用户名: 密码: 验证码:
VA菌根真菌提高玉米耐盐性机制与农田土壤微生物多样性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了甘肃、宁夏和内蒙古代表性盐碱土中柠条、砂柳、胡杨、椿树、沙枣、白刺、枸杞、水稻、玉米、小麦、棉花、芦苇、向日葵、葱、乌拉尔甘草、骆驼刺、苜蓿、冰草、羊草、芨芨草、大米草、盐角草、筛草、寸草苔和马蔺等25种主要植物根际的VA菌根真菌资源及土壤因子对VA菌根真菌的影响,探索了盐胁迫条件下接种VA菌根真菌提高玉米耐盐性的内在机制。同时,本文还研究了土壤类型、土壤理化性质以及气候条件对加拿大萨斯卡彻温省农田生态系统中微生物多样性的影响,构建了VA菌根真菌和土壤理化性质对小麦N、P吸收的贡献模型。得出以下主要结论:
     1.VA菌根真菌的种类
     从25种植物根际土中分离并鉴定出浅窝无梗囊霉、皱壁无梗囊霉、细凹无梗囊霉、刺无梗囊霉、格氏原囊霉、薄壁原囊霉、幼套多孢囊霉、地表多孢囊霉、聚丛球囊霉、白色球囊霉、澳洲球囊霉、近明球囊霉、明球囊霉、缩球囊霉、副冠球囊霉、透光球囊霉、聚生球囊霉、地球囊霉、根内球囊霉、木薯球囊霉、摩西球囊霉、膨果球囊霉、具疱球囊霉、网状球囊霉、荫性球囊霉、三壁球囊霉、疣壁球囊霉和泡囊球囊霉等28种VA菌根真菌,分别隶属于球囊霉属、多孢囊霉属、原囊霉属和无梗囊霉属等4个属。其中泡囊球囊霉和三壁球囊霉为我国新记录种,球囊霉属、多孢囊霉属和原囊霉属为优势属,缩球囊霉、地球囊霉、根内球囊霉、地表多孢囊霉和薄壁原囊霉为优势种。
     2.菌根植物的多样性和VA菌根的结构类型
     所调查的14科25种植物全部被VA菌根真菌侵染。在以前研究认为没有或很少有VA.菌根真菌侵染的莎草科植物中发现寸草苔和筛草有菌根侵染现象。除筛草不能确定菌根结构类型外,其余24种植物的菌根结构类型以A型为主,占66.7%,少数为P型,占33.3%,没有发现I-型菌根结构。
     3.VA菌根真菌生态分布的影响因素
     VA菌根真菌侵染率与土壤pH和CO_3~(2-)含量呈显著负相关,与HCO_3~-含量呈极显著负相关。Cl~-、CO_3~(2-)、K~+、Ca~(2+)和有机质含量通过直接作用影响VA菌根真菌的侵染率,SO_4~(2-)、HCO_3~-、Na~+、Mg~(2+)、水溶性全盐、速效P、速效K、速效N含量和土壤pH则通过间接作用影响VA菌根真菌的侵染率。VA菌根真菌孢子密度与土壤中SO_4~(2-)含量呈显著负相关,与真菌和细菌数量呈显著正相关。SO_4~(2-)、速效P、速效K、速效N含量和土壤pH通过直接作用影响孢子密度,Cl~-、CO_3~(2-)、HCO_3~-、Na~+、K~+、Ca~(2+)、Mg~(2+)、水溶性全盐和有机质含量则通过间接作用影响孢子密度。植物种类不同其根际VA菌根真菌种的丰度及优势种不同。盐土、碱土和盐化灌淤土中的VA菌根真菌种的丰度不同,分别为24、18和17,但优势种、属相同。土壤理化性质影响着VA菌根真菌的物种多样性、种的丰度及相对多度。
     4.VA菌根真菌提高玉米耐盐性的机制
     在盐胁迫下接种VA菌根真菌促进了玉米植株的生长和干物质的累积,提高了玉米的耐盐能力。主要由于接种VA菌根真菌①提高了玉米叶片的组织含水量和水分利用效率,降低了水分饱和亏;②增加了玉米叶片的叶绿素相对含量、净光合速率、气孔导度、蒸腾速率、光化学和非光化学效率,降低了胞间CO_2浓度和Fo,调节能量在光化学和非光化学过程中的分配,提高了植株的光合作用能力;③降低了玉米植株的根冠比、比根长和细根(0~0.2 mm)占总根长的比例,增加了根系的平均直径、根系体积和根系活力;④提高了玉米叶片的过氧化氢酶活性,降低了玉米叶片中O_2~-、H_2O_2、丙二醛的含量和电解质透出率,增加了细胞膜的稳定性;⑤提高了玉米叶片的还原糖、可溶性糖、可溶性蛋白和游离有机酸含量,增加了植株的渗透调节能力。
     5.加拿大萨斯卡彻温省农田土壤中微生物多样性及其影响因素
     不同土壤类型的微生物群落结构存在显著差异。变性土的VA菌根真菌、真菌(除VA菌根真菌,下同)、G~+细菌的生物量和微生物总量最高,褐灰钙土的真菌和细菌生物量之比及真菌的相对多度最高。真菌生物量及真菌和细菌生物量之比与土壤中Cu~(2+)含量呈正相关,与7月、8月的平均降雨量和土壤中速效N、Mn~(2+)、Zn~(2+)、有机质含量呈负相关;G~+细菌的生物量与土壤中速效P含量呈正相关,与土壤容重呈负相关;G~-细菌的生物量与土壤中速效P含量呈负相关,与土壤容重呈正相关。VA菌根真菌的生物量与5~8月的平均气温和5月的平均降雨量呈正相关,与8月的平均降雨量、土壤容重以及土壤中Mn~(2+)、Zn~(2+)含量呈负相关。
     从49个农田土壤样品中鉴定出何氏球囊霉、摩西球囊霉、Glomus sp.1和G.sp.24种VA菌根真菌。G.sp.1和何氏球囊霉主要分布于灰色淋溶土中;摩西球囊霉主要分布于暗棕钙土中;G.sp.2主要分布于灰漠钙土中。何氏球囊霉在土壤中的分布主要受5~8月的平均气温和土壤中Cu~(2+)含量的影响,摩西球囊霉主要受5~8月的平均降雨量和土壤容重的影响,G.sp.1和G.sp.2主要受土壤中速效N、速效P、Mn~(2+)、Zn~(2+)和有机质含量的影响。VA菌根真菌和土壤理化性质对小麦N、P吸收的贡献模型为:
     Y_1=1.36350-0.00132X_(11)+0.06304X_(12)-1.64599X_(13)+18.39645 X_(14)模型1
     Y_2=0.27405-0.00014X_(21)-0.01429X_(22)+0.00184X_(23)模型2
The composition community of AMF(Arbuscular Mycorrhizal Fungi)in rhizospheres of25 common plants(Allium fistulosum,Caragana korshinkii,Glycyrrhiza uralensis,Alhagisparsifolia,Medicago sativa,Oryza sativa,Zae mays,Agropyron cristatum,Leymus chinensis,Achnatherum splendens,Spartina anglica,Triticum aestivum,Phragmites australis,Elaegnusangustifolia,Nitraria tangutorum,Gossypium herbaceum,Helianthus annnus,Ailanthusaltissima,Saliconia europaea,Lycium chinense,Carex kobomugi,C.duriuscula,Salixgordejevii,Populus euphratica and Iris lactea)in saline alkaline soils of Gansu province,Ningxia Hui Autonomous Region and Inner Mongolia Autonomous Region was investigated.The relationship between AMF composition community and soil factors was analyzed as well.The influence of AMF(Glomus mosseae)on salt-resistant mechanisms of maize plants undersalt stress was studied in the greenhouse.Whilst,we analyzed the relationship between soiltype,soil properties,climate conditions and microbiological diversity in farmland soils ofSaskatchewan,Canada,and built two models to figure out the relationship among AMF,soilproperties and contents of N and P in wheat plants.
     The results are as follows:
     1.In total,twenty-eight AMF species belonging to 4 genera were identified fromrhizospheres of 25 common plants.There were 4 Acaulospora(A.lacunose,A.rugosa,A.scrobiculata and A.spinosa),2 Archaeospora(At.Gerdemannii and Ar.leptotichum),2Diversispora(D.etunicatum and D.versiforme),and 20 Glomus(G.aggregatum,G.albidum,G.australe,G.claroideum,G.clarum,G.constrictum,G.coronatum,G.diaphanum,G.fasciculatum,G.geosporum,G.intraradices,G.manihotis,G.mosseae,G.pansihalos,G.pustulatum,G.reticulatum,G.tenebrosum,G.trimurales,G.verruculosum and G.vesiculiferum).Among them,G.vesiculiferum and G.trimurales were new record species inChina.Glomus,Diversispora and Archaeospora were the dominant genera.G.constrictum,G.geosporum,G.intraradices,D.versiforme and Ar.Leptotichum were the dominant species.
     2.All twenty-five plant species,including Carex kobomugi and C.duriuscula of theCyperaceae,were colonized by AMF.The structural type of VA(Vesicular Arbuscular)mycorrhizae of C.kobomugi could not be identified;most other plant species(66.7%) belonged to the Arum-type,33.3% belonged to the Paris-type,the intermediate type was notfound.
