用户名: 密码: 验证码:
黄芪发酵后主要有效成分变化分析及多糖对大鼠实验性肝纤维化影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄芪是临床常用中药,其主要成分黄芪多糖具有提高免疫力、抗病毒、抗菌、抗氧化、调节血糖、保肝护肾等多种药效作用。然而,由于生药黄芪中黄芪多糖提取得率较低而限制了其广泛应用。前期研究表明,生药黄芪经M-9菌株发酵后,发酵产物中粗多糖得率显著提高。但发酵黄芪的质量控制,药效成分的含量变化及其药理学作用有待研究。因此论文首次开展了发酵黄芪中毛蕊异黄酮葡萄糖苷和黄芪甲苷的含量测定,发酵后黄芪皂苷和多糖的最佳提取工艺条件的优化及发酵黄芪多糖对实验性大鼠肝纤维化的影响并运用数字基因表达谱分析其作用机理。为今后发酵黄芪的药理学深入研究、开发利用及益生菌发酵转化机理的阐述提供理论依据。
     1.高效液相色谱法测定发酵黄芪和生药黄芪中黄芪甲苷及毛蕊异黄酮葡萄糖苷含量
     参照2010版《中国药典》黄芪有效成分含量测定方法,应用高效液相色谱法分别对发酵黄芪、生药黄芪中黄芪甲苷和毛蕊异黄酮葡萄糖苷的含量进行测定,结果为0.049%、0.087%、0.030%和0.040%。含有等量黄芪的发酵黄芪和生药黄芪中黄芪甲苷的含量分别为0.063%和0.087%,毛蕊异黄酮葡萄糖苷的含量分别为0.038%和0.040%。结果提示,发酵前后毛蕊异黄酮葡萄糖苷含量差异不显著,而发酵后黄芪甲苷的含量降低了27.6%。这两种成分的含量变化可为发酵黄芪产品的质量控制提供参考。
     2.发酵黄芪和生药黄芪中黄芪多糖和皂苷的提取分离及含量测定
     采用综合提取黄芪皂苷和黄芪多糖的方法并筛选提取工艺。黄芪皂苷和黄芪多糖最佳提取工艺条件为:称取一定量黄芪粗粉,用20倍量80%乙醇于80℃回流提取黄芪皂苷,烘干药渣用于黄芪多糖提取。A.黄芪皂苷提取工艺:醇提液制成浸膏后取适量溶于50倍量纯水,上样于AB-8大孔树脂柱,经80%乙醇洗脱得皂苷富集部位中皂苷含量达81.23%。B.通过比较温浸法、传统水煎法、纤维素酶法及饱和生石灰水法,优选出温浸法提取黄芪多糖,提取工艺为:药渣用20量纯水,80℃温浸提取4.5h,离心,浓缩,Sevag法除蛋白,透析,醇沉,无水乙醇、丙酮、乙醚分别洗涤,烘干,得黄芪粗多糖。C.香草醛-硫酸法测得生药黄芪浸膏和发酵黄芪浸膏中皂苷含量分别为16.87%和10.81%,皂苷的提取率分别为0.0654%和0.0558%。苯酚-硫酸法测定多糖含量,发酵黄芪多糖(FAPS)含量及得率分别为66.59%,4.35%;生药黄芪多糖(APS)含量及得率分别为36.01%,2.73%。结果提示,黄芪经发酵后多糖含量及得率分别提高84.92%和59.34%,发酵后皂苷提取率降低17.20%。经薄层层析法测定FAPS中主要糖单组分为葡萄糖、甘露糖等,主要多糖组分为FAPS-2~(-1)的糖含量为95.41%,其数均分子量为1,564,267Da,重均分子量为1,753,456Da。
     3. FAPS对大鼠实验性肝纤维化的作用及机制研究
     采用皮下注射CCl4的方法制备大鼠肝纤维化模型。造模同时给予不同药物干预,研究FAPS对大鼠肝纤维化的作用。雄性SD大鼠60只,随机分为6组,发酵黄芪高剂量组(FAPSH)200mg·kg~(-1)·d~(-1),发酵黄芪中剂量组(FAPSM)100mg·kg~(-1)·d~(-1),发酵黄芪低剂量组(FAPSL)50mg·kg~(-1)·d~(-1),秋水仙碱组(Col.)0.2mg·kg~(-1)·d~(-1),CCl4模型组和对照组给予等体积生理盐水,持续8周。结果得出,FAPS各剂量组大鼠体重均高于模型组,FAPS可显著降低小鼠血清中的ALT、AST、ALP活性(P<0.01),可显著降低肝组织中Hyp含量(P<0.05)及血清中HA,LN,CⅣ,PⅢNP的水平,使降低的GSH-Px (P<0.01)、T-AOC (P<0.05)和GST值显著升高,使异常升高的GSH和MDA含量趋于正常。尤其是FAPSH组各项抗肝纤维化指标均优于FAPSM和FAPSL。通过H.E.、Masson染色及透射电镜观察大鼠肝组织病理变化发现,模型组大鼠肝细胞脂肪空泡化和纤维化病变明显,给予不同药物干预的各组肝组织病理变化有所减轻。结果提示,FAPS对CCl4所致大鼠实验性肝纤维化有一定的修复作用,作用程度与剂量成一定的相关性,FAPSH(200mg·kg~(-1)·d~(-1))与Col.(0.2mg·kg~(-1)·d~(-1))防治肝纤维化效果相当,其原理可能与其抗氧化作用有关。
     4.各组大鼠肝组织数字基因表达谱差异分析
     应用数字基因表达谱技术建立对照组、模型组、Col.、FAPSL、FAPSM和FAPSH的肝脏表达谱,初步分析差异基因的表达和功能。结果表明,模型组与对照组表达谱差异基因总共有2324个(表达量上调基因2162个,下调基因162个),差异基因通过多个细胞生物学过程中的218个信号通路参与肝纤维化的形成,特别是引起PPAR信号通路、TGF-β信号通路、MAPK信号通路、VEGF信号通路、Jak-STAT信号通路中多个基因表达量表达量下调。Col.组、FAPSL组、FAPSM组、FAPSH组肝脏表达谱与CC14模型组进行比较,结果表明FAPS可显著抑制TGF-β、PPAR信号通路多个关键基因的上调而抑制HSCs的活化,特别是SCD~(-1)基因表达量显著下调,表明FAPS可以显著降低肝脏SCD活性,推测FAPS对CCl4引起的肝纤维化的改善作用机制可能为通过抑制SCD活性,削弱单不饱和脂肪酸的生成来减少肝脏脂质蓄积从而抑制HSCs的活化。
Astragalus is one of the commonly used traditional Chinese drugs. The maineffective components-astragalus polysaccharides (APS) of the crud drug has manypotency effects, such as improving immunity, antibiosis, anti-virus, hepatoprotection,protecting kidney and so on. While, the yield rate of astragalus polysaccharides fromastragalus is low, therefore its clinical use was restricted to some extent. Previousstudies have shown that the average polysaccharides yield rate of probiotics M-9fermented astragalus was improved significantly (P<0.01). However, the qualitycontrol of the fermented astragalus, the contents of the active ingredients andpharmacologic effects of them were not clear yet, therefore, this study carried outquantitative determination of astragaloside Ⅳ and calycosin-7-glucoside of fermentedastragalus and crude drug astragalus by high performance liquid chromatography,extraction technology of astragalosides and polysaccharides, effects of the FAPS onexperimental hepatic fibrosis in rats and analysis of digital gene expression profiling(DGE) on the differences of gene expression in every group of rats liver tissue. Inorder to lay the theoretical foundation for the further pharmacological research,development and utilization of fermented astragalus and interpretation the mechanismof biotransformation.
