用户名: 密码: 验证码:
含盐有机废水厌氧生物处理的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对含盐有机废水的厌氧生物降解性及其机理进行了研
    究。对未经盐驯化和经20g/L盐驯化的厌氧污泥的耐盐性能进行
    了对比研究;深入探讨了盐度对厌氧生物的抑制特性,并得出
    了抑制动力学模型;对工业高盐度有机废水(本实验采用甲基氯化
    物生产废水)在不同盐度驯化的厌氧污泥条件下的抑制特性和可
    降解性进行了比较研究;结合新型反应器USSB探讨了实际含盐
    有机废水厌氧生物处理的可行性。研究结果表明:
    (1)采用葡萄糖水样,当盐度由0g/t,逐步升高到50g/L,
    对未经盐驯化污泥的抑制作用逐步增强,但污泥活性随着反应时
    间的延长会得到一定的恢复;盐度≥10g/L时,用20g/L盐度驯
    化的污泥处理效果优于未经盐驯化的污泥;盐度与驯化盐度相同
    时,对污泥活性抑制较小,盐度比驯化盐度增高或降低都会对污
    泥活性产生抑制,使COD去除率下降,且增高比降低抑制效果
    更明显。产甲烷菌比产酸菌对盐度更敏感。
    (2)当水样盐度≤20g/L时,盐对未经盐驯化污泥厌氧生物
    降解葡萄糖的抑制类型是反竞争型。其抑制动力学方程为:
    其抑制系数K_I=7632.2mg/L。
    当盐度为30g/L时,抑制类型属混合竞争型。盐度对经盐
    驯化污泥的抑制作用要小于未经盐驯化的污泥。
    (3)用未经盐驯化和经低盐(5g/L或10g/L)驯化的污泥处
    理甲基氯化物农药废水时,随废水浓度的提高,抑制作用增强。
    但在废水稀释≥4.8倍(COD≤8300mg/L),总COD≤9560mg/L
    
    的范围内,各污泥的产甲烷活性均会得到一定的恢复,且经盐驯
    化的污泥比未经盐驯化污泥受到的抑制较小、恢复更快。
     (4)经10叭盐驯化的厌氧污泥脱磷效果较常规污泥好很
    多,特别是处理高浓度农药废水时,其TP去除率>45%,Op去
    除率>55.6%。
     (5)未经盐与经不同盐度驯化的厌氧污泥中微生物相存在着
    明显的变化,随盐度升高污泥由以杆菌和球菌等多种微生物相共
    存的体系变化到以单一球菌为主,而且其中的球菌都具有一定厚
    度的荚膜。
     (6) USSB反应器在中温(35士2℃)条件下,经过60天启
    动后,用于处理含盐有机废水,当进水COD浓度为
    2188一5288m目工、有机负荷为2.4一6.9 kgC①.m’3.“时,e①去
    除率在82.0%以上,最高可达92.5%,仰去除率也在50.5%以上,
    出水的碳酸氢盐碱度刃FA的比值在3 .33一5.73之间,反应器运行
    稳定,取得了良好的运行效果。
In this dissertation, a laboratory study on the feasibility and degradation mechanism of anaerobic treatment for saline organic wastewater was conducted. The capability of resisting salt of anaerobic sludge cultivated by no salt or different salinity was comparatively studied. Moreover characteristic of salt inhibition to anaerobic microorganisms was deeply discussed and a dynamic equation was attained. During treating actual industrial wastewater such as Methyl-chloride wastewater in this paper, the capability of degrading organism of anaerobic sludge cultivated by no salt or different salinity was studied. Moreover, the feasibility of anaerobic treatment to practical saline organic wastewater in Upflow Staged
    Sludge Bed (USSB) was studied too. The result showed:
    (1) Using artificial glucose wastewater, the salt inhibition to anaerobic sludge cultivated by no salt was increased gradually with influent salinity added from 0g/1 to 50g/l. But the activity of this sludge can acquire some recovery with the HRT prolonged. When the salinity was higher than l0g/1, the effect of the sludge cultivated by 20g/l salt was better than that by no salt. If influent salinity was the same as the cultivated salinity, the salt inhibition to this sludge was the lightest, increasing or decreasing influent salinity were able to inhibit the activity of the sludge and reduce the COD removal efficiency. Moreover increasing influent salinity brings heavier inhibition than decreasing it. The methanogenic bacterium was more sensible than acetogenic bacterium.
    