     3.AMF spore density was negatively correlated with SO_4~(2-)concentration,but positivelywith the number of fungi and bacteria.AMF spore density was influenced directly by soil pHand concentrations of SO_4~(2-),Olsen-P,Olsen-K and Olsen-N,but indirectly by concentrationsof Cl~-,CO_3~(2-),HCO_3~-,Na~+,K~+,Ca~(2+),Mg~(2+),water-soluble salt and organic matter.AMFcolonization rate was negatively related with soil pH and concentrations of HCO_3~-and CO_3~(2-).AMF colonization rate was affected directly by concentrations of Cl~-,CO_3~(2-),K~+,Ca~(2+)andorganic matter,but indirectly by soil pH and concentrations of SO_4~(2-),HCO_3~-,Na~+,Mg~(2+),water-soluble salt,Olsen-P,Olsen-K and Olsen-N.The species richness and dominant speciesof AMF differed in rhizospheres of plant species.AMF species richness of saline soils,alkaline soils and salinized warped irrigation soils was 24,18 and 17,respectively.There wasno difference in dominant AMF genera or species among soil types.Soil properties werelinked to the biodiversity,species richness and relative abundance of AMF.
     4.VA mycorrhizae(Glomus mosseae)enhanced the ability of maize plants to cope withsalt stress.This may be because VA mycorrhizal symbiosis(1)triggered the regulation of theenergy biturcation between photochemical and non-photochemical events;(2)increased dryweight of shoot and root,water use efficiency,water content,relative chlorophyll content,netphotosynthetic rate,stomatal conductance,transpiration rate,photochemistry efficiency,non-photochemistry efficiency,root activity,average root diameter,root volume,CAT activity,and contents of reducing sugars,soluble sugars,soluble protein and free organic acid;(3)decreased water saturation deficit,intercellular CO_2 concentration,Fo,root to shoot ratio,specific root length,percentage of root length in 0~0.2 mm diameter class,the electricalpermeation rate,and contents of O_2~-,H_2O_2 and MDA.
     5.Microbiological diversity significantly differed in soil type of Saskatchewan,Canada.Among soil type,there was the highest biomass of total microbe,AMF,non-AMF fungi andG~+ bacteria in Vertisol,and the highest fungi/bacteria ratio and fungal relative abundance inBrown Chemozem.The fungal biomass and fungi/bacteria ratio were positively correlatedwith Cu~(2+)content,but negatively with the average precipitation of July and August andcontents of Olsen-N,Mn~(2+),Zn~(2+)and organic matter.The biomass of G~+ bacteria waspositively related with Olsen-P content,but negatively with soil bulk density.The biomass ofG bacteria was negatively related with Olsen-P content,but positively with soil bulk density.The biomass of AMF was positively correlated with the average precipitation of May and theaverage temperature of May,June,July and August,but negatively with the averageprecipitation of August,soil bulk density and concentrations of Mn~(2+)and Zn~(2+).
     Totally,four AMF species(Glomus mosseae,G.hoi,G.sp.1 and G.sp.2)were identifiedfrom 49 farmland soil samples.G.sp.1 and G.hoi mostly distributed in Grey Luvisol;G.mosseae mostly in Dark-Brown Chernozem;G.sp.2 mostly in Dark-Grey Chernozem.Thedistribution of G.hoi in soil was related to Cu~(2+)content and the average temperature of May,June,July and August;G.mosseae was linked to soil bulk density and the averageprecipitation of May,June,July and August;G.sp.1 and G.sp.2 was related to concentrationsof Olsen-N,Olsen-P,Mn~(2+),Zn~(2+)and organic matter.
     Two models were built to figure out the relationship among AMF,soil properties andcontents of N and P in wheat plants.
     Y_1=1.36350-0.00132X_(11)+0.06304X_(12)-1.64599X_(13)+18.39645X_(14)Model 1
     Y_2=0.27405-0.00014X_(21)-0.01429X_(22)+0.00184X_(23)Model 2
引文
[1]黄勤,唐振尧.柑桔VA菌根的研究进展—文献综述[J].园艺学报,1994,21(1):47~53.
    [2]王曙光,林先贵,施亚琴.丛枝菌根(AM)与植物的抗逆性[J].生态学杂志,2001,20(3):27~30.
    [3]刘润进,李晓林.丛枝菌根及其应用[M].北京:科学出版社,2000.
    [4]Gerdemann J.W.,Nicolson T.H.Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting[J].Transaction of the British Mycological Society,1963,46:235~244.
    [5]Gerdemann J.W.A species o f Endogine from corn causing VA mycorrhiza[J].Mycologia,1961,53: 252~261.
    [6]Gilmore A.E.Phycomycetous mycorrhizal organisms collected by open-pot culture methods[J].Hilgardia, 1968,39:87~105.
    [7]张美庆,王幼珊.VA真菌的分类鉴定[J].华北农学报,1989,4(4):115~120.
    [8]Morton J.B.,Benny G.L.Revised classification of arbuscular mycorrhizal fungi(Zygomycetes):a new order,Glomales,two new suborders,Glomineae and Gigasporineae,and two new families, Acaulosporaceae and Gigasporaceae,with an emendation of Glomaceae[J].Mycotaxon,1990,37: 471~491.
    [9]王发园,林先贵,周健民.丛枝菌根真菌分类最新进展[J].微生物学杂志,2005,25(3):41~45.
    [10]Redecker D.,Morton J.B.,Bruns T.D.Molecular phylogeny of the arbuscular mycorrhizal fungi Glomus sinuosum and Sclerocystis coremioides[J].Mycologia,2000,92(2):282~285.
    [11]Morton J.B.,Redecker D.Two new families of Glomales,Archaeosporaceae and Paraglomaceae,with two new genera Archaeospora and Paraglomus,based on concordant molecular and morphological characters[J].Mycologia,2001,93(1):181~195.
    [12]Sawaki H.,Sugawara K,Saito M.Phylogenetic position of an arbuscular mycorrhizal fungus Acaulospora gerdemannii,and its synanamorph Glomus leptotichum,based upon 18SrRNA gene sequence[J].Mycoscience,1998,39(4):477~480.
    [13]Schüβler A.,Schwarzott D.,Walker C.A new fungal phylum,the Glomeromycota:phylogeny and evolution[J].Mycological Research,2001,105(12):1413~1421.
    [14]Schüβler A.Molecular phylogeny,taxonomy,and evolution of Geosiphon pyriformis and arbuscular mycorrhizal fungi[J].Plant and Soil,2002,244:75~83.
    [15]Walker C.,Schüβler A.Nomenclatural clarifications and new taxa in the Glomeromycota[J]. Mycological Research,2004,108(9):981~982.
    [16]陈耀邦.中国土壤[M].北京:中国农业出版社,1995.
    [17]赵可夫,李法曾.中国盐生植物[M].北京:科学出版社,1999.
    [18]Mason E.Note on the presence of mycorrhiza in the roots of salt marsh plants[J].New Phytologist,1928, 27(3):193~195.
    [19]张海涵,唐明,陈辉等.不同生态条件下油松(.Pinus tabulaeformis)菌根根际土壤微生物群落[J].生态学报,2007,27(12):5463~5470.
    [20]Oliveira R.S.,Vosatka M.,Dodd J.C.,et al.Studies on the diversity of arbuscular mycorrhizal fungi and the efficacy of two native isolates in a highly alkaline anthropogenic sediment[J].Mycorrhiza,2005, 16(1):23~31.
    [21]Wang F.Y.,Liu R.J.,Lin X.G.,et al.Arbuscular mycorrhizal status of wild plants in saline-alkaline soils of the Yellow River Delta[J].Mycorrhiza,2004,14(2):133~137.
    [22]王桂君.吉林省西部盐碱化羊草草原的丛枝菌根共生多样性[D].硕士论文,东北师范大学,2005.
    [23]Hildebrandt U.,Janetta K.,Ouziad F.,et al.Arbuscular mycorrhizal colonization ofhalophytes in Central European salt marshes[J].Mycorrhiza,2001,10(4):175~ 183.
    [24]Carvalho L.M.,Ca(?)ador I.,Martins-Lou(?)o M.A.Temporal and spatial variation of arbuscular mycorrhizas in salt marsh plants of the Tagus estuary(Portugal)[J].Mycorrhiza,2001,11(6):303~309.
    [25]刘润进,刘鹏起,徐坤等.中国盐碱土壤中AM菌的生态分布[J].应用生态学报,1999,10(6):721~724.
    [26]Hayman D.S.Influence of soils and fertility on activity and survival of vesicular arbuscular mycorrhizal fungi[J].Phytopathology,1982,72(8):1119~1125.
    [27]Abbott L.K.,Roberson A.D.Effectiveness of vesicular-mycorrhizal fungi in different soil[J]. Environment Ecosystem,1991,3(2):21~25.
    [28]Estaun M.V.Effect of sodium chloride and mannitol on germination and hyphal growth of the vesicular-arbuscular mycorrhizal fungus Glomus mosseae[J].Agriculture,Ecosystems & Environment, 1990,23:123~129.
    [29]Hirrel M.C.The effect of sodium and chloride salts on the germination of Gigaspora margarita[J]. Mycologia,1981,73(4):610~617.
    [30]Juniper S.,Abbott L.K.Soil salinity delays germination and limits growth of hyphae from propagules of arbuscular mycorrhizal fungi[J].Mycorrhiza,2006,16(5):371~379.
    [31]Juniper S.,Abbott L.K.A change in the concentration of NaC1 in soil alters the rate of hyphal extension of some arbuscular mycorrhizal fungi[J].Canadian Journal of Botany,2004,82(8):1235~1242.
    [32]张海涵,唐明,陈辉等.黄土高原5种造林树种菌根根际土壤微生物群落多样性研究[J].北京林业大学学报,2008,30(3):85~90.
