉的研究[J].水土保持科技情报,2002⑷:36~37,43
    63郭卫华,李波等.FDR系统在土壤水分连续动态监测中的应用[J].干旱区研究,2003,20⑷:247~251
    64姜小三,倪绍祥等.温度条件对TDR测定土壤水分的影响[J].江苏农业科学,2004⑷:102~104
    65张学礼,胡振琪等.土壤含水量测定方法研究进展[J].土壤通报,2005,36⑴:118~123
    66野治彥·丸山利鋪(1992):TDRによる土壤の體積含水率及び電氣傳導度の測定について[J].土壤の物理學 65.pp.55~61
    67常兆丰,仲生年等.降水在沙丘中的渗透过程研究[J].防护林科技,2002⑷:5~8,46
    68西宁,吴发启.土壤水分入渗的研究进展和评述[J].西北林学院学报,2004,19⑴:42~45
    69许明祥,刘国彬等.圆盘入渗仪法测定不同利用方式土壤渗透性试验研究[J].农业工程学报,2002,18⑷:54~58
    70雷志栋,杨诗秀,谢森传.土壤水动力学[M].北京:清华大学出版社,1988,67~77
    71郭凤台,迟艺侠,程东娟,贾艳辉.土壤水分特征曲线试验研究[J].南水北调与水利科技,2006,4(2):47~48
    72黄昌勇.土壤学[M].北京:中国农业出版社,2005,108~110
    73曹红霞,康绍忠,武海霞.同一质地(重壤土)土壤水分特征曲线的研究[J].西北农林科技大学学报(自然科学版),2002,30(1):9~12
    74夏卫生,雷廷武,潘英华等.土壤水动力学参数研究与评价[J].灌溉排水,2002,21(1):72~75
    75 Gupta. S C, Larson W E. Estimating soil water retention characteristics fromparticle size distribution, organic matter content, and bullk density[J]. Water Resour Res, 1979,15(1):1633~1635
    76 Assouline S,Tessier D,et al. A conceptual model of the soil water retention curve[J].Water Resour Res,1998,34(2):223~231
    77黄寇华,詹卫华.土壤水分特征曲线的分形模拟[J].水科学进展,2002,13(1):55~60
    78杜林方.光合作用研究的一些进展[J].世界科技研究与发展,1999,21(1):58~62
    79李吉跃,张建国.北京主要造林树种耐旱机理及其分类模型的研究[J].北京林业大学学报,1993,15(3):1~11
    80蒋进.极端气候条件下胡杨的水分状况及其与环境的关系[J].干旱区研究,1991,(2):35~38
    81郭连生,田有亮.运用PV技术对华北常见造林树种耐旱性评价的研究[J].内蒙古林学院学报,1998,20(3):1~8
    82苏培玺,张立新,杜明武等.胡杨不同叶形光合特性、水分利用效率及其对加富CO2的响应[J].植物生态学报,2003,27(1):34~40
    83张国盛.干旱、半干旱地区乔灌木树种耐旱性及林地水分动态研究进展[J].中国沙漠,2000,20(4):363~368
    84邓雄,李小明,张希明等.4种荒漠植物气体交换特征的研究[J].植物生态学报,2002,26(5): 605~612
    85邓雄,李小明,张希明等.四种荒漠植物的光合响应[J].生态学报,2003,23(3):598~605
    86邓雄,李小明,张希明等.塔克拉玛干4种荒漠植物气体交换与环境因子的关系初探[J].应用与环境生物学报,2002,8(5):445~452
    87 Sun,J.X. Theeco-physiologic characteristics of P.eupharetic [J]. Res For Sci & Technol ,1983,8:19~21
    88 Levitt J. Response of plants to environmental stress.Academic press [M]. New York,1972
    89赵文智,常学礼.樟子松针叶气孔运动与蒸腾强度关系研究[J].中国沙漠,1995,15(3):241~243
    90张国盛,王林和,董智等.毛乌素沙地几种植物蒸腾速率的季节变化特征[J].内蒙古林学院学报,1998,20(1):7~12
    91王孟本,李洪建.树种蒸腾作用、光合作用和蒸腾效率的比较研究[J].植物生态学报,1999, 23(5):401~410
    92 chuze ED. Carbon dioxide and water vapor exchange in response to drought in the atmosphere and in the soil [J].Ann. Rev. Plant Physiol.,1986,37:247~274
    93 Curtis, P. S.,W.W. Adams. A meta-analysis of elevated CO2 effects on woody plant mass ,form, and physiology [J]. Oecologia,1998,113:229~313