     (1) Quantitative determination of astragaloside Ⅳ and calycosin-7-glucoside offermented astragalus and crude drug astragalus by high performance liquidchromatography
     Astragaloside Ⅳ and calycosin-7-glucoside contents of fermented astragalus andcrude drug astragalus were determined by high performance liquid chromatography(HPLC) according to the pharmacopoeia of the people’s republic of China (2010). Theresults were0.049%、0.087%、0.030%and0.040%respectively. Results showed thatcontent of astragaloside Ⅳ of fermented astragalus (with equal quantity of crude drugastragalus) and crud drug astragalus were0.063%and0.087%, the content ofcalycosin-7-glucoside of fermented astragalus(with equal quantity of crude drugastragalus) and crude drug astragalus was0.038%and0.040%. Changes ofCalycosin-7-glucoside content before and after fermentation was not significant (P<0.05) after the quality conversion, while the content of astragaloside Ⅳ infermented astragalus was reduced by27.6%comparing with crude drug astragalus.Therefore, content of calycosin-7-glucoside and astragaloside Ⅳ could be used forquality control of fermented astragalus.
     (2) Extraction, isolation and quantitative determination of the astragalosides andpolysaccharides of fermented astragalus and crude drug astragalus
     Method of comprehensive extraction of astragalus polysaccharides andastragalosides was carried out to screen the extraction process. The results showedthat the optimum extracting conditions of astragalosides and polysaccharides were asfollows: Weighed a certain amount of astragalus powder and soaked in10times of themedicine amount of80%ethanol at room temperature for12h in a closed container,then it was reflux extracted at80℃twice,1h per time. The mixture of twice medicalliquids was used in extracting astragalosides and the herbal residues were dried andused in extracting polysaccharides.(A) Process for extraction of astragalosides:Solution of ethanol extracting was filtrated and concentrated by reducing pressuredistillation into liquid extract. Dissolved a certain amount of liquid extract in50timesof the medicine amount (mL/g) of purified water then were absorbed by AB-8macropore resin, there was eluted with4times in column volume of80%ethanol. Theeluates were concentrated by reducing pressure distillation and derived astragalosidesenrichment site.(B) Through comparision the extraction method of immersionmethod, traditional decoction method, assisted extraction with cellulase and saturatedlimewater method. The immersion method was optimized for polysaccharides'extraction: Herbal residues were extracted by20times water (purified water to herbalresidues amount, mL/g) at80℃for4.5h, got water extracts, then was centrifuged,condensed, deproteinized by Sevag method, dialysed, added ethyl alcohol to4timesof the volume of the resulting dialyzed filtrate, the mixture was stirred and depositedfor12h and then centrifuged, the precipitate was washed with absolute ethyl alcohol,acetone, and diethyl ether,2times separately. Polysaccharides was oven dried at60℃.(C) Vanillin-sulfuric acid method for determing astragalosides content, results showedthat content of crude drug astragalus extract and fermented astragalus extract were16.87%and10.81%, extraction ratio of astragalosides from crude drug astragalus and fermented astragalus were0.0654%,0.0558%. Astragalosides content of AB-8derived astragalosides enrichment site was81.23%. Phenol-sulfuric acid method fordeterming polysaccharides content, results showed that content of fermentedastragalus polysaccharides (FAPS) and yield rate were66.59%and4.35%; crude drugastragalus polysaccharides (APS) and yield rate were36.01%and2.73%. Thecomponent sugars of FAPS-2and FAPS-3were confirmed by thin layerchromatography (TLC). Results showed that FAPS were composed of mannose(D-Man) and glucose (D-Glu), et al. Content of the main FAPS fraction FAPS-2~(-1)was95.41%, its weight average molecular weight (Mw) was1,753,456Da and thenumber average molecular weight (Mn) was1,564,267Da. Results showed thatpolysaccharides content in fermented astragalus was increased by84.92%, the gainratio was increased by59.34%, while the extract ratio of astragalosides was reducedby17.20%.
     (3) Effects and mechanism of the FAPS on experimental hepatic fibrosis in rats
     Sixty male SD rats were divided into six groups randomly, liver fibrosis modelwas made by subcutaneous injection of CCl4in5groups of the rats for8weeks.Simultaneously, administered FAPSH200mg·kg~(-1)·d~(-1), FAPSM100mg·kg~(-1)·d~(-1), FAPSL50mg·kg~(-1)·d~(-1), colchicine (Col.)0.2mg·kg~(-1)·d~(-1)to the groups of treatment, and themodel group and control group were administered with the equal volume ofphysiological saline solution. Rat’s body weight in groups of FAPS were higher thanthe model group, after treating with FAPSH, ALT, AST, and ALP activity in serumwere significantly reduced compared with model group (P<0.01), content of Hyp inliver tissue (P<0.05) and PⅢNP, CⅣ, LN, HA in serum were also reducedsignificantly. FAPSHcould effectively increase the low level of GSH-Px (P<0.01),GST in serum and T-AOC (P<0.05) in liver tissue. High levels of GSH and MDA inliver tissue were tended to normal. H.E. staining, Masson trichrome staining andelectric microscope were used to observed the histopathological changes of livertissues, pathological examination showed that hepatocyte fatty vacuolation, apoptosis,necrosis and liver fibrosis in CCl4model group were serious, pathological changeswere improved in the treated groups. Functions of anti-liver fibrosis of FAPS were proportionated to its dosage. FAPSHanti-liver fibrosis effect was equivalent to Col.,and the mechanism may be related to antioxidation.
     (4) Analysis of digital gene expression profiling (DGE) on the differences of geneexpression in every group of rats liver tissue
     Differences of gene expression and function in every group of rats liver tissuewere analyzed by DGE. Results showed that, there were162down-regulated genesand2162up-regulated genes between CCl4model group and control group.Differentially expressed genes took part in the formation of liver fibrosis through218signaling pathways of multiple cell biological processes. Multiple genes, particularlyin the PPAR signaling pathway, TGF-β signaling pathway, MAPK signaling pathways,VEGF signaling pathway and the Jak-STAT signaling pathway were down-regulated,which built the basis for screening new anti-liver fibrosis drugs.
     Comparing with the DGE of CCl4model group, results showed that FAPS couldinhibited the increasing of several key genes in the TGF-βand PPAR signalingpathways significantly, so that inhibited HSCs activity. Especially, expression ofSCD-1decreased significantly which showed that FAPS could inhibit the activity ofSCD. It is indicated that the mechanism of anti-liver fibrosis of FAPS was related withdecreasing the activity of SCD, the generation of monounsaturated fatty acids wasweaken, led to the reduction of hepatic lipid accumulation, so that inhibited theactivation of HSCs.
引文
[1].中华人民共和国卫生部药典委员会.中华人民共和国药典[M]北京:中国医药科技出版社,2010:283,403,761,870.
    [2].江苏新医学院.中药大辞典(缩印本)下册[M].上海:上海科学技术出版社,1986:2036.
    [3].田宏印.黄芪化学研究及其有效成分[J].云南民族学院学报(自然科学版).1996,5:75~79.
    [4].何侃,王惠康.近年来黄芪及其同属近缘植物的化学成分研究进展[J].药学学报.1988,23(11):873~880.
    [5].周冬梅,张海英,李武.正交试验优选黄芪多糖的提取工艺[J].新疆中医药.2007,25(109):83~86.
    [6].黄东杰,翟翠云.黄芪多糖的提取方法综述[J].企业科技与发展.2008,22:74~76.
    [7].倪艳,苏强,刘霞,等.黄芪多糖水煎提取工艺的优化试验研究[J].中国中药杂志.1998,23(5):284~285.
    [8].陈芳艳,梁永斌,王林川,等.黄芪提取方法的研究[J].广东畜牧兽医科技.2004,29(5):37~38.
    [9].丁利君,吴倩萍.黄芪多糖的提取及其对自由基的消除作用[J].食品与机械.2003,4:7~9.
    [10].刘永录,张国祖,樊克锋,等.黄芪多糖的提取和纯化方法研究[J].河南农业科学.2009,(6):141~143.
    [11].姜俊艳,陈旭东,李长坤.黄芪多糖的用途和提取[J].化学工程师.2003,4:55~56.
    [12].陈学伟,马书林.酶法提取黄芪多糖的研究[J].上海中医药杂志.2005,39(1):56~58
    [13].郑立颖,魏彦明,陈龙.纤维素酶在黄芪有效成分提取中的应用[J].甘肃农业大学学报.2005,40(1):94~95.