    [33]Carvalho L.M.,Correia P.M.,Ca(?)ador I.,et al.Effects of salinity and flooding on the infectivity of salt marsh arbuscular mycorrhizal fungi in Aster tripolium L.[J].Biology and Fertility of Soils,2003, 38(3):137~143.
    [34]McMillen B.G.,Juniper S.,Abbott L.K.Inhibition ofhyphal growth of a vesicular-arbuscular mycorrhizal fungus in soil containing sodium chloride limits the spread of infection from spores[J].Soil Biology and Biochemistry,1998,30(13):1639~1646.
    [35]Cooke J.C.,Butler R.H.,Madole G.Some observations on the vertical distribution of vesicular arbuscular mycorrhizae in roots of salt marsh grasses growing in saturated soils[J].Mycologia,1993, 85(4):547~550.
    [36]Duke E.R.,Johnson C.R.,Koch K.E.Accumulation of phosphorus,dry matter and betaine during NaCl stress of split-root citrus seedlings colonized with vesicular-arbuscular mycorrhizal fungi on zero,one or two halves[J].New Phytologist,1986,104(4):583~590.
    [37]Aliasgharzadeh N.,Saleh Rastin N.,Towfighi H.,et al.Occurrence of arbuscular mycorrhizal fungi in saline soils of the Tabriz Plain of Iran in relation to some physical and chemical properties of soil[J]. Mycorrhiza,2001,11(3):119~122.
    [38]Rajapakse S.,Miller V.C.Methods for studying vesicular-arbuscular mycorrhizal root colonization and related root physical properties[A].In:Norris V.R.,Read D.,Varma A.K.[eds].Techniques for mycorrhizal research.London:Academic Press,1994,761~776.
    [39]Pond E.C.,Menge J.A.,Jarrell W.M.Improved growth of tomato in salinized soil by vesicular arbuscular mycorrhizal fungi collected from saline soils[J].Mycologia,1984,76(1):74~84.
    [40]Sengupta A.,Chaudhuri S.Vesicular arbuscular mycorrhiza(VAM)in pioneer salt marsh plants of the Ganges river delta in West Bengal(India)[J].Plant and Soil,1990,122(1):111 ~ 113.
    [41]Pfeiffer C.M.,Bloss H.E.Growth and nutrition of guayule(Parthenium argentatum)in a saline soil as influenced by vesicular-arbuscular mycorrhiza and phosphorus fertilization[J].New Phytol.,1988, 108:315~321.
    [42]杜小刚,唐明,陈辉等.黄土高原不同树龄刺槐丛枝菌根与根际微生物的群落多样性[J].林业科学,2008,44(4):78~82.
    [43]Fuüzy A.,Bir(?)B.,T(?)th T.,et al.Drought,but not salinity,determines the apparent effectiveness of halophytes colonized by arbuscular mycorrhizal fungi[J].Journal of Plant Physiology,2008,165(11): 1181~1192.
    [44]王发园,刘润进.黄河三角洲盐碱土壤中AM真菌的初步调查[J].生物多样性,200l,9(4):389~392.
    [45]Johnson-Green P.,Kenkel N.C.,Booth T.Soil salinity and arbuscular mycorrhizal colonization of Puccinellia nuttalliana[J].Mycological Research,2001,105(9):1094~1100.
    [46]Smith S.E.,Ginainazzi-Pearson V.Physiological interaction between symbionts in vesicular-arbuscular mycorrhizal plants[J].Annu.Rev.Plant Physiol.Molec.Biol.,1988,39:221~244.
    [47]Fitter A.H.Functioning of vesicular-arbuscular mycorrhizas under field conditions[J].New Phytologist, 1985,99(2):257~265.
    [48]汪洪钢,吴观以,李慧荃.VA菌根对绿豆(Phaseolus aureus)生长及水分利用的影响[J].土壤学报,1989,26(4):393~400.
    [49]Ruiz-Lozano J.M.,Azcon R.Hyphal contribution to water uptake in mycorrhizal plants as affected by the fungal species and water status[J].Physiologia Plantarum,1995,95(3):472~478.
    [50]Li X.L.,George E.,Marschner H.Extension of the phosphorus depletion zone in VA-mycorrhizal white clover in a calcareous soil[J].Plant and Soil,1991,136(1):41~48.
    [51]Jakobsen I.,Rosendahl L.Carbon flow into soil and external hyphae from roots ofmycorrhizal cucumber plants[J].New phytologist,1990,115(1):77~ 83.
    [52]Gupta R.,Krishnamurthy K.V.Response of mycorrhizal and nonmycorrhizal Arachis hypogaea to NaCl and acid stress[J].Mycorrhiza,1996,6(2):145~ 149.
    [53]包玉英,闫伟.内蒙古中西部草原主要植物的丛枝菌根及其结构类型研究[J].生物多样性,2004,12(5):501~508.
    [54]Hirrel M.C.,Gerdemann J.W.Improved growth of onion and bell pepper in saline soils by two vesicular-arbuscular mycorrhizal fungi[J].Soil Sci Soc Am J,1980,44:654~655.
    [55]Allen E.B.,Cunningham G.L.Effects of vesicular-arbuscular mycorrhizae on Distichlis spicata under three salinity levels[J].New Phytologist,1983,93(2):227~236.
    [56]Poss J.A.,Pond E.,Menge J.A.,et al.Effect of salinity on mycorrhizal onion and tomato in soil with and without additional phosphate[J].Plant and Soil,1985,88(3):307~320.
    [57]王幼珊,张美庆,张驰等.VA菌根真菌抗盐碱菌株的筛选[J].土壤学报,1994,31(增刊):79~83.
    [58]宋福强.大青杨VA菌根生理生态学研究[D].博士论文,东北林业大学,2002.
    [59]Hartmond U.,Schaesberg N.V.,Graham J.H.,et al.Salinity and flooding stress effects on mycorrhizal and non-mycorrhizal citrus rootstock seedings[J].Plant and Soil,1987,104:37~43.
    [60]Copeman R.H.,Martin C.A.,Stutz J.C.Tomato growth in response to salinity and mycorrhizal fungi from saline or nonsaline soil[J].HortScience,1996,31(3):341~344.
    [61]Rosendahl C.N.,Rosendahl S.Influence of vesicular-arbuscular mycorrhizal fungi(Glomus spp.)on the response of cucumber(Cucumis sativus L.)to salt stress[J].Environ.Exp.Bot.,1991,31(3):313~318.
    [62]冯固,李晓林,张福锁等.VA菌根提高植物耐盐性研究进展[J].西北农业大学学报,1999,27(3):94~100.
    [63]Blaszkowski J.,Adamska I.,Czerniawska B.Glomus insculptum,a new arbuscular mycorrhizal species from Poland[J].Mycotaxon,2004,89(2):225~234.
    [64]McGee~(AD)P.A.,Trappe J.M.The Australian zygomycetous mycorrhizal fungi.Ⅱ.Further Australian sporocarpic Glomaceae[J].Australian Systematic Botany,2002,15:115~124.
    [65]Tian C.Y.,Feng G.,Li X.L.,et al.Different effects of arbuscular mycorrhizal fungal isolates from saline or non-saline soil on salinity tolerance of plants[J].Applied Soil Ecology,2004,26(2):143~148.
    [66]冯固,白灯莎,杨茂秋等.不同生态型摩西球囊霉菌株对棉花耐盐性的影响[J].生态学报,2001,21(2):259~264.
    [67]Ruiz-Lozano J.M.,Azc(?)n R.Symbiotic efficiency and infectivity of an autochthonous arbuscular mycorrhizal Glomus sp.from saline soils and Glomus deserticola under salinity[J].Mycorrhiza,2000, 10(3):137~143.
    [68]冯固,张福锁.丛枝菌根真菌对棉花耐盐性的影响研究[J].中国生态农业学报,2003,11(2):21~24.
    [69]冯固,李晓林,张福锁等.施磷和接种AM真菌对玉米耐盐性的影响[J].植物资源与环境学报,2000,9(2):22~26.
    [70]Colla G,Rouphael Y.,Cardarelli M.,et al.Alleviation of salt stress by arbuscular mycorrhizal in zucchini plants grown at low and high phosphorus concentration[J].Biology and Fertility of soils,2008, 44(3):501~509.
    [71]冯固,杨茂秋,白灯莎.盐胁迫下VA菌根真菌对无芒雀麦体内矿质元素含量及组成的影响[J].草业学报,1998,7(3):21~28.
    [72]Abbott L.K.,Robson A.D.Infectivity and effectiveness of five endomycorrhizal fungi:competition with indigenous fungi in field soils[J].Australian Journal of Agricultural Research,1981,32(4):621~630.
    [73]Sharifi M.,Ghorbanli M.,Ebrahimzadeh H.Improved growth of salinity-stressed soybean after inoculation with salt pre-treated mycorrhizal fungi[J].Journal of Plant Physiology,2007,164(9): 1144~1151.
    [74]A1-Karaki G.N.,Hammad R.,Rusan M.Response of two tomato cultivars differing in salt tolerance to inoculation with mycorrhizal fungi under salt stress[J].Mycorrhiza,2001,11(1):43~47.
    [75]Katerji N.,van Hoorn J.W.,Hamdy A.,et al.Response of tomatoes,a crop of indeterminate growth,to soil salinity[J].Agricultural Water Management,1998,38(1):59~68.
    [76]van Hoorn J.W.,Katerji N.,Hamdy A.,et al.Effect of salinity on yield and nitrogen uptake of four grain legumes and on biological nitrogen contribution from the soil[J].Agricultural Water Management,2001, 51(2):87~98.