    94 Huber,S.C., H.H.Rogers,D.W.Israel.Effect of CO2 enrichment on photosynthesis andphotosynthate partitioning in soybean (Glycine max) leaves [J]. Physiologia Plantarum,1984, 62:95~101
    95 Bowes,G. Growth at elevated CO2: photosynthetic responses mediated through Rubisco [J]. Plant,Cell and Environment,1991,14:795~806
    96 Mousseau,M.,B.Saugier. The effect of increased CO2 on gas exchange and growth of forest tree species [J].Journal of Experimental Botany,1992, 43:1121~1130
    97王韶唐.植物水分利用效率与旱地农业生产[J].干旱地区农业研究,1987,(2):67~80
    98曾凡江,张希明,李小明.柽柳的水分生理特性研究进展[J].应用生态学报,2002,13(5):611~614
    99韩德儒,杨文斌等.干旱半干旱区沙地灌(乔)木树种水分动态关系及其应用[M].北京:中国科学技术出版社,1~7
    100王兴鹏,张维江等.盐池沙地柠条的蒸腾速率与叶水势关系的初步研究[J].农业科学研究,2005,26(2):43~47
    101 Scholander P F,Hammel H T. Sap pressure in vascular plants[J].Science,1965,148(9):339~345
    102 Sobrado MA, Turner NC. Comparison of the water relations characteristics of Heilianthus annuus and Helianthus petiolaris when subjected to water deficirs [J]. Oecologia,1983,58:309
    103曾凡江,张希明等.塔克拉玛干沙漠南缘柽柳和胡杨水势季节变化研究[J].应用生态学报,2005,16(8):1389~1393
    104 Pelaez D V,Boo R M.Plant Water Potential for Shrubs in Argentina[J].Range Management,1987,40(1):6~9
    105 Dong X-J.Experimental measurement of the water relations parameters of nine shrubs and so me ecological interpretations[J].Acta Bot Sin,1998,40(7):657~664
    106 Gao Y-B.Adaptive responses of plants to water stress and their ecological significance[M].In:Li B.ed.Modern Ecological Lectures.Beijing:China Science and Technology Press.1995,10~22
    107 Wang W-L.Pressure chamber as an instrument for ecological research[J].Plant Physiology,1984,21(3):52~57
    108 Zeng F-J,Zhang X-M.A review on the water physiological characteristics of Tamarix and its prospect[J].Appt Ecol,2002,l3(5):611~614
    109 Zhao P.Advances in plant ecophysiological studies on revegetation of degraded ecosystems[J].Appt Ecol,2003,14(11):2031~2036
    110阮成江,李代琼.半干旱黄土丘陵区沙棘叶水势及其影响因子[J].陕西林业科技,2000,(1):1~4
    111武应霞,苗作云等.桃、杏、樱桃小树叶水势日间变化及其与气象因子关系的研究[J].河南林业科技,2005,25(2):6~8
    112李洪建,王孟本等.黄土区4个树种水势特征的研究[J].植物研究,2001,21(1):100~105
    113孙谷畴.叶片水势减低对荔枝光合作用的影响[J].植物学报,1988,30(1):99~102
    114杨文斌,任建民等.柠条抗旱的生理生态与土壤水分关系的研究[J].生态学报,1997,17(3):239~244
    115杨文斌,任建民.柠条抗旱的生理生态与土境水分关系的研究[J].生态学报,1997,17(3):39~44
    116王继和,马全林等.干旱沙区几种果树生理生态特性及其适应性研究[J] .中国沙漠,2001,21(增刊):22~29