    
    (2) When the influent salinity was below 20g/l, salt inhibition type of anaerobic biodegrade glucose wastewater with sludge cultivated by no salt was anti-competitive with the inhibitor constant of 7632.2mg/L. The inhibitory dynamic equation was expressed as:
    When the influent salinity equaled to 30g/l, salt inhibition type was mix-competitive.
    (3) Anaerobic sludge cultivated by no salt or low salinity (such as 5g/l or l0g/1) was used to treat actual Methyl-chloride wastewater, salt inhibition was increasing with the influent concentration. When the wastewater dilute times 4.8 (COD 8300mg/L) , the total COD 9560mg/L, the sludge's methanogenisis activity can attain some recovery. Moreover, sludge cultivated by salt was less inhibited and the methanogenisis activity in this sludge was able to recover faster than that cultivated by no salt.
    (4) Anaerobic sludge cultivated by l0g/1 salt had much more well dephosphorus effect than that cultivated by no salt, especially used to treat high concentration of pesticide wastewater, The total phosphorus (TP) and organic phosphorus (OP) removal efficiency of this system could reach more than 45% and 55.6% respectively.
    (5) The microorganism form of anaerobic sludge cultivated by different salt content, compared with that cultivated by no salt, had a distinct change. With the wastewater salinity increased gradually, the microorganism form of anaerobic sludge changed from multi-microorganism system made up of bacillus and coccus etc. to microorganism system mostly made up of coccus. Moreover all coccus of this system had a definite thickness outer membrane.
    (6)The sludge in the USSB reactor had been cultivated for 60
    
    days at mesophilic condition (35 2 ), then was used to treat real organic wastewater. The result showed that the COD removal efficiency of the reactor could reach more than 80% and even reach 92.5% with influent COD concentration 2188~5288mg/L,organic loading rate 2.4~6.9 kgCOD.m-3.d"1. TP removal rate could also reach more than 50.5%, the ratio of bicarbonate alkalinity and VFA was among 3.33 ~ 5.73. The reactor had stable operation performance.
引文
1.文湘华,占新民,王建龙,钱易,含盐废水的生物处理研究进展,环境科学,20(3)(1999),104—106。
    2.尤作亮,蒋展鹏,祝万鹏,海水直接利用及其环境问题分析,给水排水,24(3)(1998),64-68。
    3.何健,陈立伟,李顺鹏,高盐度难降解工业废水生化处理的研究,中国沼气,18(2)(2000),12-16。
    4. C.R. Woolard, R. L. Irvine, Treatment ofHypersaline Wastewater in the Sequencing Batch Reactor. Water Research. 49(4) (1995), 1159-1168.
    5. C.R.Woolard, Biological treatment of hypersaline wastewater by a biofilm of halophilic bacteria. Wat. Environ. Res., 66(3) (1994), 230-235.
    6.刘正,高含盐废水生物处理技术探讨,给水排水,11(27)(2001),54-58。
    7.黄民生,朱莉,适盐细菌技术处理高含盐有机废水的现状,上海环境科学,17(10)(1998),38-39。
    8.贾金平,电化学方法治理废水的研究与进展,上海环境科学,18(1) (1999),29-31。
    9.贺延龄编,《废水的厌氧生物处理》,中国轻工业出版社,北京,1998。
    10.张希恒等编,《废水厌氧生物处理工程》,中国环境科学出版社,北京,1996。
    11.宋平,1996年中国厌氧技术研究新进展,四川环境,16(1)(1997),14-17。
    12.杨健,王士芬,高含盐量石油发酵工业废水处理研究 给水排水,25(3)(1999),35-38。
    13.雷中方,高浓度钠盐对废水生物处理系统的失稳影响综述,工业水处理,20(4)(2000),6-9。
    
    
    14.安丽,顾国维,二段生物接触氧化法处理含盐有机废水的研究,上海环境科学,11(9)(1990),6-9。
    15.占新民,含盐有机废水生物处理特性研究,[博士论文],北京,清华大学环境工程系,1999。
    16.王菊思,硫酸盐和氯离子对厌氧生物处理过程抑制作用的研究,环境科学,16(4)(1995),3-7。
    17.赵毅,杨景亮,任洪强,含硫酸盐高浓度有机废水生物处理技术,中国环境科学,19(3)(1999),281-284。
    18. Fikret Kargi and Ali R. Dincer. J, Salt Inhibition Effects in Biological Treatment of Saline Wastewater in RBC, Environ. Eng., (10) (1999), 966-970.
    19. Gary Smythe, Guy Matelli, Mike Bradford and Carlos Rocha, Biological Treatment of Salty Wastewater, Environment Progress, 16 (3) (1997), 179-183.
    20. Estrella Aspe M, Cristina Marti and Marlene Roeckel, Anaerobic Treatment of Fishery Wastewater Using a Marine Sediment Inoculums, Wat. Res., 31(9)(1997), 2147-2160.
    21.张雨山,王静,蒋立东等,海水盐度对二沉池沉降生能的影响,中国给水排水,16(2)(2000),18-19。
    22. Gumersindo Feijoo, Manuel Soto, R amon M endez, Sodium inhibition in the anaerobic digestion process: Antagonism and adaptation phenomena[J],Enzyme and Microbial Technology,17 (1995) ,180-188.
    23. Thongchai Panswad and Chadrut Anan. Impact of High Chloride Wastewater on an Anaerobic/Anoxic/Aerobic Process with and without Inoculation of Chloride Acclimated Seeds. Wat. Res. 33 (5) (1999) ,1165-1172.
    24. Francisco Omil, R amon, J. M endez & Juan M. Lema, Characterization of Biomass from a Pilot Plant Digester Treating
    