    [77]Hoffman G.J.,Phene C.J.Effect of constant salinity levels on water-use efficiency of bean and cotton[J]. American Society of Agricultural Engineers,Transactions,1971,14(6):1103~1106.
    [78]Maas E.V.,Grieve C.M.Sodium-induced calcium deficiency in salt-stressed corn[J].Plant Cell & Environment,1987,10(7):559~564.
    [79]Martinez V.,L(a|¨)chli A.Phosphorus translocation in salt-stressed cotton[J].Physiologia Plantarum,1991, 83(4):627~632.
    [80]沈法富,尹承佾.盐胁迫对棉花幼苗子叶超氧化物歧化酶(SOD)活性的影响[J].棉花学报,1993,5(1):39~44.
    [81]赵可夫.NaCl抑制棉花幼苗生长的机理—盐离子效应[J].植物生理学报,1989,15(2):173~178.
    [82]申连英,毛永民,鹿金颖等.丛枝菌根对酸枣实生苗耐盐性的影响[J].土壤学报,2004,41(3):426~433.
    [83]Yano-Melo A.M,Jr Saggin O.J.,Maia L.C.Tolerance of mycorrhized banana(Musa sp.cv.Pacovan)plantlets to saline stress[J].Agriculture,Ecosystems and Environment,2003,95(1):343~348.
    [84]Rabie G.H.Influence of arbuscular mycorrhizal fungi and kinetin on the response of mungbean plants to irrigation with seawater[J].Mycorrhiza,2005,15(3):225~230.
    [85]Azc(?)n R.,E1-Atrash F.Influence of arbuscular mycorrhizae and phosphorus fertilization on growth, nodulation and N2 fixation(~(15)N)in Medicago sativa at four salinity levels[J].Biology and Fertility of Soils,1997,24(1):81~86.
    [86]Cantrell I.C.,Linderman R.G.Preinoculation of lettuce and onion with VA mycorrhizal fungi reduces deleterious effects of soil salinity[J].Plant and Soil,2001,233(2):269~281.
    [87]Ojala J.C.,Jarrell W.M.,Menge J.A.,et al.Influence ofmycorrhizal fungi on the mineral nutrition and yield of onion in saline soil[J].American Society of Agronomy,1983,75(2):255~258.
    [88]McHugh J.M.,Dighton J.Influence of mycorrhizal inoculation,inundation period,salinity,and phosphorus availability on the growth of two salt marsh grasses,Spartina alterniflora Lois.and Spartina cynosuroides(L.)Roth.,in nursery systems[J].Restoration Ecology,2004,12(4):533~545.
    [89]Asghari H.R.,Marschner P.,Smith S.E.,et al.Growth response ofAtriplex nummularia to inoculation with arbuscular mycorrhizal fungi at different salinity levels[J].Plant and Soil,2005,273(1~2):245~256.
    [90]Al-Karaki G.N.,Clark R.B.Growth,mineral acquisition,and water use by mycorrhizal wheat grown under water stress[J].Journal of Plant Nutrition,1998,21(2):263~276.
    [91]Marschner H.,Dell B.Nutrient uptake in mycorrhizal symbiosis[J].Plant and Soil,1994, 159(1):89~102.
    [92]Al-Karaki G.N.,Al-Raddad A.Effects of arbuscular mycorrhizal fungi and drought stress on growth and nutrient uptake of two wheat genotypes differing in drought resistance[J].Mycorrhiza,1997,7(2):83~88.
    [93]张福锁,李晓林,李春俭等.环境胁迫与植物根际营养[M].北京:中国农业出版社,1998.
    [94]冯固,李晓林,张福锁等.盐胁迫下丛枝菌根真菌对玉米水分和养分状况的影响[J].应用生态学报,2000,11(4):595~598.
    [95]Jindal V.,Atwal A.,Seckhon B.S.,et al.Effect of vesicular-arbuscular mycorrhizae on metabolism of moong plants under NaC1 salinity[J].Plant Physiol Biochem,1993,31:475~481.
    [96]石兆勇,陈应龙,刘润进.丛枝菌根真菌一新记录种[J].菌物学报,2004,23(2):312.
    [97]李涛,李建平,赵之伟.丛枝菌根真菌的两个中国新记录种[J].菌物学报,2004,23(1):144~145.
    [98]Aziz I.,Khan M.A.Experimental assessment of salinity tolerance of Ceriops tagal seedlings and saplings from the Indus delta,Pakistan[J].Aquatic Botany,2001,70(3):259~268.
    [99]Ferreira R.G.,Tavora F.J.,Hernandez F.F.Dry matter partitioning and mineral composition of roots, stems and leaves of guava grown under salt stress conditions[J].Pesqui.Agropec.Bras.,2001,36(1): 79~88.
    [100]Parida A.K.,Das A.B.Salt tolerance and salinity effects on plants:a review[J].Ecotoxicology Environmental Safety,2005,60(3):324~349.
    [101]杨安娜,李凌飞,赵之伟.中国丛枝菌根真菌一新记录种[J].菌物学报,2004,23(4):603~604.
    [102]毕银丽,丁保建,全文智等.VA菌根对白三叶吸收水分和养分的影响[J].草地学报,2001,9(2):154~158.
    [103]Al-Karaki G.N.,Hammad R.Mycorrhizal influence on fruit yield and mineral content of tomato grown under salt stress[J].Journal of Plant Nutrition,2001,24(8):1311~1323.
    [104]Giri B.,Mukerji K.G.Mycorrhizal inoculant alleviates salt stress in Sesbania aegyptiaca and Sesbania grandiflora under field conditions:evidence for reduced sodium and improved magnesium uptake[J]. Mycorrhiza,2004,14(5):307~312.
    [105]Rabie G.H.,Almadini A.M.Role ofbioinoculants in development of salt-tolerance of Viciafaba plants under salinity stress[J].African Journal of Biotechnology,2005,4(3):210~222.
    [106]Mohammad M.J.,Malkawi H.I.,Shibli R.Effects of arbuscular mycorrhizal fungi and phosphorus fertilization on growth and nutrient uptake of barley grown on soils with different levels of salts[J]. Journal of plant nutrition,2003,26(1):125~137.
    [107]Giri B.,Kapoor R.,Mukerji K.G Improved tolerance of Acacia nilotica to salt stress by arbuscular mycorrhiza,Glomusfasciculatum may be partly related to elevated K/Na ratios in root and shoot tissues[J].Microbial Ecology,2007,54(4):753~760.
    [108]Zandavalli R.B.,Dillenburg L.R.,de Souza P.V.D.Growth responses ofAraucaria angustifolia (Araucariaceae)to inoculation with the mycorrhizal fungus Glomus clarum[J].Applied Soil Ecology, 2004,25(3):245~255.
    [109]Rabie G.H.,Aboul-Nasr M.B.,A1-Humiany A.Increased salinity tolerance of cowpea plants by dual inoculation of an arbuscular mycorrhizal fungus Glomus clarum and a nitrogen-fixer Azospirillum brasilense[J].Mycobiology,2005,33(1):51~60.
    [110]Yamato M.,Ikeda S.,Iwase K.Community of arbuscular mycorrhizal fungi in a coastal vegetation on Okinawa island and effect of the isolated fungi on growth of sorghum under salt-treated conditions[J]. Mycorrhiza,2008,18(5):241~249.
    [111]姜学艳,黄艺.菌根真菌增加植物抗盐碱胁迫的机理[J].生态环境,2003,12(3):353~356.
    [112]姚艳玲,冯固,白灯沙买买提艾力.NaCl胁迫下VA菌根对玉米耐盐能力的影响[J].新疆农业科学,1999,1:20~22.
    [113]Berta G.,Fusconi A.,Trotta A.,et al.Morphogenetic modifications induced by the mycorrhizal fungus Glomus strain E3 in the root system ofAllium porrum L.[J].New Phytologist,1990,114(2):207~215.
    [114]Echeverria M.,Scambato A.A.Sannazzaro A.I.,et al.Phenotypic plasticity with respect to salt stress response by Lotus glaber:the role of its AM fungal and rhizobial symbionts[J].Mycorrhiza,2008, 18(6~7):317~329.
    [115]Jahromi F.,Aroca R.,Porcel R.,et al.Influence of salinity on the in vitro development of Glomus intraradices and on the in vivo physiological and molecular responses ofmycorrhizal lettuce plants[J]. Microbial Ecology,2008,55:45~53.
    [116]Treseder K.K.,Allen M.F.Direct nitrogen and phosphorus limitation of arbuscular mycorrhizal fungi:a model and field test[J].New Phytologist,2002,155(3):507~515.
    [117]S(?)inz M.J.,Taboada-Castro M.T.,Vilari(?)o A.Growth,mineral nutrition and mycorrhizal colonization of red clover and cucumber plants grown in soil amended with composted urban wastes[J].Plant and Soil, 1998,205:85~92.
    [118]王淼焱,刁志凯,梁美霞等.农业生态系统中的AM真菌多样性[J].生态学报,2005,25(10):2744~2749.
    [119]赵可夫.植物抗盐生理[M].北京:中国科学技术出版社,1993.
    [120]刘润进,郝文英.VA菌根真菌对植物水分代谢的影响[J].土壤学报,1994,3l(增刊):46~53.
    [121]Ouziad F.,Wilde P.,Schmelzer E.,et al.Analysis of expression of aquaporins and Na~+/H~+ transporters in tomato colonized by arbuscular mycorrhizal fungi and affected by salt stress[J].Environmental and Experimental Botany,2006,57:177~186.