    117郭连生,田有亮. 9种针阔叶小树的蒸腾数率、叶水势与环境因子关系研究[J].生态学报,1992a,12(1):47~52
    118郭连生,田有亮.八种针阔叶小树清晨叶水势与土壤含水量的关系及其抗旱性研究[J].生态学杂志,1992b,11(2):4~7
    119李海涛,陈灵芝.暖温带森林生态系统主要树种若干水分参数的季节变化[J].植物生态学报,1998,22(3):202~213
    120胡继超,姜东.短期干旱对水稻叶水势、光和作用及干物质分配的影响[J].应用生态学报,2004,15(1):63~67
    121 Jiang J.Water relation of Populus euphratica and the influence of environment on it under the extreme condition[J].Arid Zone Res,1991,2(9):35~38
    122 Mohiuddin M ,Jarvis P. Study on growth and stomatal response of young poplar plants subjected to partial soil drying[J].Trop For Sci,1997,10(1):50~57
    123 Xu,D.Q. Progress in Photosynthesis Research:From Molecular Mechanisms to Green Revolution [J].Acta Physiologica Sinica,2001,27(2):97~108
    124 Kramer P J. Water relations of plants [M].San Diego: Academic press,1983
    125 Swanson R H. Significant historical developments in thermal methods for measuring sap flow in trees [J]. Agric For Meteorol,1994,72:113~132
    126 Huber B. Observation and measurements of sap flow in plant [J].Berichle der Deutscher Botanishcen Gessellschaft,1932,50:89~109
    127 Marshall D C. Measurement of sap flow in conifers by heat transport [J]. Plant Phystology,1958, 33:385~396
    128 Swanson R H, Whitfield D W A.A numerical analysis of heat pulse velocity theory and practice [J]. Journal of Experimental Botany,1981,32:221~239
    129 Edwards W R N. Operator’s manual of custom heat velocity dada logger [J]. BackgroundTheory ,Chapter 2,1991,3~4
    130李海涛,陈灵芝.应用热脉冲技术对棘皮桦和五角枫树干液流的研究[J].北京林业大学学报,1998,20(1):1~6
    131刘奉觉,Edwards W R N,郑世楷等.杨树树干液流时空动态研究[J].林业科学研究,1993,6(4):368~372
    132孙鹏森,马履一,王小平等.油松树干液流的时空变异性研究[J].北京林业大学学报,2000,22(5):1~6
    133高岩,张汝民,刘静.应用热脉冲技术对小美旱杨树干液流的研究[J].西北植物学报,2001,21(4):644~649
    134严昌荣,Alec Downey,韩兴国等.北京山区落叶阔叶林中核桃楸在生长中期的树干液流研究[J].生态学报,1999,19(6):793~97
    135孙慧珍,周晓峰,赵惠勋.白桦树干液流的动态研究[J].生态学报,2002,22(9):1387~1391
    136马履一,王华田.油松边材液流时空变化及其影响因子研究[J].北京林业大学学报,2002,24(3):23~27
    137张小由,龚家栋,周茂先等.应用热脉冲技术对胡杨和柽柳树干液流的研究[J].冰川冻土,2003,25(5):585~590
    138 Granier A. A new method for measure sap flow [J]. Ann Sci For,1985,42:193~200
    139 Granier A.Evaluation of transpiration in a Douglas fir stand by means of sap flow measurements[J].Tree-Physiology,1987,7(3):309~320
    140 Anfodillo T ,Sigalotti G B ,Tomasi M,et al.Applications of a thermal imaging technique in the study of the ascent of sap in woody species[J].Plant,Cell and Environment,1993,16(8):997~1001