    [14].赵凤春,蒋艳忠.黄芪多糖微波提取工艺的研究[J].时珍国医国药.2009,20(4):912~913.
    [15].鲁建江,王莉,刘志勇,等.微波技术辅助测定黄芪中总黄酮和多糖的含量[J]中成药.2003,25(3):246~247.
    [16].王莉,刘志勇,鲁建江,等.黄芪多糖的微波提取及含量测定[J].中医药学报.2001,29(6):35~37.
    [17].龚盛昭,杨卓如.微波辅助提取黄芪多糖的工艺研究[J].华南理工大学学报.2004,34(8):93~98.
    [18].韩鲁佳,阎巧娟,江正强,等.黄芪多糖及皂苷提取工艺研究[J].农业工程学报,2000,16(5):118~121.
    [19].李万才.黄芪多糖的提取工艺及含量测定研究[J1.安徽农业科学.2009,37(10):4493~4498.
    [20].李树珍,赵红霞,白卫国.黄芪多糖不同提取工艺多糖含量的比较[J].中草药.1995,26(8):408~410.
    [21].田洛,宣依,范荣军.醇碱提取法提取黄芪多糖[J].吉林大学学报.2006,44(4):652~657.
    [22].于晓辉,万仁玲,欧阳林山,等.黄芪多糖的分离纯化和含量测定研究进展[J].中国兽药杂志.2005,42(9):50~52.
    [23].赵凤春.树脂吸附法分离纯化黄芪多糖的研究[J].食品与发酵工业.2009,35(253):179~181.
    [24].王淑萍,李晓静,张桂珍.黄芪多糖提取分离纯化工艺的优化研究[J].分子科学学报.2008,24(1):60~64.
    [25].闫巧娟,韩鲁佳,江正强.酶法脱除黄芪多糖中的蛋白质[J].食品科技.2004,6:23~26.
    [26].闫巧娟,韩鲁佳,江正强.酶法脱除黄芪多糖的分子量分布[J].食品科技.2004,25(8):27~30.
    [27].韩凤兰,李力,陈宇红,等.宁夏黄芪中多糖含量的测定方法对比[J].宁夏农林科技.2003,6:18~19.
    [28].王华付.黄芪中黄芪多糖含量的测定[J].安徽农业科学.2007,35(34):10948~11021.
    [29].王晓雷,徐梦丹.黄芪多糖中阿拉伯糖含量的测定[J].中成药.2003,25(11):925~926.
    [30].韩凤兰,胡建英.高效液相色谱层析法测定宁夏黄芪多糖的分子量及其分布[J].宁夏农林科技.2003,6:25~27.
    [31].单俊杰,王易.黄芪毛状根多糖与黄芪多糖化学组成及免疫活性的比较[J].中草药.2002,33(12):1096~1099.
    [32].张小梅,黄芪多糖的免疫调节作用及抗肿瘤作用研究进展[J].大连大学学报.2003,24(6):101~104.
    [33].黄立群.黄芪活性成分的药理活性研究进展[J].赤峰学院学报.2009,25(9):119~120.
    [34].Marashi Tomoda, Noriko Shimizu, Naoko Ohara, et al. A reticuloendothelialsystem-activating glycan from the hairy root cultures of Astragalus membranaceus [J].Phytochemistry.1992,31(1):63~66.
    [35].Noriko S. An acidic polysaccharide having activity on the reticuloendothelial system from thehairy root cultures of Astragalus membranaceus[J].Chem Pharm Bull.1991,39(11):2969~2972.
    [36].黄乔书,吕归宝,李雅臣,等.黄芪多糖的研究[J].药学学报.1982,17(3):200~206.
    [37].方盛鼎,陈燕,徐小异,等.中药黄芪有效成分的研究多糖体的分离、性质极其生理活性[J].有机化学.1982,(1):26~31.
    [38].王莹,赵毅民,张起风,等.黄芪中一种新葡聚糖的分离纯化与化学结构研究[J].中草药,2001,32(11):962~964.
    [39].刘方明,李志孝,孟延发,等.红芪多糖RHG的分离纯化及化学结构[J].药学学报.1997,32(8):603~606.
    [40]林梦感,杨义芳,许海燕.黄芪多糖MAPS-5的化学结构及其体外抗淋巴细胞增殖活性[J].中草药.2009,40(12):1865~1868.
    [41].方积年,丁侃.多糖的研究开发中值得注意的一些问题[J].食品与药品.2007,9(12):1~4.
    [42].高微微,曹丽,李展等.黄芪成分对鸡外周血淋巴细胞增殖反应的影响[J].中医药学刊.2003,21(12):2011~2012,2029.
    [43].唐雪明,刘家国,宋大鲁.黄芪多糖对雏鸡外周血中NK细胞活性的影响[J].中国兽医杂志.1997,23(1):44~45.
    [44].胡庭俊,梁纪兰,程富胜,等.黄芪多糖对鸡脾脏淋巴细胞内游离钙离子浓度的影响[J].中国兽医医药杂志.2001,5:4~6.
    [45].王德昌.黄芪多糖FB对人血淋巴细胞免疫功能的影响[J].中华肿瘤杂志.1989,11(3):180~183.
    [46].梁华平,张艳,耿波.黄芪多糖对烧伤小鼠细胞免疫功能的影响[J].中华整形烧伤外科杂志.1994,10(2):138~141.
    [47].唐雪明,胡元亮,张宝康.应用乳酸脱氢酶释放法研究黄芪多糖对雏鸡外周血中自然杀伤细胞活性的影响[J].中兽医学杂志.1997,20(2):911.
    [48].张晓明.IL-2和黄芪对小鼠NK细胞的作用:细胞化学和超微结构[J].解剖学报.1991,22(1):76~80.
    [49].苏群,方强.黄芪注射液联用西药治疗急性病毒性心肌炎对自然杀伤细胞活性及可溶性白介素-2受体水平的影响[J].中国中西医结合急救杂志.2000,7(2):75~77.
    [50].Huang Qia-shu, Lu Gui-bao, Li Ya-Chen. Studies of the polysaccharides of Astragalusmongholicus [J]. Acta Pharmaceutica Sinica.1982,17(3):200~206.
    [51].李宏全,段县平.黄芪多糖对鸡新城疫和传染性腔上囊病疫苗免疫力的影响[J].中国兽医医学杂志.2001,31(9):12~14.
    [52].申志强,孙俊秀,黄立新.黄芪治疗选择性免疫球蛋白A缺乏[J].新药与临床.1997,16(4):246~247.
    [53].殷静.黄芪药理研究与临床应用[J].时针国药研究.1998,9(3):230~231.
    [54].边传周,王老七.黄芪多糖对断奶仔猪免疫功能及腹泻的影响[J].畜牧与兽医.2005,37(1):10~12.
    [55].周淑英.黄芪多糖对小白鼠免疫功能的影响[J].江苏中医.1994,15(12):41~44.
    [56].张艳.黄芪多糖的烧伤小鼠细胞免疫功能的作用[J].中国药理学通报.1995,11(2):136~138.
    [57].魏萍,李庆章.黄芪多糖和香菇多糖对VAMV感染雏鸡免疫器官LPO含量的影响[J].中兽医医药杂志.1999,(3):4~7.
    [58].中药大辞典(上册)[M].上海:上海科学技术出版社,1986:291~292.
    [59].杨五彪,陈群力,马灵筠,等.黄芪多糖对兔动脉粥样硬化内皮素-1、C反应蛋白的影响[J].中华实用中西医杂志.2005,18(14):317~319.
    [60].吴勇,欧阳静萍,涂淑珍等.黄芪多糖对糖尿病大鼠微血管病变的作用及机制的研究[J].湖北中医学院学报.2001,3(3):16~17.
    [61].Wu D Z, Hu Z B. Effect of astragaloside Ⅳ on the increase of microvascular permeabilityinduced by histamine in pial microvessels of rat [J]. Zhongguo Zhong Yi Yao Za Zhi.2001,26(12):850~853.
    [62].潘云芳,龚海洋.注射用黄芪多糖粉针剂对正常小鼠血常规的影响[J].中国药理通讯.2003,21(1):50.