    [122]Feng G.,Zhang F.S.,Li X.L.,et al.Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots[J].Mycorrhiza,2002,12(4): 185~190.
    [123]Ben K.L.,Morte G.A.,Ouarraqi E.M.,et al.Physiological and biochemical responses to salt stress of mycorrhized and/or nodulated clover seedlings(Trifolium alexandrinum L.)[J].Agronomie,2003,23(7): 571~580.
    [124]潘瑞炽,董愚得.植物生理学(第三版)[M].北京:高等教育出版社,1995,6~28.
    [125]韩衍青,徐幸莲,周光宏等.PCR-DGGE技术在应用过程中的常见问题分析[J].食品与发酵工业,2008,34(3):105~109.
    [126]Ruiz-Lozano J.M.,Azc(?)n R.,G(?)mez M.Alleviation of salt stress by arbuscular mycorrhizal Glomus species in Lactuca sativa plants[J].Physiologia Plantarum,1996,98(4):767~772.
    [127]Burke D.J.,Hamerlynck E.P.,Hahn D.Effect of arbuscular mycorrhizae on soil microbial populations and associated plant performance of the salt marsh grass Spartinapatens[J].Plant and Soil,2002,239: 141~154.
    [128]Sannazzaro A.I.,Ruiz O.A.,Albert(?)E.O.,et al.Alleviation of salt stress in Lotus glaber by Glomus intraradices[J].Pant and soil,2006,285(1~2):279~287.
    [129]Zuccarini P.,Okurowska P.Effects of mycorrhizal colonization and fertilization on growth and photosynthesis of sweet basil under salt stress[J].Journal of Plant Nutrition,2008,31:497~513.
    [130]Kashyap S.,Sharma S.,Vasudevan P.Effect of native bioinoculants on vegetable crops grown on alkaline soil under field conditions[J].Journal of New Seeds,2005,7(3):75~90.
    [131]Abdel-Fattah G.M.Measurement of the viability of arbuscular-mycorrhizal fungi using three different stains;relation to growth and metabolic activities of soybean plants[J].Microbiological Research,2001, 156:359~367.
    [132](?)pik M.,Moora M.,Liira J.,et al.Divergent arbuscular mycorrhizal fungal communities colonize roots ofPulsatilla spp.in boreal Scots pine forest and grassland soils[J].New Phytologist,2003,160(3): 581~593.
    [133]冯固,白灯莎,杨茂秋等.盐胁迫下AM真菌对玉米生长及耐盐生理指标的影响[J].作物学报,2000,26(6):743~750.
    [134]He Z.,He C.,Zhang Z.,et al.Changes of antioxidative enzymes and cell membrane osmosis in tomato colonized by arbuscular mycorrhizae under NaCl stress[J].Colloids and Surfaces B:Biointerfaces,2007, 59(2):128~133.
    [135]Garg N.,Manchanda G Effect of arbuscular mycorrhizal inoculation on salt-induced nodule senescence in Cajanus cajan(pigeonpea)[J].Journal of Plant Growth Regulation,2008,27(2):115~124.
    [136]Johansson J.F.,Paul L.R.,Finlay R.D.Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture[J].FEMS Microbiology Ecology,2004,48(1):1~13.
    [137]Mosse B.Plant growth responses to vesicular-arbuscular mycorrhiza.Ⅳ.In soil given additional pH[J]. New Phytol.,1973,72:127~136.
    [138]Bagyaraj D.J.,Menge J.A.Interaction between a VA mycorrhiza and Azotobacter and their effects on rhizosphere microflora and plant growth[J].New phytol.,1978,80:567~573.
    [139]Germida L.J.,Walley F.L.Plant growth-promoting rhizobacteria alter rooting patterns and arbuscular mycorrhizal fungi colonization of field-grown spring wheat[J].Biol Fertil Soils,1996,23:113~120.
    [140]Azc(?)n-Aguilar C.,Diaz-Rodriguez R.M.,Barea J.M.Effect of soil microorganisms on spore germination of the vesicular-arbuscular mycorrhizal fungus(Glomus mosseae)[J].Trans Br Mycol Soc, 1986,86:337~340.
    [141]Wamberg C.,Christensen S.,Jakobsen I.,et al.The mycorrhizal fungus(Glomus intraradices)affects microbial activity in the rhizosphere of pea plants(Pisum sativum)[J].Soil Biology and Biochemistry, 2003,35(10):1349~1357.
    [142]Fracchia S.,Godeas A.,Scervino J.M.,et al.Interaction between the soil yeast Rhodotorula mucilaginosa and the arbuscular mycorrhizal fungi Glomus mosseae and Gigaspora rosea[J].Soil biology and biochemistry,2003,35(5):701~707.
    [143]Tisdall J.M.,Oades J.M.Stabilization of soil aggregates by the root systems of rye grass[J].Australian Journal of Soil Research,1979,17:429~441.
    [144]Rillig M.C.,Wright S.F.,Eviner V.T.The role of arbuscular mycorrhizal fungi and glomalin in soil aggregation:comparing effects of five plant species[J].Plant and Soil,2002,238(2):325~333.
    [145]Thomas R.S.,Dakessian S.,Ames R.N.,et al.Aggregation of a silty clay loam soil by mycorrhizal onion roots[J].Soil Society of America Joural,1986,50:1494~1499.
    [146]Degens B.P.,Sparling GP.,Abbott L.K.The contribution from hyphae,roots and organic carbon constituents to the aggregation of a sandy loam under long-term clover-based and grass pastures[J]. European Journal of Soil Science,1994,45(4):459~468.
    [147]Bearden B.N.,Petersen L.Influence of arbuscular mycorrhizal fungi on soil structure and aggregate stability ofa vertisol[J].Plant and Soil,2000,218(1~2):173~183.
    [148]Schreiner R.P.,Bethlenfalvay GJ.Mycorrhizal interactions in sustainable agriculture[J].Critical Reviews in Biotechnology,1995,15(3~4):271~285.
    [149]Haines B.L.,Best G.R.Glomus mosseae endomycorrhizal with Liquidambar styraciflua L.seedlings retards NO_3,NO_2 and NH_4 nitrogen loss from a temperate forest soil[J].Plant and Soil,1976, 45(1):257~261.
    [150]Tisdall J.M.,Oades J.M.Stabilization of soil aggregates by the root systems of ryegrass[J].Australian Journal of Soil Research,1979,17(3):429~441.
    [151]Wright S.F.,Upadhyaya A.A survey of soils for aggregate stability and glomalin,a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi[J].Plant and Soil,1998,198(1):97~107.
    [152]Wright S.F.,Upadhyaya A.Quantification of arbuscular mycorrhizal fungi activity by the glomalin concentration on hyphal traps[J].Mycorrhiza,1999,8(5):283~285.
    [153]Franzluebbers A.J.,Wright S.F.,Stuedemann J.A.Soil aggregation and glomalin under pastures in the Southern Piedmont USA[J].Soil Science Society of America Journal,2000,64(3):1018~1026.
    [154]许云岭,余叔文.植物盐胁迫蛋白[J].植物生理学通讯,1989,(2):12~16.
    [155]Graham J.H.,Syvertsen J.P.Vesicular-arbuscular mycorrhizas increase chloride concentration in citrus seedlings[J].New Phytologist,1989,113(1):29~36.
    [156]Feng G.,Li X.L.,Zhang F.S.,et al.Effects of arbuscular mycorrhizal fungus on P nutrition and the growth of corn under NaC1 stress conditions[A].In:Ulla,A.J.et al.(eds).2nd Intl.Conf.on Mycor.[C]. Uppsala,Sweden,61,1998.
    [157]罗海峰,齐鸿雁,薛凯等.PCR-DGGE技术在农田土壤微生物多样性研究中的应用[J].生态学报,2003,23(8):1570~1575.
    [158]陈灏,唐小树,林洁等.不经培养的农田土壤微生物种群构成及系统分类的初步研究[J].微生物学报,2002,42(4):478~483.
    [159]Muyzer G,Ellen C.,Waal D.E.,et al.Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis ofpolymerase chain reaction-amplified genes coding for 16S rRNA [J].Applied and Environmental Microbiology,1993,59(3):695~700.
    [160]贾俊涛,宋林生,李筠.T-RFLP技术及其在微生物群落结构研究中的应用[J].海洋科学,2004,28(3):64~68.
    [161]Scala D.J.,Kerkhof L.J.Horizontal heterogeneity of denitrifying bacterial communities in marine sediments by terminal restriction fragment length polymorphism analysis[J].Applied and Environmental Microbiology,2000,66(5):1980~1986.
    [162]杜宗敏,杨瑞馥.生物标记物在微生物鉴定和检测中的应用[J].微生物学免疫学进展,2003,31(3):67~73.
    [163]White D.,Findla Y.R.Biochemical markers for measurement of predation effects on the biomass, community structure,nutritional status,and metabolic activity of microbial biofilms[J].Hydrobiologia, 1988,159(1):119~132.
    [164]焦晓丹,吴凤芝.土壤微生物多样性研究方法的进展[J].土壤通报,2004,35(6):789~792.
    [165]Hamel C.,Hanson K.,Selles F.,et al.Seasonal and long-term resource-related variations in soil microbial communities in wheat-based rotations of the Canadian prairie[J].Soil Biology and Biochemistry,2006,38(8):2104~2116.
    [166]Pankhurst C.E.,Pierret A.,Hawke B.G,et al.Microbiological and chemical properties of soil associated with macropores at different depths in a red-duplex soil in NSW Australia[J].Plant and Soil, 2002,238(1):11~20.