    141 Granier A,Huc R. Transpiration of natural rain forest and its dependence on climactic factors [J]. Agricultural and Forest Meteorology,1996,78(2):19~29
    142 Kramer P J,Buyer J S.Water relations of plants and soils[M].London:Academic Press Inc,1995,243~251
    143龚元石.土壤—植物—大气连续体水分传输理论及其应用[M].北京:中国农业出版社,1995
    144康绍忠,刘晓明.土壤-植物-大气连续体水分传输的计算机模拟[J].1992,3(12):1~12
    145罗毅,于强,欧阳竹,唐登银.SPAC系统中的水热CO2通量与光合作用的综合模型(Ⅰ)模型建立[J].水利学报,2001,2:90~97
    146罗毅,欧阳竹,于强,唐登银.SPAC系统中的水热CO2通量与光合作用的综合模型(Ⅱ)模型建立[J].水利学报,2001,3:58~63
    147丛振涛,雷志栋,胡和平,杨诗秀.冬小麦生长与土壤-植物-大气连续体水热运移的耦合研究Ⅰ:模型[J].水利学报,2005,36(5):575~580
    148丛振涛,雷志栋,胡和平,杨诗秀.冬小麦生长与土壤-植物-大气连续体水热运移的耦合研究Ⅰ:模型的验证与应用[J].水利学报,2005,36(6):741~745
    149丛振涛,雷志栋,杨诗秀.基于SPAC理论的田间腾发量计算模式[J].农业工程学报,2004,20(2):6~9
    150毛晓敏,尚松浩,雷志栋,杨诗秀.利用SPAC模型对冬小麦蒸散发的研究[J].水利学报,2001,8:7~11
    151张劲松,孟平.苹果-小麦复合系统SPAC水分运移模拟模型[J].林业科学,2004,40(4):2~8
    152王华田,马履一,徐军亮.油松人工林SPAC水势梯度时空变化规律及其对边材液流传输的影响[J].植物生态学报,2004,28(5):637~643
    153徐军亮,马履一,王华田.油松人工林SPAC水势梯度的时空变异[J].北京林业大学学报,2003,25(5):1~5
    154刘昌明.土壤-植物-大气系统水分运行的界面过程研究[J].地理学报,1997,52(4):366~373
    155张喜英,刘孟雨,雷玉平.土壤一植物一大气连续体水分运移阻力的田间试验与模拟研究[J].中国农业气象,1995,16(2):33~36
    156赵艳霞,王馥棠土壤-作物-大气连续体水分循环与作物生产关系的模拟模式研究[J].应用气象学报,1997,8(4):428~436
    157张喜英,刘孟雨,雷玉平。土壤一植物一大气连续体水分运移阻力的田间试验与模拟研究[J].中国农业气象,1995,16(2):33~36
    158朱首军,丁艳芳,薛泰谦。土壤—植物—大气(SPAC)系统和农林复合系统水分运动研究综述[J].水土保持研究,2000,7(1):49~53
    159阳园燕,郭安红,安顺清,刘庚山土壤-植物-大气连续体( SPAC)系统中植物根系吸水模型研究进展[J].气象科学,2004,32(5):316~321
    160武强,张志忠,董东林。西北干旱区SG-SPAC系统水力模型的建立[J].水文地质工程地质,2002,4:62~65
    161京选,乔茂云等.黑河流域下游额济纳绿洲生态保护与移民安置[J].水利经济,2002⑹:62~65
    162阿盟,吴淑改.神奇诱人的额济纳绿洲[J].内蒙古林业,2002.8:28
    163杨炳禄.额济纳绿洲生态治理及渠道建设中的问题[J].内蒙古水利,2003⑴:99~100
    164额济纳旗林业局.额济纳旗生态公益林区划界定及补偿基金实施方案[M],2005
    165李光友,方升佐,吕家驹,汪祥顺等.立地条件对青檀人工林生物生产力及檀皮产量的影响[J].南京林业大学学报(自然科学版),2001,25(4):49~53
    166关毓秀.测树学[M].北京:中国林业出版社,1987
    167张明如.森林生态学[M].呼和浩特:内蒙古农业大学林学院,2000
    168袁春明,郎南军,孟广涛,方向京,李贵祥,温绍龙等.头塘山地圣诞树人工防护林群落的结构特征与生物生产力[J].云南林业科技,1998,2(83):24~27
    169章文波,陈红艳.实用数据统计分析及spss 12.0[M].北京:人民邮电出版社,170~177
    170孙洪祥,王林和,姚云峰,刘洪贵.额济纳绿洲植被封育更新现状分析[J].干旱区资源与环境,2000,14-(增刊):60~63
    171《内蒙古森林》编辑委员会.内蒙古森林[M],北京:中国林业出版社,1989
    172程东娟,郭凤台,刘贵德等.不同种植条件下土壤水分特征曲线研究[J].陕西农业科学,2006,(1):1~4
    173陈丽华,鲁绍伟,张学培等.晋西黄土区主要造林树种林地土壤水分生态条件分析[J].水土保持研究,2007,14(4):394~397
    174庄季屏,王伟.土壤低吸力段持水性能及其早期土壤干旱的研究[J].土壤学报,1986,23 (4):309~312