    [63].张仲平,洪介民.黄芪多糖对体外骨髓造血祖细胞生成的影响[J].中药药理与临床.2000,16(1):16~17.
    [64].许艳,高佩琦,梁庆成,等.黄芪多糖对脑血栓的疗效实验研究[J].中国血液流变学杂志.1999,9(3):133~136.
    [65].张艳,明亮,李卫平,等.黄芪多糖对小鼠实验性肝损伤的保护作用[J].安徽医科大学学报,1995,30(3):182~184.
    [66].王道苑.黄芪多糖对小鼠肝细胞核酸代谢的影响[J].中国药理学报.1982,3(3):204.
    [67].冯涛,张保国.黄芪多糖对肝癌HepG2细胞的抑制作用及其机制[J].实用老年医学.2010,24(6):486~488,495.
    [68].张霄翔,杨雁,陈敏珠.黄芪多糖对HSC-T6细胞增殖及胶原产生的影响[J].中国临川药理学与治疗学.2003,8(6):645~647.
    [69].王道苑,杨蔚怡,翟世康等.黄芪多糖对核酸代谢的影响[J].生物化学与生物物理学报.1980,12(4):343~348.
    [70].王道苑,李从艺,庞大伟.黄芪多糖对RNase和RNase抑制因子的作用[J].生物化学与生物物理学报.1984,16(3):285~290.
    [71].王道苑.黄芪多糖对核酸酶及其抑制因子平衡系统的保护作用[J].中西药结合杂志,1987,7(2):93~96.
    [72].王瑞遵.黄芪多糖的分离纯化及体外抗氧化活性研究[D].郑州:郑州大学,2010.
    [73].孙成文,江岩,钟国赣.黄芪多糖抗氧化损伤作用的研究[J].中国药理学通报,1996,12(2):161~163.
    [74].郝艳红,李庆章,张锡龙.黄芪多糖对vMDV感染雏鸡体内脂质过氧化物含量的影响[J].中国预防兽医学报.1999,21(3):174~175.
    [75].贺生中,张斌,谭菊,等.黄芪多糖对雏鸡感染IBDV后血液中SOD活性和MDA含量的影响[J].江苏农业科学.2007,(6):185~187.
    [76].Friedman SL. Seminars in medicine of the Beth Israel Hospital, Boston. The cellular basis ofhepatic fibrosis. Mechanisms and treatment strategies [J]. N Engl J Med..1993,328:1828~1835.
    [77].Geerts A. History, heterogeneity, developmental biology, and functions of quiescent hepaticstellate cells [J]. Semin. Liver Dis..2001,21:311~335.
    [78].Virginia Hernandez-Gea, Scott L. Friedman. Pathogenesis of Liver Fibrosis [J]. Annu. Rev.Pathol. Mech. Dis..2011,6:425~456.
    [79].李莉娜,贾心善.肝脏星状细胞与细胞外基质、金属蛋白酶的研究进展[J].日本医学介绍.2002,23:139~141.
    [80].Schuppan D, Ruehl M, Somasundaram R, et al. Matrix as modulator of stellate cell andhepatic fibrogenesis [J]. Semin. Liver Dis.2001,21:351~372.
    [81].Avraamides CJ, Garmy-Susini B, Varner JA. Integrins in angiogenesis andlymphangiogenesis [J]. Nat. Rev. Cancer.2008,8:604~617.
    [82].Stupack DG. The biology of integrins [J]. Oncology.2007,21:6~12.
    [83].Friedman SL. Hepatic stellate cells-protean, multifunctional, and enigmatic cells of the liver[J]. Physiol. Rev.2008,88:125~172.
    [84].Popov Y, Patsenker E, Stickel F, et al. Integrin αvβ6is a marker of the progression of biliaryand portal liver fibrosis and a novel target for antifibrotic therapies [J]. J. Hepatol.2008,48:453~464.
    [85].Hehlgans S, Haase M, Cordes N. Signaling via integrins: implications for cell survival andanticancer strategies [J]. Biochim. Biophys. Acta.2007,1775:163~180.
    [86].Omenetti A, Porrello A, Jung Y, et al. Hedgehog signaling regulates epithelialmesenchymaltransition during biliary fibrosis in rodents and humans [J]. J. Clin. Investig.2008,118:3331~3342.
    [87].Omenetti A, Popov Y, Jung Y, et al. The hedgehog pathway regulates remodelling responsesto biliary obstruction in rats [J]. Gut.2008,57:1275~1282.
    [88].Kesteloot F, Desmouliere A, Leclercq I, et al. ADAM metallopeptidase with thrombospondintype1motif2inactivation reduces the extent and stability of carbon tetrachloride–inducedhepatic fibrosis in mice [J]. Hepatology.2007,46:1620~1631.
    [89].Niiya M, Uemura M, Zheng XW, et al. Increased ADAMTS-13proteolytic activity in rathepatic stellate cells upon activation in vitro and in vivo [J]. J. Thromb. Haemost.2006,4:1063~1070.
    [90].Olaso E, Labrador JP, Wang L, et al. Discoidin domain receptor2regulates fibroblastproliferation and migration through the extracellular matrix in association with transcriptionalactivation of matrix metalloproteinase2[J]. J. Biol. Chem.2002,277:3606~3613.
    [91].Ikeda K,Wang LH, Torres R, et al. Discoidin domain receptor2interacts with Src and Shcfollowing its activation by type I collagen [J]. J. Biol. Chem.2002,277:19206~19212.
    [92].Labrador JP, Azcoitia V, Tuckermann J, et al. The collagen receptor DDR2regulatesproliferation and its elimination leads to dwarfism [J]. EMBO Rep.2001,2:446~452.
    [93].Mao TK, Kimura Y, Kenny TP, et al. Elevated expression of tyrosine kinase DDR2in primarybiliary cirrhosis [J]. Autoimmunity.2002,35:521~529.
    [94].Friedman SL. The answer: angiotensin Ⅱ. The question: what do inflammation, oxidantstress and fibrogenesis have in common [J]. J Hepatol.2004,40(6):1050~1052.
    [95].Griendling KK, Ushio-Fukai M. Reactive oxygen species as mediators of angiotensin Ⅱsignaling [J]. Regul Pept.2000,91(1-3):21~27.
    [96].李旭,孟莹,蔡绍曦,等.血管紧张素Ⅱ和醛固酮对肝星状细胞细胞外通路调控的体外研究[J].中华医学杂志.2005,85(26):1831~1835.
    [97].张愚,黄华,王芳.TGF-β、bFGF与肝纤维化的关系[J].中国临床医药研究杂志.2004,126.
    [98].Kordes C, Sawitza I, Haussinger D. Hepatic and pancreatic stellate cells in focus [J]. BiolChem.2009,390(10):1003~1012.
    [99].Atzori L, Poli G, Perra A. Hepatic stellate cell: a star cell in the liver [J]. Int J Biochem CellBiol.2009,41(8-9):1639~1642.
    [100].Novo E, di Bonzo LV, Cannito S, et al. Hepatic myofibroblasts: a heterogeneous populationof multifunctional cells in liver fibrogenesis [J]. Int J Biochem Cell Biol.2009,41(11):2089~2093.
    [101].Friedman SL. Molecular regulation of hepatic fibrosis, an integrated cellular response totissue injury [J]. J Biol Chem.2000,275(4):2247~2250.
    [102].周斌,姚乃礼.肝星状细胞中药血清药理学实验研究概况[J].中国中西医结合杂志.2004,24:376~377.
    [103].Kim WH, Matsumoto K, Bessho K, et al. Growth inhibition and apoptosis in livermyofibroblasts promoted by hepatocyte growth factor leads to resolution from liver cirrhosis[J]. Am J Pathol.2005,166:1017~1028.
    [104].Marra F, Bertolani C. Adipokines in liver diseases [J]. Hepatology.2009,50:957~969.
    [105].Saxena NK, Ikeda K, Rockey DC, et al. Leptin in hepatic fibrosis: evidence for increasedcollagen production in stellate cells and lean littermates of ob/ob ice [J]. Hepatology.2002,35(4):762~771.