    [167]Garland J.L.,Mills A.L.Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization[J].Applied and Environmental Microbiology,1991,57(8):2351~2359.
    [168]范丙全.不同农业措施影响下土壤微生物多样性演化规律研究[D]:中国农业科学院,博士后研究工作报告,2003.
    [169]Widmer F.,Flieβbach A.,Laczk(?)E.,et al.Assessing soil biological characteristics:a comparison of bulk soil community DNA-,PLFA-,and BiologTM-analysis[J].Soil Biology and Biochemistry,2001, 33(7~8):1029~1036.
    [170]白震,张明,宋斗妍等.不同施肥对农田黑土微生物群落的影响[J].生态学报,2008,28(7): 3244~3253.
    [171]钟文辉,蔡祖聪.土壤管理措施及环境因素对土壤微生物多样性影响研究进展[J].生物多样性,2004,12(4):456~465.
    [172]Yan F.,McBratney A.B.,Copeland L.Functional substrate biodiversity of cultivated and uncultivated A horizons of vertisols in NW New South Wales[J].Geoderma,2000,96(4):321~343.
    [173]Alvey S.,Yang C.H,Buerkert A.Cereal/legume rotation effects on rhizosphere bacterial community structure in west African Soils[J].Biology and Fertility of Soils,2003,37(2):73~82.
    [174]Engelen B.,Meinken K.,von Wintzingerode F.,et al.Monitoring impact of a pesticide treatment on bacterial soil communities by metabolic and genetic fingerprinting in addition to conventional testing procedures[J].Applied and Environmental Microbiology,1998,64(8):2814~2821.
    [175]王元元,张小平,Mauritz V.等.四川主要农用土壤中丛枝菌根真菌数量和种类的初步研究[J].四川林业科技,2006,27(6):61~64.
    [176]盖京苹,冯固,李晓林.我国北方农田土壤中AM真菌的多样性[J].生物多样性,2004,12(4):435~440.
    [177]Harinikumar K.M.,Bagyaraj D.J.,Mallesha B.C.Effect of intercropping and organic soil amendments on native VA mycorrhizal fungi in an oxisol[J].Arid Soil Research and Rehabilitation,1990,4(3): 193~197.
    [178]Gehring A.C.,Whitham T.G.Reduced mycorrhizae on Juniperus monosperma with mistletoe:the influence of environmental stress and tree gender on a plant parasite and a plant-fungal mutualism[J]. Oecologia,1992,89:298~303.
    [179]Chiocchio V.,Venedikian N.,Martinez A.E.,et al.Effect of the fungicide benomyl on spore germination and hyphal length of the arbuscular mycorrhizal fungus Glomus mosseae[J].Internatl Microbiol,2000,3(3):173~177.
    [180]Geil R.D.,Guinel F.C.Effect of elevated substrate-ethylene on colonization of leek(Allium porrum)by the arbuscular mycorrhizal fungus Glomus aggregatum[J].Canadian Journal of Botany,2002,80: 114~119.
    [181]李姝晋,朱建清,叶小英等.俄罗斯优质水稻种质资源耐盐性鉴定和耐盐指标的评价[J].四川大学学报自然科学版,2005,42(4):216~219.
    [182]杨少辉,季静,王罡等.盐胁迫对植物影响的研究进展[J].分子植物育种,2006,4(3):139~142.
    [183]Leord A.C.,Willing R.P.Evidence for toxicity effects of salt on membrane[A],In Staples R.C., Henniessen G.H.(ed.)Salinity tolerance in plant:Strategies for crop improvement[C].New York:John Wiley and Sons,1984,67~76.
    [184]Bowen G.The biology and physiology of infection and its development[A].In:Safir G.R.(ed), Ecophysiology ofVA mycorrhizal plants[M].Bocaraton Ela:CRC Press,1987,27~57.
    [185]龙良鲲,羊宋贞,姚青等.AM真菌DNA的提取与PCR-DGGE分析[J].菌物学报,2005,24(4):564~569.
    [186]Khan A.G.The occurrence of mycorrhizas in halophytes,hydrophytes,and xerophytes and of Endogone spores in adjacent soils[J].Journal of General Microbiology,1974,81:7~14.
    [187]DioufD.,Duponnois R.,Ba A.T.,et al.Symbiosis of Acacia auriculiformis and Acacia mangium with mycorrhizal fungi and Bradyrhizobium spp.improves salt tolerance in greenhouse conditions[J]. Functional Plant Biology,2005,32(12):1143~1152.
    [188]王遵亲.中国盐渍土[M].北京:科学出版社,1993.
    [189]Sylvia D.M.Mycorrhizal symbioses[A].In:Sylvia D.M.,Fuhrmann J.J.,Hartel P.G.,Zuberer D.A.(ed.) Principles and applications of soil microbiology[M].New Jersey:Prentice Hall,Inc.,Upper saddle River, 1998,263~285.
    [190]Talukdar N.C.,Germida J.J.Occurrence and isolation of vesicular-arbuscular mycorrhizae in cropped field soils of Saskatchwan,Canada[J].Canadian Journal of Microbiology,1993,39:567~575.
    [191]Koske R.E.,Walker C.Gigaspora erythropa,a new species forming arbuscular mycorrhizae[J]. Mycologia,1984,76(2):250~255.
    [192]Schenck N.C.,Perez Y.Manual for the identification of vesicular arbuscular mycorrhizal fungi[M]. Second edition.INVAM.University of Florida.Gaineville,Florida,USA,1988,1~233.
    [193]赵丹丹,李凌飞,赵之伟.中国丛枝菌根真菌的三个新记录种[J].菌物学报,2006,25(1):142~144.
    [194]Koske R.E.,Halvorson W.L.Scutellospora arenicola and Glomus trimurales:Two new species in the Endogonaceae[J].Mycologia,1989,81(6):927~933.
    [195]Blaszkowski J.,Adamska I.,Czerniawska B.Glomus trimurales,an arbuscular mycorrhizal fungus (Glomerales)new for Poland and Europe[J].Mycotaxon,2003,87:425~436.
    [196]Thaxter R.A revision of the Endogoneae[J].Proc Amer Acad Arts Sci,1922,57:291~350.
    [197]Gerdemann J.W.,Trappe J.M.The Endogonaceae in the Pacific northwest[J].Mycologia Memoir, 1974,5:76.
    [198]Mankarios A.T.,Abd-E1-Fattah G.M.Ecology ofVA mycorrhiza in some Egyptian soils[J].Egyptian Journal of Botany,1994,34(2):135~152.
    [199]蔡晓布,彭岳林,冯固等.西藏高原草地植物AM真菌多样性及其环境影响因子研究[J].土壤学报,2005,42(4):642~651.
    [200]Phillings J.M.,Hayman D.S.Improved procedures forclearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection[J].Transactions of the British Mycological Society,1970,55:158~160.
    [201]李晓林,冯固.丛枝菌根生态生理[M].北京:华文出版社,2001,9.
    [202]Smith F.A.,Smith S.E.Structural diversity in vesicular-arbuscular mycorrhizal symbioses[J].New Phytologist,1997,137(3):373~388.
    [203]弓明钦,陈应龙,仲崇禄等.菌根研究及应用[M].北京:中国林业出版社,1997.
    [204]鲍士旦,江荣风,杨超光等.土壤农化分析(第三版)[M].北京:中国农业出版社,2000.
    [205]陈金春主编.微生物学实验指导[M].北京:清华大学出版社,2005.
    [206]胡小平,王长发.SAS基础及统计实例教程[M].西安:西安地图出版社,2001.
    [207]蔡晓布,钱成,彭岳林等.环境因子对西藏高原草地植物丛枝菌根真菌的影响[J].应用生态学报,2005,16(5):859~864.
    [208]张英,郭良栋,刘润进.都江堰地区丛枝菌根真菌多样性与生态研究[J].植物生态学报,2003,27(4):537~544.
    [209]Landwehr M.,Hildebrandt U.,Wilde P.,et al.The arbuscular mycorrhizal fungus Glomus geosporum in European saline,sodic and gypsum soils[J].Mycorrhiza,2002,12(4):199~211.
    [210]唐明.VA菌根提高植物抗盐碱和抗重金属能力的研究进展[J].土壤,1998,5:251~254.
    [211]Steme R.E.,Zenmyer G.A.,Bingham F.T.The effect of osmotic potential and specific ions on growth of Phytophthora cinnamomi[J].Phytopathology,1976,66:1398~1402.
    [212]Brownell K.H.,Schneider R.W.Roles of matric and osmotic components of water potential and their interaction with temperature in the growth ofFusarium oxysporum in synthetic media and soil[J]. Phytopathology,1985,75(1):53~57.
    [213]王发园,刘润进,林先贵等.几种生态环境中AM真菌多样性比较研究[J].生态学报,2003,23(12):2666~2671.
    [214]盖京苹,刘润进.土壤因子对野生植物AM真菌的影响[J].应用生态学报,2003,14(3):470~472.
    [215]Schenck N.C.Ecology ofVAM fungi in temperate agroecosystems[J].In:Proceedings oft.he 7~(th)NACOM,1987.
    [216]张美庆,王幼珊,刑礼军.我国东、南沿海地区AM真菌群落生态分布研究[J].菌物系统,1998,17(3):274~277.
    [217]Burrows R.L.,Pfleger F.L.Arbuscular mycorrhizal fungi respond to increasing plant diversity[J]. Canadian Journal of Botany,2002,80(2):120~130.