    175赵西宁,吴发启.土壤水分入渗的研究进展和评述[J].西北林学院学报,2004,19⑴:42~45
    176解文艳,樊贵盛.土壤含水量对土壤入渗能力的影响[J].太原理工大学学报,2004,35⑶:272~275
    177张应华,仵彦卿等.黑河下游河床渗漏试验研究[J].干旱区研究,2003,20⑷:257~160
    178 Granier A,R.Huc,S.T.Barigah.Transpiration of natural rain forest and its dependence on climactic factors[J].Agricultural and forest Meteorology,1996,78:19~29
    179张小由,龚家栋.利用热脉冲技术对梭梭液流的研究[J].西北植物学报,2004,24(12) :2250~2254
    180 Edwards W R N,R E Booker.Radial variation in the axial conductivity of Populus and its significance in heat pulse velocity measurement[J].Journal of Experimental Botany,1984,33(153):551~561
    181 Philips N,R Oren,R Zimmermann.Radial patterns of xylem sap flow in non-,diffuse- and ring- porous tree species[J].Plant Cell Environ,1996,19:983~990
    182张小由,龚家栋,周茅先等.胡杨树干液流的时空变异性研究[J].中国沙漠,2004,24(4):489~492
    183王瑞辉,马履一,奚如春等.元宝枫生长旺季树干液流动态及影响因素[J].生态学杂志,2006,25(3):231~237
    184 Dixon H H ,Renner O.Transpiration and the Ascent of Sap in Plants[M]. London:Macmillan & Coltd,1914:139~141
    185 Kramer P J,Kozlowski T T.Physiology of woody plants[M].NewYork:Academic Press,1979
    186 Kramer P J ,Boyer J S.Water relations of plants and soils[M].London::AcademicPress Inc,1995:1~15,224,242~243
    187陈晓燕,谷忠厚,田有亮等.大青山油松人工林树干液流特征及其与主要气象因子的关系[J].水土保持研究,2009,6:
    188司建华,冯起,张小由.极端干旱区胡杨水势及影响因子研究[J].中国沙漠,2005,25(4):505~510
    189许大全.光合作用效率[M].上海:上海科学技术出版社.2002
    190汤奇成.塔里木盆地水资源与绿洲建设[J].自然资源,1989(6):28~34
    191汤奇成.绿洲的发展与水资源的合理利用[J].干旱区资源与环境,1995,9(3):107~111
    192贾宝全,许英勤.干旱区生态用水的概念和分类——以新疆为例[J].干旱区地理,1998,21(2):8~12
    193中国工程院“21世纪中国可持续发展水资源战略研究”项目组.中国可持续发展水资源战略研究综合报告[R].中国工程科学,2000,2(8):1~17
    194 Gleick PH·Water in crisis path to sustainable water use[J]·Ecological A lications, 1996, 8(3): 571~579
    195杨爱民,唐克旺,王浩等.生态用水的基本理论与计算方法[J].水利学报,2004,12:39~45
    196沈国舫.生态环境建设与水资源的保护和利用[J].中国水土保持,2001,(1):4~8
    197万咸涛,刘予伟,张新宇等.环境生态用水基本概念[J].南水北调与水利科技,2003,1(6):20~21
    198牛志明.生态用水理论及其在水土保持生态环境建设中的现实意义[J].科技导报,2001,7:8~11
    199徐志侠,董增川,唐克旺等.生态用水决策过程、研究层次及生态需水重要概念研究[J].水利水电技术,2005,3:9-12
    200左其亭.干旱半干旱地区植被生态用水计算[J].水土保持学报,2002,16(3):114~117
    201王根绪,程国栋.干旱河流域生态需水量及其估算[J].中国沙漠.2002,22(3):129~134
    202贾宝全,许英勤.干旱区生态用水的概念和分类[J].干旱区地理,1998,21(2):8~12
    203胡广录,赵文智.旱半干旱区植被生态需水量计算方法评述[J].生态学报,2008,28(12):6282~6291
    204李丽娟,郑红星.海栾河流域河流系统生态环境需水量计算[J].地理学报,2000,55(4):495~500
    205崔宝山,杨志峰.湿地生态环境需水量研究[J].环境科学学报,2002,22(2):213~218.