    [106].Cao Q, Mak KM, Lieber CS, et al. Leptin enhances α1(I) collagen gene expression in LX-2human hepatic stellate cells through JAK-mediated H2O2-dependent MAPK pathways [J]. JCell Biochem.2006,97(1):188~197.
    [107].Marra F. Leptin and liver tissue repair: Do rodent models provide the answers?[J]. J.Hepatol.2007,46:12~18.
    [108].Ikejima K, Takei Y, Honda H, et al. Leptin receptor-mediated signaling regulates hepaticfibrogenesis and remodeling of extracellular matrix in the rat[J]. Gastroenterology.2002,122:1399~1410.
    [109].Saxena NK, Sharma D, Ding X, et al. Concomitant activation of the JAK-STAT, PI3K/AKT,and ERK signaling is involved in leptin-mediated promotion of invasion and migration ofhepatocellular carcinoma cells [J]. Cancer Res.2007,67:2497~2507.
    [110].Fava G, Alpini G, Rychlicki C, et al. Leptin enhances cholangiocarcinoma cell growth[J].Cancer Res..2008,68:6752~6761.
    [111].Marra F. Leptin and liver fibrosis: a matter of fat [J]. Gastroenterology.2002,122:1529~1532.
    [112].Ding X, Saxena NK, Lin S, et al. The roles of leptin and adiponectin: a novel paradigm inadipocytokine regulation of liver fibrosis and stellate cell biology [J]. Am. J. Pathol.2005,166:1655~1669.
    [113].Adachi M, Brenner DA. High molecular weight adiponectin inhibits proliferation of hepaticstellate cells via activation of adenosine monophosphate-activated protein kinase [J].Hepatology.2008,47:677~685.
    [114].Moreno M, Bataller R. Cytokines and renin-angiotensin system signaling in hepatic fibrosis[J]. Clin. Liver Dis.2008,12:825~852.
    [115].Cao Q, Mak KM, Ren C, et al. Leptin stimulates tissue inhibitor of metalloproteinase-1inhuman hepatic stellate cells: respective roles of the JAK-STAT and JAK-mediatedH2O2-dependent MAPK pathways [J]. J. Biol. Chem.2004,279:4292~4304.
    [116].Gao B. Cytokines, STATs and liver disease[J]. Cell Mol. Immunol.2005,2:92~100.
    [117].Jeong WI, Park O, Radaeva S, et al. STAT1inhibits liver fibrosis in mice by inhibitingstellate cell proliferation and stimulating NK cell cytotoxicity[J]. Hepatology.2006,44:1441~1451.
    [118].Gressner AM, Weiskirchen R, Breitkopf K, et al. Roles of TGF-beta in hepatic fibrosis [J].Front Biosci.2002,(7):793~807.
    [119].Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-betafamily signaling [J]. Nature.2003,425:577~584.
    [120].Inagaki Y, Okazaki I. Emerging insights into TGFβand Smad signaling in hepaticfibrogenesis [J]. Gut.2007,56:284~292.
    [121].Breitkopf K, Godoy P, Ciuclan L, et al. TGF-β/Smad signaling in the injured liver [J]. Z.Gastroenterol.2006,44:57~66.
    [122].Chen YW, Li DG, Wu JX, et al. Tetrandrine inhibits activation of rat hepatic stellate cellsstimulated by transforming growth factor-beta in vitro via up-regulation of Smad7[J]. JEthnopharmaco.2005,100(3):299~305.
    [123].Schnabl B, Kweon YO, Frederick JP, et al. The role of Smad3in mediating mouse hepaticstellate cell activation [J]. Hepatology.2001,34(1):89~100.
    [124].Tahashi Y, Matsuzaki K, Date M, et al. Differential regulation of TGF-beta signal in hepaticstellate cells between acute and chronic rat liver injury [J]. Hepatology.2002,35(1):49~61.
    [125].Dooley S, Delvoux B, Lahme B, et al. Modulation of transforming growth factor betaresponse and signaling during transdifferentiation of rat hepatic stellate cells tomyofibroblasts [J]. Hepatology.2000,31:1094~1106.
    [126].Arthur M J P. Fibrosis and altered matrix degradation [J]. Digestion.1998,59:376~380.
    [127].韦燕飞,彭岳,谢海源,等.基于肝星状细胞分子机制的抗肝纤维化研究进展[J].世界华人消化杂志.2009,17(17):1745~1748.
    [128].Nakamura T, Ueno T, Sakamoto M, et al. Suppression of transforming growth factorbetaresults in upregulation of transcription of regeneration factors after chronic liver injury [J]. JHepatol.2004,41:974~982.
    [129].Li J, Hu W, Baldassare JJ, et al. The ethanol metabolite, linolenic acid ethyl ester, stimulatesmitogen-activated protein kinase and cyclin signaling in hepatic stellate cells [J]. Life Sci.2003,73(9):1083~1096.
    [130].Moreno M, Bataller R. Cytokines and renin-angiotensin system signaling in hepatic fibrosis[J]. Clin. Liver Dis.2008,12:825~852.
    [131].Pinzani M, Gesualdo L, Sabbah GM, et al. Effects of platelet-derived growth factor andother polypeptide mitogens on DNA synthesis and growth of cultured rat liver fat-storingcells [J]. J. Clin. Investig.1989,84:1786~9361.
    [132].Borkham-Kamphorst E, van Roeyen CR, Ostendorf T, el al. Pro-fibrogenic potential ofPDGF-D in liver fibrosis [J]. J. Hepatol.2007,46:1064~1074.
    [133].Pinzani M, Milani S, Herbst H, et al. Expression of platelet-derived growth factor and itsreceptors in normal human liver and during active hepatic fibrogenesis [J]. Am. J. Pathol.1996,148:785~800.
    [134].Wong L, Yamasaki G, Johnson RJ, et al. Induction of β-platelet-derived growth factorreceptor in rat hepatic lipocytes during cellular activation in vivo and in culture [J]. J. Clin.Investig.1994,94:1563~1569.
    [135].Lechuga CG, Hernandez-Nazara ZH, Hernandez E, et al. PI3K is involved in PDGF-βreceptor upregulation post-PDGF-BB treatment in mouse HSC [J]. Am. J. Physiol.Gastrointest. Liver Physiol.2006,291:1051~1061.
    [136].Aleffi S, Petrai I, Bertolani C, Parola M, et al. Upregulation of proinflammatory andproangiogenic cytokines by leptin in human hepatic stellate cells [J]. Hepatology.2005,42:1339~1348.
    [137].Bataller R, Schwabe RF, Choi YH, Yang L, Paik YH, et al. NADPH oxidase signaltransduces angiotensin II in hepatic stellate cells and is critical in hepatic fibrosis [J]. J. Clin.Investig.2003,112:1383~1394.
    [138].Pinzani M. PDGF and signal transduction in hepatic stellate cells [J]. Front Bio sci.2002,7:1720~1726.
    [139].Paez J, Sellers WR. PI3K/PTEN/AKT pathway. A critical mediator of oncogenic signaling.Cancer Treat. Res.2003,115:145~167.
    [140].Adachi T, Togashi H, Suzuki A, et al. NAD(P)H oxidase plays a crucial role inPDGF-induced proliferation of hepatic stellate cells [J]. Hepatology.2005,41(6):1272~1281.
    [141].Gabele E, Reif S, Tsukada S, et al. The role of p70s6k in hepatic stellate cell collagen geneexpression and cell proliferation [J]. J Biol Chem.2005,280(4):13374~13382.
    [142].Potthoff MJ, Olson EN. MEF2: a central regulator of diverse developmental programs [J].Development.2007,134:4131~4140.
    [143].Wang X, Tang X, Gong X, et al. Regulation of hepatic stellate cell activation and growth bytranscription factor myocyte enhancer factor2[J]. Gastroenterology.2004,127:1174~1188.
    [144].Herrmann J, Borkham-Kamphorst E, Haas U, et al. The expression of CSRP2encoding theLIM domain protein CRP2is mediated by TGF-βin smooth muscle and hepatic stellate cells[J]. Biochem. Biophys. Res. Commun.2006,345:1526~1535.