    [218]Allen E.B.,Allen M.F.,Helm D.J.et al.Patterns and regulation of mycorrhizal plant and fungal diversity[J].Plant and Soil,1995,170(1):47~62.
    [219]赵之伟,李习武,王国华等.西双版纳热带雨林中丛枝菌根真菌的初步研究[J].菌物系统,2001,20(3):316~323.
    [220]张美庆,王幼珊,邢礼军.环境因子和AM真菌分布的关系[J].菌物系统,1999,18(1):25~29.
    [221]盖京苹,刘润进,李晓林.山东省不同植被区内野生植物根围AM菌的生态分布[J].生态学杂志,2000,19(4):18~22.
    [222]Diaz G.,Roldan A.,Albaladejo J.Soil type as affecting colonization patterns and mycorrhizal effectiveness of six Glomus species[J].Crytogamie Mycologia,1992,13(1):47~56.
    [223]Jr.Douds D.D.,Millner P.D.Biodiversity of arbuscular mycorrhizal fungi in agroecosystems[J]. Agriculture,Ecosystems and Environment,1999,74(1~3):77~93.
    [224]Joner E.J.,Jakobsen I.Growth and extracellular phosphatase activity of arbuscular mycorrhizal hyphae as influenced by soil organic matter[J].Soil Biology and Biochemistry,1995,27(9):1153~1159.
    [225]Tawaraya K.,Saito M.,Morioka M.,et al.Effect of phosphate application to arbuscular mycorrhizal onion on the development and succinate dehydrogenase activity of internal hyphae[J].Soil Science and Plant Nutrition,1994,40(4):667~673.
    [226]Tawaraya K.,Watanabe S.,Yoshida E,et al.Effect of onion(Allium cepa)root exudates on the hyphal growth of Gigaspora margarita[J].Mycorrhiza,1996,6(1):57~59.
    [227]郁继华,杨秀玲,许耀照等.NaCl胁迫对黄瓜自根苗和嫁接苗光合速率的影响[J].植物营养与肥料学报,2004,10(5):554~556.
    [228]Aug(?)R.M.,Foster J.G.,Loescher W.H.,et al.Symplastic molality of free amino acids and sugars in Rosa roots with regard to VA mycorrhizae and drought[J].Symbiosis,1992,12(1):1~17.
    [229]Chung H.,Zak D.R.,Reich P.B.,et al.Plant species richness,elevated CO2,and atmospheric nitrogen deposition alter soil microbial community composition and function[J].Global Change Biology,2007, 13:980~989.
    [230]赵可夫,李毅丹,杨国会等.盐碱混合生态条件的人工模拟及其对羊草胁迫作用因素分析[J].生态学报,2002,22:1323~1332.
    [231]Shi L.X.,Guo J.X.Changes in photosynthetic and growth characteristics ofLeymus chinensis community along the retrogression on the Songnen grassland in northeastern China[J].Photosynthetica, 2006,44:542~547.
    [232]高俊凤.植物生理学实验技术[A].西安:世界图书出版公司,2000.
    [233]冯玉龙,冯志立,曹坤芳.砂仁叶片光破坏的防御[J].植物生理学报,2001,27(6):483~488.
    [234]汪良驹,刘卫琴,孙国荣等.ALA对萝卜不同叶位叶片光合作用与叶绿素荧光特性的影响[J].西北植物学报,2005,25(3):488~496.
    [235]Demmig-Adams B.,Adams W.W.Photoprotection and other responses of plants to high light stress[J]. Annual Rev.Plant Physiol.Mol.Biol.,1992,43(1):599~626.
    [236]杨立飞,朱月林,胡春梅等.NaCl胁迫对嫁接黄瓜膜脂过氧化、渗透调节物质含量及光合特性的影响[J].西北植物学报,2006,26(6):1195~1200.
    [237]Yang C.W.,Wang P.,Li C.Y.,et al.Comparison of effects of salt and alkali stresses on the growth and photosynthesis of wheat[J].Photosynthetica,2008,46(1):107~114.
    [238]张薇,魏海雷,高洪文等.土壤微生物多样性及其环境影响因子研究进展[J].生态学杂志,2005,24(1):48~52.
    [239]李君剑,石福臣,柴田英昭等.东北地区三种典型次生林土壤有机碳、总氮及微生物特征的比较研究[J].南开大学学报(自然科学版),2007,40(3):84~91.
    [240]Maxwell K.,Johnson G.N.Chlorophyll fluorescence a practical guide[J].Journal of Experiment Botany, 2000,51:659~668.
    [241]Havaux M.,Strasser R.J.,Greppin H.A theoretical and experimental analysis of the qP and qN coefficients of chlorophyll fluorescence quenching and their relation to photochemical and nonphotochemical events[J].Photosynthesis Research,1991,27:41~55.
    [242]Krause G.H.,Weis E.Chlorophyll fluorescence and photosynthesis:the basics[J].Annual Review of Plant Physiology and Plant Molecular Biology,1991,42:313~349.
    [243]Figueroa M.E.,Fern(?)ndez-Baco L.,Luque T.,et al.Chlorophyll fluorescence,stress and survival in populations of Mediterranean grassland species[J].Journal of Vegetable Science,1997,8:881~888.
    [244]Araus J.L.,Amaro T.,Voltas J.,et al.Chlorophyll fluorescence as a selection criterion for grain yield in durum wheat under Mediterranean conditions[J].Field Crops Research,1998,55:209~223.
    [245]Bolhar-Nordenkampf H.R.,Long S.P.,Baker N.R.,et al.Chlorophyll fluorescence as a probe of the photosynthetic competence of leaves in the field:a review of current instrumentation[J].Functional Ecology,1989,3:497~514.
    [246]Paillotin G.Movement of excitations in the photosynthesis domains ofphotosystem Ⅱ[J].Journal of Theoretical Biology,1976,58:237~252.
    [247]Koide R.T.,Kabir Z.Extraradical hyphae of the mycorrhizal fungus Glomus intraradices can hydrolyse organic phosphate[J].New Phytologist,2000,148:511~517.
    [248]Munns R.,Termaat A.Whole-plant responses to salinity[J].Australian Journal of Plant Physiology, 1986,13(1):143~160.
    [249]张玲,李俊梅,王焕校.镉胁迫下小麦根系的生理生态变化[J].土壤通报,2002,33(1):61~65.
    [250]Jafarzadeh A.A.,Aliasgharzad N.Salinity and salt composition effects on seed germination and root length of four sugar beet cultivars[J].Biologia,2007,62(5):562~564.
    [251]Sun F.F.,Zhang W.S.,Hu H.Z.,et al.Salt modulates gravity signaling pathway to regulate growth direction ofprirnary roots in Arabidopsis thaliana[J].Plant Physiology,2008,146:178~188.
    [252]Turkmen O.,Sensoy S.,Demir S.,et al.Effects of two different AMF species on growth and nutrient content of pepper seedlings grown under moderate salt stress[J].African Journal of Biotechnology,2008, 7(4):392~396.
    [253]Bagyaraj D.J.Vesicular-arbuscular:Application in agriculture[A].In:Norris J.R.,Read D.J.,Varma A.K.(eds.)Techniques for Mycorrhizal Research,Methods in Microbiology[M].London:Academic Press,1994,818~833.
    [254]杜中军,翟衡,罗新书等.苹果砧木耐盐性鉴定及其指标判定[J].果树学报,2002,19(1):4~7.
    [255]史燕山,骆建霞,张涛等.核果类果树砧木耐盐性差异的研究[J].西北农林科技大学学报(自然科学版),2004,32(3):45~48.
    [256]Miller R.M.,Jastrow J.D.Extraction and quantification of external mycorrhizal hyphae[A].Argonne National Laboratory,USA,1992.
    [257]赵博生,衣艳君,刘家尧.外源甜菜碱对干旱/盐胁迫下的小麦幼苗生长和光合功能的改善[J].植物学通报,2001,18(3):378~380.
    [258]贺忠群,贺超兴,张志斌等.丛枝菌根真菌对番茄渗透调节物质含量的影响[J].园艺学报,2007,34(1):147~152.
    [259]王洪春.植物抗性生理研究进展.《植物生理学通讯》编辑部主编.植物生理学专题讲座[M].北京:科学出版社,1987,320~356.
    [260]贺学礼,赵丽莉,李英鹏.NaCl胁迫下AM真菌对棉花生长和叶片保护酶系统的影响[J].生态学报,2005,25(1):188~193.
    [26l]刘文娜,吴文良,王秀斌等.不同土壤类型和农业用地方式对土壤微生物量碳的影响[J].植物营养与肥料学报,2006,12(3):406~411.
    [262]Passioura J.B.Root signals control leaf expansion in wheat seedlings growing in drying soil[J]. Australian Journal of Plant Physiology,1988,15(5):687~693.
    [263]弋良朋,马健,李彦.3种荒漠盐生植物根系及根毛形态特征的比较研究[J].植物研究,2007,27(2):204~211.
    [264]徐孟亮,姜孝成,周广洽等.干旱对水稻根系活力与结实性状的影响[J].湖南师范大学自然科学学报,1998,21(3):64~68.
    [265]石岩,于振文,位东斌等.土壤水分胁迫对小麦根系与旗叶衰老的影响[J].西北植物学报,1998,18(2):196-201.
    [266]汪跃华,董华强,陈景勇等.真菌对桉树植株的生理影响[J].土壤肥料,2002,(2):39~41.
    [267]陈应龙,弓明钦,王凤珍等.尾叶桉混合菌根营养生理研究[J].林业科学研究,1998,11(3):237~242.