    Saline Wastewater, J. Chem. Tech. Biotechnol., 63 (1995), 384-392.
    25. Motoki Kubo, Jyunichi Hiroe, Makoto Murakami, Hiroshi Fukami and Takashi Tachiki, Treatment of Hypersaline-Containing with Salt-Tolerant Microorganisms, Journal of Bioscience and Bioengineering, 91 (2) (2001), 222-224.
    26.杨琦,杨殿海,周群英,填充盾式纤维填料和无填料的UBF厌氧反应器处理味精废水的对比试验研究,中国沼气,14(4)(1996),8-11。
    27. Manuel Soto, R amon M endez & Juan M. Lema, Sodium Inhibition and Sulphate Reduction in the Anaerobic Treatment of Mussel Processing Wastewaters, J. Chem. Tech. Biotechnol., 58(1993) , 1-7.
    28. Ramon Mendez, Juan M. Lema, Manuel Soto, Treatment of seafood-processing wastewaters in mesophilic and thermophilic anaerobic filters, Wat. Environ. Res.,67(1) (1995), 33-45.
    29. Fikret Kargi and Ali R., Biological treatment of saline wastewater by Fed-Batch Operation, Chem. Tech. Biotech., 69 (1997), 167-172.
    30. P.Y.Yang, S.Nitisoravut, JY S.Wu, Nitrate Removal Using a Mixing-culture Entrapped Microbial Cell Immobilization Process Under High Salt Condition, Wat. Res., 29(6) (1995), 1525-1532.
    31.冯叶成,占新民,文湘华,活性污泥处理系统耐含盐废水冲击负荷性能,环境科学,21(1)(2000),106-108。
    32. R.Yucel Tokuz, W. Wesley Eckenfeleder JR., The Effect of inorganic Salts on the Activated Sludge Process Performance, Wat. Res.,13 (1979) , 99-104.
    33.陈坚,卫功元,新型高效厌氧生物处理反应器的研究进展,无锡轻工大学学报,20(3)(2001),323-329。
    
    
    34.王凯军,厌氧工艺的发展和新型厌氧反应器,环境科学,19(1)(1998),94-96。
    35.王凯军,厌氧处理技术发展现状与未来发展领域,中国沼气,17(4) (1999),14-17。
    36.王靖文,上流式厌氧污泥床反应器技术的现状与发展,工业水处理,21(7)(2001),12-15。
    37.修光利,加压上流式好氧污泥床(PUASB)法处理制药废水初探,环境科学,20(1)(1999),47-50。
    38.胡启春,温世鼎,韩鑫友,颜秀琴,斜板上流式厌氧污泥床处理低浓度有机废水的试验研究,中国沼气,14(3)(1996),3—7。
    39. J.B. van lier, Nico Groeneveld, and Gatze Lettinga, Development of thermophilic methanogenic sludge in compartmentalized upflow reactors, Biotechnology and bioengeering, 50 (1996), 115-124.
    40. P.N.L.Lens, M.C.Van Den Bosch, L.W.Hulshoff Pol and G.Lettinga, Effect of staging on volatile fatty acid degradation in a sulfidogenic granular sludge reactor Wat. Res.,32(4) (1998), 1178-1192.
    41.国家环保局编,水和废水监测分析方法,环境科学出版社,北京,1989。
    42.杨军,林可霉素厌氧生物抑制与降解性及其生产废水生物处理工艺的研究,[硕士学位论文],北京,清华大学环境工程系,1998。
    43.顾夏声,废水生物处理数学模式,清华大学出版社(第二版),1993。
    44. Kim, I.S. Young, J.C. and Tabak, H.H., Kinetic of acetogenesis and methanogenesis in anaerobic reactions under toxic conditions, Wat. Environ. Res., 66 (2) (1994), 119-132.
    45.颜思旭,蔡红玉编著,酶催化动力学原理与方法,厦门大学出版社出版,1987。
    
    
    46.许根俊编著,酶的作用原理,科学出版社出版,1983。
    47.何秀琴,接触氧化周期循环延时曝气处理甲胺磷废水,工业用水与废水,30(1)(1999),8-10。
    48.李玉辉,李中秋,化学氧化、活性污泥法处理甲胺磷废水的研究,污染防治技术,9(1、2)(1996),40-42。
    49.王倩如,叶晶菁,甲胺磷农药废水生化处理高效菌选育的研究,化工环保,15(4)(1995),205-210。
    50.毛培元,农药中间体氯化废水处理技术研究.工业水处理,18(2)(1998),24-25。
    51.候纪蓉,张雨风,我国农药废水工业三废治理方法,化工环保,18(1) (1998).15-19
    52. J. W. Morgan, C. F. Forster and L. Evison, A comparative study of the nature of biopolymers extracted from anaerobic and actived sludges, Wat. Res., 24(6) (1990), 743-750.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700