    [145].Mann J, Mann DA. Transcriptional regulation of hepatic stellate cells [J]. Adv. Drug. Deliv.Rev.2009,61:497~512.
    [146].Wandzioch E, Kolterud A, Jacobsson M, et al. Lhx2-/-mice develop liver fibrosis [J]. Proc.Natl. Acad. Sci.2004,101:16549~16554.
    [147].Park EY, Shin SM, Ma CJ, et al. Meso-dihydroguaiaretic acid from Machilus thunbergiidown-regulates TGF-β1gene expression in activated hepatic stellate cells via inhibition ofAP-1activity [J]. Planta Med.2005,71:393~338.
    [148].Chen A, Beno DWA, Davis BH. Suppression of stellate cell type I collagen gene expressioninvolves AP-2transmodulation of nuclear factor1-dependent gene transcription [J]. J. Biol.Chem.1996,271:25994~25998.
    [149].Anania FA, Potter JJ, Rennie-Tankersley L, et al. Effects of acetaldehyde on nuclear proteinbinding to the nuclear factor I consensus sequence in theα2(I) collagen promoter [J].Hepatology.1995,21:1640~1648.
    [150].Bell DM, Leung KK, Wheatley SC, et al. SOX9directly regulates the type-Ⅱ collagengene [J]. Nat. Genet.1997,16:174~178.
    [151].Yang L, Chan CC, Kwon OS, et al. Regulation of peroxisome proliferator-activatedreceptor-gamma in liver fibrosis [J]. Am J Physiol Gastrointest Liver Physiol.2006,291:902~911.
    [152].Galli A, Crabb D, Price D, et al. Peroxisome proliferator activated receptor gammatranscriptional regulation is involved in platelet-derived growth factor-induced proliferationof human hepatic stellate cells [J]. Hepatology.2000,31(1):101~108.
    [153].Miyahara T, Schrum L, Rippe R, et al. Peroxisome proliferator-activated receptors andhepatic stellate cell activation [J]. J Biol Chem..2000,275(46):35715~35722.
    [154].Hazra S, Xiong S, Wang J, et al. Peroxisome prolifer-ator-activated receptor gamma inducesa phenotypic switch from activated to quiescent hepatic stellate cells [J]. J Biol Chem.2004,279(12):11392~11401.
    [155].Ohata M, Lin M, Satre M, Tsukamoto H.1997. Diminished retinoic acid signaling in hepaticstellate cells in cholestatic liver fibrosis [J]. Am. J. Physiol.272:589~596.
    [156].Gressner A M. Transdifferentiation of hepatic stellate cells (Ito cells) to myofibro-blasts: akey event in hepatic fibrogenesis [J]. Kidnet Int.1996,49:39~45.
    [157].Chang XM, Chang Y, Jia A. Effects of interferonalpha on expression of hepatic stellate celland transforming growth factor-beta1and alpha-smoothmuscle actin in rats with hepaticfibrosis [J]. World J Gastroenterol.2005,11:2634~2636.
    [158].Milliano MT, Luxon BA. Rat hepatic stellate cells become retinoid unresponsive duringactivation [J]. Hepatol. Res.2005,33:225~233.
    [159].Hellemans K, Verbuyst P, Quartier E, et al. Differential modulation of rat hepatic stellatephenotype by natural and synthetic retinoids [J]. Hepatology.2004,39(1):97~108.
    [160].Kuipers F, Claudel T, Sturm E, et al. The farnesoid X receptor (FXR) as modulator of bileacid metabolism [J]. Rev. Endocr. Metab. Disord.2004,5:319~326.
    [161].Fiorucci S, Antonelli E, Rizzo G, et al. The nuclear receptor SHP mediates inhibition ofhepatic stellate cells by FXR and protects against liver fibrosis [J]. Gastroenterology.2004,127:1497~1512.
    [162].Haughton EL, Tucker SJ, Marek CJ, et al. Pregnane X receptor activators inhibit humanhepatic stellate cell transdifferentiation in vitro [J]. Gastroenterology.2006,131:194~209.
    [163].Fiorucci S, Antonelli E, Rizzo G, et al. The nuclear receptor SHP mediates inhibition ofhepatic stellate cells by FXR and protects against liver fibrosis [J]. Gastroenterology.2004,127:1497~1512.
    [164].Huang GC, Zhang JS, Tang QQ. Involvement of C/EBPα gene in in vitro activation of rathepatic stellate cells [J]. Biochem. Biophys. Res. Commun.2004,324:1309~1318.
    [165].Zhang JW, Tang QQ, Vinson C, et al. Dominant-negative C/EBP disrupts mitotic clonalexpansion and differentiation of3T3-L1preadipocytes [J]. Proc. Natl. Acad. Sci. USA.2004,101:43~47.
    [166].Geier A, Kim SK, Gerloff T, et al. Hepatobiliary organic anion transporters are differentiallyregulated in acute toxic liver injury induced by carbon tetrachloride [J]. J. Hepatol.2002,37:198~205.
    [167].Greenwel P, Dominguez-Rosales JA, Mavi G, et al. Hydrogen peroxide: a link betweenacetaldehyde-elicited α1(I) collagen gene up-regulation and oxidative stress in mouse hepaticstellate cells [J]. Hepatology.2000,31:109~116.
    [168].Iraburu MJ, Dominguez-Rosales JA, Fontana L, et al. Tumor necrosisfactorαdown-regulates expression of theα1(I) collagen gene in rat hepatic stellate cellsthrough a p20C/EBPβ-and C/EBPδ-dependent mechanism [J]. Hepatology.2000,31:1086~1093.
    [169].Buck M, Chojkier M. A ribosomal S-6kinase-mediated signal to C/EBP-β is critical for thedevelopment of liver fibrosis [J]. PLoS ONE.2007,2:1372.
    [170].Canbay A, Taimr P, Torok N, et al. Apoptotic body engulfment by a human stellate cell lineis profibrogenic [J]. Lab Invest.2003,83(5):655~663.
    [171].Saile B, Knittel T, Matthes N, et al. CD95/CD95L-mediated apoptosis of the hepatic stellatecell. A mechanism terminating uncontrolled hepatic stellate cell proliferation during hepatictissue repair [J]. Am J Pathol.1997,151(5):1265~1272.
    [172].Uyama N, Shimahara Y, Okuyama H, et al. Carbenoxlone inhibits DNA synthesis andcollagen gene expression in rat hepatic stellate cells in culture [J]. J Hepatol.2003,5(39):749~755.
    [173].Saile B, DeRocco P, Dudas J, et al. IGF-I induces DNA synthesis and apoptosis in rat liverhepatic stellate cells (HSC) but DNA synthesis and proliferation in rat livermyofibroblasts(rMF)[J]. LabInvest.2004,(84):1037~1049.
    [174].Issa R, Zhou X, Constandinou CM, et al. Spontaneous recovery from micronodular cirrhosis:evidence for incomplete resolution associated with matrix cross-linking [J]. Gastroenterology.2004,126(7):1795~1808.
    [175].Li S, Sedivy JM. Raf-l Protein kinase activates the NF-kappa B transcription factor byDissociating the cytoplasmic NF-kappa B-I kappa B complex [J]. Proc Natl Acad Sci USA.1993,90:9247~9251.
    [176].Chakraborty BC, Mann D. NF-κB signaling: embracing complexity to achieve translation[J]. J. Hepatology.2010,52:285~291.
    [177].Watson MR, Wallace K, Gieling RG, et al. NF-κB is a critical regulator of the survival ofrodent and human hepatic myofibroblasts [J]. J. Hepatol.2008,48:589~597.
    [178].Novitskiy G, Ravi R, Potter JJ, et al. Effects of acetaldehyde and TNF alpha on theinhibitory kappa B-alpha protein and nuclear factor kappa B activation in hepatic stellatecells [J]. Alcohol.2005,40(2):96~101.
    [179].Tergaonkar V. NFκB pathway: a good signaling paradigm and therapeutic target [J]. Int. J.Biochem. Cell Biol.2006,38:1647~1653.