    [268]徐云岭,余叔文.植物适应盐逆境过程中的能量消耗[J].植物生理学通讯,1990,(6):70~73.
    [269]Vance C.P.,Uhde-Stone C.,Allan D.L.Phosphorus acquisition and use:critical adaptations by plants for securing a nonrenewable resource[J].New Phytologist,2003,157(3):423~447.
    [270]SchnepfA.,Roose T.,Schweiger P.Growth model for arbuscular mycorrhizal fungi[J].Journal of Royal Society Interface,2008,5(24):773~784.
    [271]Laheurte F.,Leyval C.,Berthelin J.Root exudates of maize,pine and beech seedlings influenced by mycorrhizal and bacterial inoculation[J].Symbiosis,1990,9:111~116.
    [272]Bi Y.L.,Li X.L.,Christie P.Influence of early stages of arbuscular mycorrhiza on uptake of zinc and phosphorus by red clover from a low-phosphorus soil amended with zinc and phosphorus[J]. Chemosphere,2003,50(6):831~837.
    [273]Gueta-Dahan Y.,Yaniv Z.,Zilinskas B.A.,et al.Salt and oxidative stress:similar and specific responses and their relation to salt tolerance in Citrus[J].Planta,1997,203(4),460~469.
    [274]陈沁,刘友良.谷胱甘肽对盐胁迫大麦叶片活性氧清除系统的保护作用[J].作物学报,2000,26(3):365~371.
    [275]Hern(?)ndez J.A.,Jim(?)nez A.,Mullineaux P.,et al.Tolerance of pea(Pisum sativum L.)to long-term salt stress is associated with induction of antioxidant defences[J].Plant Cell and Environment,2000,23(8), 853~862.
    [276]刘慧敏,朱月林,陈磊.组培条件下不同番茄品种及砧木自交系幼苗期硝酸盐耐性的比较[J].植物研究,2007,27(2):175~181.
    [277]李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000.
    [278]李英鹏,孙渭,赵莉丽等.钾胁迫条件下AM真菌对烟草生长和叶片保护酶系统的影响[J].干旱地区农业研究,2003,21(1):51~53.
    [279]许祥明,叶和春,李国凤.植物抗盐机理的研究进展[J].应用与环境生物学报,2000,6(4):379~387.
    [280]张丹,李登煜,何毓蓉等.不同气候条件下紫色土的微生物数量比较[J].山地学报,2001,19(增刊):71~74.
    [28l]张卫建,许泉,王绪奎等.气温上升对草地土壤微生物群落结构的影响[J].生态学报,2004,24(8):1746~1751.
    [282]Aug(?)R.M.,Stodola A.J.W.,Brown M.S.,et al.Stomatal response of mycorrhizal cowpea and soybean to short-term osmotic stress[J].New Phytologist,1992,120(1):117~125.
    [283]张海燕,赵可夫.盐分和水分胁迫对盐地碱蓬幼苗渗透调节效应的研究[J].植物学报,1998,40(1):56~61.
    [274]闫先喜,赵檀方,胡延吉.盐胁迫预处理对大麦根尖分生区细胞超微结构的影响[J].西北植物学报,1994,14(4):273~277.
    [285]比德韦尔著,刘富林译.植物生理学[M].北京:高等教育出版社,1983.
    [286]李天红,李绍华.水分胁迫对苹果苗非结构性碳水化合物组分及含量的影响[J].中国农学通报,2002,18(4):35~39.
    [287]张玉凤,冯固,李晓林.丛枝菌根真菌对三叶草根系分泌的有机酸组分和含量的影响[J].生态学报,2003,23(1):30~37.
    [288]SchnepfA.,Roose T.,Schweiger P.Growth model for arbuscular mycorrhizal fungi[J].J.R.Soc.Inter., 2008,5(24):773~784.
    [289]王淼焱,丛蕾,李敏等.丛枝菌根真菌的三个我国新记录种[J].菌物学报,2006,25(2):244~246.
    [290]侯彩霞,汤章城.细胞相容性物质的生理功能及其作用机制[J].植物生理学通讯,1999,35(1):1~7.
    [291]张英,高清明,郭良栋.中国丛枝菌根真菌七个新记录种[J].菌物学报,2007,26(2):174~178.
    [292]文倩,赵小蓉,陈焕伟等.半干旱地区不同土壤团聚体中微生物量碳的分布特征[J].中国农业科学,2004,37(10):1504~1509.
    [293]Shen L.M.,David M.,Joyce G.F.Influence of drought on the concentration and distribution of 2,4-diaminaobutyric acid and other free amino acids in tissues of flat pea(Lathyrus sylvestris L.)[J]. Environ Expt Bot,1990,30:497~504.
    [294]於丙军,章文华,刘友良.NaCl对大麦幼苗根系蛋白质和游离氨基酸含量的影响[J].西北植物学报,1997,17(4):439~445.
    [295]Shen L.Growth and 2,4-diaminaobutyric acid composition of flat pea(Lathyrus sylvestris L.)as influenced by mineral and symbiotically fixed-nitrogen[J].J.Expt.Bot.,1990,41:521~527.
    [296]Shen L.Composition and distribution of free amino acids in fiat pea(Lathyrus sulvestris L.)as influenced by water deficit and plant age[J].J.Expt.Bot.,1989,40:71~79.
    [297]邓占鳌,章文才,万蜀渊.柑桔耐盐系的离体诱发与原生质体植株再生[J].园艺学报,1993,20(2):127~132.
    [298]许兴,郑国琦,邓西平等.不同基因型小麦幼苗抗旱抗盐性比较研究[J].西北植物学报,2002,22(5):1122~1135.
    [299]张丹,徐建忠,熊东红等.四川紫色土微生物数量与土壤肥力相关性初步研究[J].四川农业大学学报,2000,18(2):173~175.
    [300]王国兵,郝岩松,王兵等.土地利用方式的改变对土壤呼吸及土壤微生物生物量的影响[J].北京林业大学学报,2006,28(2):73~79.
    [301]AshrafM.,Fatima H.Responses of salt-tolerant and salt sensitive lines of safflower(Carthamus tinctorius L.)[J].Acta Physiologiae Plantarurn,1995,17:61~70.
    [302]Ashraf M.,O'Leary J.W.Changes in soluble proteins in spring wheat stressed with sodium chloride[J]. Biologia Plantarum,1999,42(1):113~117.
    [303]黄桂玲,黄庆昌.中国红树植物的营养器官结构与生态适应(I)[J].生态科学,1989,(2):100~105.
    [304]唐恬,谢丽开,程舸等.人工海水对秋茄、木榄幼苗蛋白质含量与SOD活性的影响[J].广州师院学报(自然科学版),2000,21(5):22~25.
    [305]汪贵斌,曹福亮.盐胁迫对落羽杉生理及生长的影响[J].南京林业大学学报(自然科学版),2003,27(3):11~14.
    [306]郭房庆,周建明,汤章城.NaCl胁迫下小麦突变体和野生型叶片中一些有机溶质累积和基因表达差异[J].植物生理学报,1999,25(3):263~268.
    [307]Akita S.,Cabuslay G.S.Physiological basis of differential response to salinity in rice cultivars[J].Plant and Soil,1990,123(2):277~294.
    [308]Zelles L.Fatty acid patterns ofphospholipids and lipopolysaccharides in the characterization of microbial eommunities in soil:a review[J].Biology and Fertility Soils,1999,29(2):111~129.
    [309]Bakken L.R.Separation and purification of bacteria from soil[J].Applied and Environmental Microbiology,1985,49(6):1482~1487.
    [310]Ward D.M.,Weller R.,Bateson M.M.16SrRNA sequences reveal numerous uncultured microorganisms in a nature community[J].Nature,1990,345:63~65.
    [311]Kimura M.,Shibagaki T.,Nakajima Y.,et al.Community structure of the microbiota in the floodwater of a Japanese paddy field estimated by restriction fragment length polymorphism and denaturing gradient gel electrophoresis pattern analyses[J].Biology and Fertility Soils,2002,36(4):306~312.
    [312]Anonymous.Technicon Industrial Systems[M].Tarrytown N.Y,10591,1976.
    [313]Ibekwe A.M.,KennedyA.C.Fatty acid methyl ester(FAME)profiles as a tool to investigate community structure of two agricultural soils[J].Plant and Soil,1999,206(2):151~161.
    [314]Meding S.M.,Zasoski R.J.Hyphal-mediated transfer of nitrate,arsenic,cesium,rubidium,and strontium between arbuscular mycorrhizal forbs and grasses from a California oak woodland[J].Soil Biology and Biochemistry,2008,40(1):126~134.
    [315]章家恩,蔡燕飞,高爱霞等.土壤微生物多样性实验研究方法概述[J].土壤,2004,36(4):346~350.
    [316]王秋红,蓝江林,朱育菁等.脂肪酸甲酯谱图分析方法及其在微生物学领域的应用[J].福建农业 学报,2007,22(2):213~218.
    [317]张宝涛,王立群,伍宁丰等.PCR-DGGE技术及其在微生物生态学中的应用[J].生物信息学,2006,4:132~134.
    [318]Fischer S.G.,Lerman L.S.Length-independent separation of DNA restriction fragments in two-dimensional gel electrophoresis[J].Cell,1979,16(1):191 ~200.
    [319]User's guide of PC-ORD version 4.0.Multivariate analysis ecological data[M].USA,1999.
    [320]Schjonning P.,Elmholt S.,Christensen B.T.Managing soil quality:Challenges in modem agriculture[M].CABI Publishing Wallingford,UK,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700