    206刘静铃,杨志峰.湖泊生态环境需水量计算方法研究[J].自然资源学报,2002,17(5):604~609
    207王礼先.植被生态建设与生态用水——以西北地区为例[J].水土保持研究,2000,7(3):5~7
    208杨志峰,姜杰,张永强.基于MODIS数据估算海河流域植被生态用水方法探讨[J].环境科学学报,2005,25(4):449~456
    209徐先英,丁国栋,孙保平等.内陆河下游民勤绿洲主要防风固沙植被生态需水量研究[J].水土保持学报,2007,21(3):144~148
    210赵秀芳.地下水埋深对额济纳绿洲植被生态需水量的影响研究[D].内蒙古农业大学硕士学位论文,2008
    211李强坤,黄福贵,罗玉丽等.额济纳地区绿洲恢复生态需水量研究[J].水资源与水工程学报,2006,17(2):9~13
    212王芳,王浩,陈敏建等.中国西北地区生态需水研究(2)——基于遥感和地理信息系统技术的区域生态需水计算及分析.自然资源学报,2002, 17 (2): 129~137
    213赵文智,常学礼,何志斌等.额济纳荒漠绿洲植被生态需水量研究[J].中国科学D辑地球科学, 2006,36(6):559~566
    214李强坤.额济纳地区绿洲恢复生态需水量研究[D].西安理工大学工程硕士学位论文,2006
    215牛丽,岳广阳,赵哈林.利用液流法估算樟子松和小叶锦鸡儿人工林蒸腾耗水[J].北京林业大学学报,2008,30(6):1~8
    216内蒙古水科院.“九五”国家重点科技攻关项目报告(96一912一03一03一03):额济纳地区天然绿洲向人工绿洲转化研究[R].2001.12
    217 www.envir.gov.cn/info/2007/11/1114835.htm
    218潘晓玲,常顺利,张旭.SPAC系统研究进展及其在干旱区研究应用初探[J].新疆环境保护,2002,24(2):1~4
    219朱首军,丁艳芳,薛泰谦.土壤-植物-大气(SPAC)系统和农林复合系统水分运动研究综述[J].水土保持研究,2000,7(1):1~6
    220徐军亮,马履一,王华田.油松人工林SPAC水势梯度的时空变异[J].北京林业大学学报,2003,25(5):1~5
    221武强,张志忠,董东林.西北干旱区SG-SPAC系统水力模型的建立[J].水文地质工程地质,2002,4:62~65
    222毛晓敏,杨诗秀,雷志栋.叶尔羌灌区冬小麦生育期SPAC水热传输的模拟研究[J].水利学报,1998,7:35~41
    223王华田,马履一,徐军亮.油松人工林SPAC水势梯度时空变化规律及其对边材液流传输的影响[J].植物生态学报,2004,28(5):637~643
    224张强.宁夏毛乌素沙地SPAC系统水分运移规律研究[D].北京林业大学博士学位论文,2007
    225吴丽芝,姚云峰,董智等.额济纳绿洲生态环境综合治理对策[J].内蒙古农业大学学报,2003,24(1):13~18
    226蒋得江,王答相.合理安排生态用水是搞好西北生态环境建设的关键[J].水土保持研究,2002,9(4):12~15
    227刘敏,甘枝茂.黑河流域水资源开发对额济纳绿洲的影响及对策[J].中国沙漠,2004,24(2):162~166
    228李宗礼,苏中原,沈清林.干旱内陆河流域下游绿洲生态建设中的水资源问题[J].中国水土保持SWCC,2006,2:9~12
    229刘普幸,李筱琳.黑河下游额济纳绿洲生态环境变化特征及生态恢复与重建[J].水土保持通报,2004,24(5):74~77
    230王志功,朱长青,刘国玲.额济纳绿洲生态系统恢复初探[J].内蒙古林业调查设计,2003,26(1):12~15
    231朱艳洁,张贵泉,杨涛等.额济纳绿洲天然林的经营管理[J].内蒙古林业调查设计,2005,28(4):43~45
    232王永林,马育斌,李正一.黄土高原生态用水与植被建设[J].甘肃农业,2006,11:172~173
    233宋先松,石培基,毛笑文.黑河流域生态用水与产业发展研究-以张掖市为例[J].干旱区研究,2004,21(4):323~326

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700