    [180].Oakley F, Mann J, Ruddell RG, et al. Basal expression of IκBαis controlled by themammalian transcriptional repressor RBP-J (CBF1) and its activator Notch1[J]. J. Biol.Chem.2003,278:24359~24370.
    [181].Mann J, Oakley F, Akiboye F, et al. Regulation of myofibroblast transdifferentiation byDNA methylation and MeCP2: implications for wound healing and fibrogenesis [J]. CellDeath Differ.2007,14:275~285.
    [182].Elsharkawy AM, Mann DA. Nuclear factor-κB and the hepatic inflammation-fibrosis-cancer axis [J].Hepatology.2007,46:590~597.
    [183].Mieheau O, Tschopp J. Induction of TNF receptor I-mediated apoptosisvia two sequentialsignaling complexes [J]. Cell.2003,114:181~190.
    [184].Gao R, Brigstock DR. Activation of nuclear factor kappa B (NF-kappa B) by connectivetissue growth factor (CCN2) is involved in sustaining the survival of primary rat hepaticstellate cells [J]. Cell Commun Signa.2005,3:14.
    [185].崔东来.抑制NF-κB诱导肝星状细胞凋亡[D].石家庄:河北医科大学,2006.
    [186].Fiorucci S, Antonelli E, Rizzo G, et al. The nuclear receptor SHP mediates inhibition ofhepatic stellate cells by FXR and protects against liver fibrosis [J]. Gastroenterology.2004,127:1497~1512.
    [187].Fiorucci S, Rizzo G, Antonelli E, et al. A FXR-SHP regulatory cascade modulates TIMP-1and MMPs expression in HSCs and promotes resolution of liver fibrosis [J]. J. Pharmacol.Exp. Ther.2005,314:584~595.
    [188].Teixeira-Clerc F, Julien B, Grenard P, et al. CB1cannabinoid receptor antagonism: a newstrategy for the treatment of liver fibrosis [J]. Nat. Med.2006,12:671~676.
    [189].Mallat A, Teixeira-Clerc F, Deveaux V, et al. Cannabinoid receptors as new targets ofantifibrosing strategies during chronic liver diseases [J]. Expert Opin. Ther. Targets.2007,11:403~409.
    [190].Julien B, Grenard P, Teixeira-Clerc F, et al. Antifibrogenic role of the cannabinoid receptorCB2in the liver [J]. Gastroenterology.2005,128:742~755.
    [191].Passino MA, Adams RA, Sikorski SL,et al. Regulation of hepatic stellate cell differentiationby the neurotrophin receptor p75NTR [J]. Science.2007,315:1853~1856.
    [192].Cassiman D, Denef C, Desmet VJ, et al. Human and rat hepatic stellate cells expressneurotrophins and neurotrophin receptors [J]. Hepatology.2001,33:148~158.
    [193].Trim N, Morgan S, Evans M, et al. Hepatic stellate cells express the low affinity nervegrowth factor receptor p75and undergo apoptosis in response to nerve growth factorstimulation [J]. Am. J. Pathol.2000,156:1235~1243.
    [194].Kim WH, Matsumoto K, Bessho K, et al. Growth inhibition and apoptosis in livermyofibroblasts promoted by hepatocyte growth factor leads to resolution from liver cirrhosis[J]. Am. J. Pathol.2005,166:1017~1028.
    [195].Inagaki Y, Higashi K, KushidaM, et al. Hepatocyte growth factor suppresses profibrogenicsignal transduction via nuclear export of Smad3with galectin-7[J]. Gastroenterology.2008,134:1180~1190.
    [196].Higashiyama R, Inagaki Y, Hong YY, et al. Bone marrow–derived cells express matrixmetalloproteinases and contribute to regression of liver fibrosis in mice [J]. Hepatology.2007,45:213~222.
    [197].Ikejima K, Okumura K, Kon K, et al. Role of adipocytokines in hepatic fibrogenesis [J]. J.Gastroenterol. Hepatol.2007,22(Suppl.1):87~92.
    [198].Qamar A, Sheikh SZ, Masud A, et al. In vitro and in vivo protection of stellate cells fromapoptosis by leptin [J]. Dig. Dis. Sci.2006,1697~1705.
    [199].Saxena NK, Titus MA, DingX, et al. Leptin as a novel profibrogenic cytokine in hepaticstellate cells: mitogenesis and inhibition of apoptosis mediated by extracellular regulatedkinase (ERK) and Akt phosphorylation [J]. FASEB J.2004,18:1612~1614.
    [200].Radaeva S, SunR, Jaruga B, et al. Natural killer cells ameliorate liver fibrosis by killingactivated stellate cells in NKG2D-dependent and tumor necrosis factor-relatedapoptosisinducing ligand-dependent manners [J]. Gastroenterology.2006,130:435~452.
    [201].Gieling RG, Burt AD, Mann DA. Fibrosis and cirrhosis reversibility-molecular mechanisms[J].Clin. Liver Dis.2008,12:915~937, xi.
    [202].王玉红,丁重阳,徐鹏,等.中药黄芪对发酵生产灵芝多糖的影响[J].食品与生物技术学报.2005,24(2):38~40,45.
    [203].吴志勇.采用生物工程技术发酵中药获得成功[J].世界科学技术.2002,4(3):12.
    [204].Sheih IC, Fang TJ, Wu TK, et al. Purification and properties of a novel phenolic antioxidantfrom Radix astragali fermented by Aspergillus oryzae M29[J]. Journal of agricultural andfood chemistry.2011,59:6520~6525.
    [205].Arias M, Sauer-Lehnen S, Treptau J, et al. Adenoviral expression of a transforming growthfactor-betal antisense mRNA is effective in preventing liver fibrosis in bile-duct ligated rats[J]. BMC Gastroenterol.2003,18(3):29.
    [206].Guangfu X, Pengtao L, Xinyue W, et al. Dynamic changes in the expression of matrixmetalloproteinases and their inhibitors, TIMPs, during hepatic fibrosis induced by alcohol inrats [J]. World J Gastroenterol.2004,10(24):3621~3627.
    [207].Ochi T, Kawakita T, Nomoto K, et al. Effects of Hochu-ekki-to and Nin-jin-youei-to,traditional Japanese medicines, on porcine serum-induced liver fibrosis in rats [J].Immunopharmacol Immunotoxicol.2004,26(2):285~298.
    [208].舒建昌,吴海恩,皮新军,等.姜黄素抑制肝纤维化大鼠脂质过氧化物的生成及肝脏TGF-β1和PDGF的表达[J].中国病理生理杂志.2007,23(12):2405~2409.
    [209].Aboutwerat A, Pemberton PW, Smith A, et al.Oxidant stress is a significant feature ofprimary biliary cirrhosis[J]. Biochim Biophys Acta.2003,1637:142~150.
    [210].Shimizu I. Impact of estrogens on the progression of liver disease [J]. Liver International.2003,23:63~69.
    [211].佘锐萍,李文贵,王英华,等.病毒性肝炎----值得警惕的重要人兽互传病[J].科技导报.2007,25(4):44~52.
    [212].赵根明.中国血吸虫病疫情纵向研究及晚期血吸虫病患者生存质量调查[D].上海:复旦大学,2008.
    [213].徐晓青,宁燕,李溥,沈振华,娄磊.猪带绦虫虫卵感染家猪致肝纤维化相关病理分析[J].中国病原生物学杂志.2011,(5):344~345,343,405.
    [214].龚艺贞.新西兰兔四氯化碳肝硬化模型的建立与黄曲霉毒素B1对该模型肝脏急性损伤作用的观察[D].南宁:广西医科大学,2008.
    [215].朱新术.发酵黄芪的乳酸菌选育与发酵参数优化研究[D].北京:中国农业科学院,2008.
    [216].Dang SS, Zhang X, Jia XL, et al. Protective effects of emodin and astragaluspolysaccharides on chronic hepatic injury in rats [J].Chin Med J.2008,121(11):1010~1014.
    [217]. Chen F, Cai W, Chen Z, et al. Dynamic changes in the collagen metabolism of liver fibrosisat the transcription level in rabbits with Schistosomiasis japonica [J]. Chin Med J (Engl).2002,5(1):1637~1640.
    [218].Yan F, Zhang QY, Jiao L, et al. Synergistic hepatoprotective effect of Schisandrae lignanswith Astragalus polysaccharides on chronic liver injury in rats[J]. Phytomedicine.2009,16:805~813.
    [219].Dang SS, Zhang X, Jia XL, et al. Protective effects of emodin and astragaluspolysaccharides on chronic hepatic injury in rats[J].Chin Med J.2008,121(11):1010~1014.
    [220].Sun WY, Wei W, Gui SY, et al. Protective effective of extract from Paeonia lactiflora andAstragalus membranaceus against liver injury induced by Bacillus Calmette-Guérin andlipopolysaccharide in mice[J]. Basic&Clinical Pharmacology&Toxicology.2008,103:143~149.
    [221].黄凤娇,李筠,赵艳玲,等.复方黄芪颗粒对四氯化碳致大鼠慢性肝损伤的保护作用[J].中国实验方剂学杂志.2006,12(3):34~37.
    [222].Lee TY, Wang GJ, Chiu JHt, et al. Long-term administration of Salvia miltiorrhizaameliorates carbon tetrachloride-induced hepatic fibrosis in rats [J]. J Pharm Pharmacol.2003,55(11):1561~1568.
    [223].徐凌川.山东产黄其中黄芪多糖和黄芪甲苷的含量测定[J].山东中国医药大学学报.2008,32(3):250~252.
    [224].梁丽娟,赵奎君,屠鹏飞,等.HPLC法同时测定黄芪中4种黄酮类成分的含量[J].中国药房.2010,21(15):1385~1387.
    [225].陈娟娟.发酵中草药在动物生产方面的应用展望[J].山西农业(畜牧兽医).2007,8.
    [226].徐萌萌,王建芳,等.微生物转化苷类中药的机理及应用[J].世界科学技术—中医药现化基础研究.2006,8:24~27.
    [227].Jia GT, Lu XY. Enrichment and purification of madecassoside and asiaticoside from centellaasiatica extracts with macroporous resins [J]. Journal of Chromatography A.2008,1193:136~141.
    [228].郭艳红.从茶籽中提取茶籽油、差皂素和茶籽多糖研究[D].上海:上海师范大学,2009.
    [229].中国科学院上海药物研究所编著.中草药有效成分提取与分离(第二版)[M].上海:上海科学技术出版社,1983:9~15.
    [230].Fu Y, Zu Y, Liu W, Hou C, Chen L, Li S, Shi X, Tong M. Preparative separation of vitexinand isovitexin from pigeonpea extracts with macroporous resins [J]. Journal ofChromatography A.2007,1139:206~213.
    [231].郭凯,梁建平,华兰英,等.大孔树脂对贯叶连翘中金丝桃素的静态吸附[J].精细化工.2010,27(10):987~990.
    [232].杨玲.黄芪的化学成分及其质量研究[D].北京:首都师范大学,2008.
    [233].孙瑞敏,刘冬平,陈俊,等.黄芪多糖的提取[J].南开大学学报(自然科学版).2005,38(1):33~36.
    [234].刘军海,任惠兰,官波,等.响应面分析法优化黄芪多糖提取工艺[J].食品工业.2008,(3):14~17.
    [235].李红民,黄仁泉,王亚洲.提高黄芪多糖提取收率的工艺研究[J].西北大学学报.2000,14(3):44~45.
    [236].闫巧娟.蒙古黄芪中多糖、皂苷及活性蛋白的提取分离[D].北京:中国农业大学,2005.
    [237].齐慧玲,魏绍云,王继伦,等.Sevag法去除白及多糖中蛋白的研究[J].天津化工.2000,(3):20~21.
    [238].贾刚.黄芪有效组分的提取分离及结构鉴定[D].长春:长春中医药大学,2008.
    [239].寇小红,江和源,崔宏春,等.膜过滤绿茶多糖的系统分级纯化及免疫活性分析[J].茶叶科学.2008,28(3):172~180.
    [240].董群,方积年.山豆根多糖的性质和化学组成[J].中国药学杂志.2001,36(2):85~87.
    [241].阎伯旭,齐飞,张颖舒,等.纤维素酶分子结果和功能研究进展[J].生物化学与生物物理进展.1999,26(3):233~237.
    [242].阎伯旭,高培基.纤维素酶的底物专一性[J].生命科学.2000,12:86~88.
    [243].杜薇.黄芪中黄芪皂甙的提取及含量测定[J].时珍国药研究,1996,7(4):217~218.
    [244].徐翠莲,杜林洳,樊素芳,等.多糖的提取、分离纯化及分析鉴定方法研究[J].河南科学.2009,27(12):1524~1529.
    [245].叶勇.植物多糖的分离纯化与制备[J].中国食品添加剂.2001,(5):29~31.
    [246].单俊杰,王顺春,刘涤,等.黄芪多糖的化学和药理研究进展[J].上海中医药大学学报.2000,14(3):61~65.
    [247].纪耀华,张明淑,徐力.黄芪多糖的研究进展[J].长春中医学院学报.1999,15(3):62~63.
    [248].Tomoda M, Shimizu N, Ohara N, Gonda R, Ishii S. Otsuki H. A reticuloendothelialsystem-activating glycan from the roots of Astragalus membranaceus [J]. Phytochemistry.1992,31(1):63~66.
    [249].邹丽宜,吴铁,崔燎.黄芪多糖对肝纤维化小鼠骨丢失的防治作用[J].中西医结合肝病志.2002,(2):95~98.
    [250].陈云茹,袁利超,党双锁.黄芪多糖治疗慢性病毒性乙型肝炎[J].世界最新医学信息文摘,2004,(3):1130~1131.
    [251].李淑萍,许晓燕,孙箴,周林福,羊正纲,陈峰,朱海红;陈智.黄芪多糖和黄芪总甙调控LX-2细胞因子分泌[J].浙江大学学报(医学版).2007,(6):543~548.
    [252].徐叔云,卞如濂,陈修.药理实验方法学(第三版)[M].北京:人民卫生出版社,2001:1350~1351.
    [253].Rosemary Smyth, Catherine S. Lane, Rukhsana Ashiq, et al. Proteomic investigation ofurnary markers of carbon-tetrachloride induced hepatic fibrosis in the Hanover Wistar rat [J].Cell Biol Toxicol.2009,25:499~512.
    [254].Gui SY, Wei W, Wang H, et al. Protective effect of fufanghuangqiduogan against acute liverinjury in mice[J]. World J Gastroenterol.2005,11(19):2984~2989.
    [255].Yan F, Zhang QY, Jiao L, et al. Synergistic hepatoprotective effect of Schisandrae lignanswith Astragalus polysaccharides on chronic liver injury in rats[J]. Phytomedicine.2009,16:805~813.
    [256].杜卓民.实用组织学技术(第二版)[M].北京:人民卫生出版社,1998,389~410.
    [257].Tsai JH, Liu JY, Wu TT, et al. Effects of silymarin on the resolution of liver fibrosis inducedby carbon tetrachloride in rats[J]. J Viral Hepat.2008,15(7):508~514.
    [258].Virginia Hernandez-Gea, Scott L. Friedman. Pathogenesis of Liver Fibrosis [J]. Annu. Rev.Pathol. Mech. Dis.2011,6:425~456.
    [259].Martin-Aragon S, delas Heras B, Sanchez-Reus MI, et al. Pharmacological modification ofendogenous antioxidant enzymes by ursolic acid on tetrachloride-induced liver damage inrats and primary cultures of rat hepatocytes [J].Experimental and toxicologic pathology.2001,53(2-3):199~206.
    [260].Boll M, Weber LW, Becker E, et al. Mechanism of carbon tetrachloride-inducedhepatotoxicity. Hepatocellular damage by reactive carbon tetrachloride metabolites [J].Zeitschrift für Naturforschung. C, Journal of biosciences.2001,56:649~659.
    [261].Spiteller G. Are lipid peroxidation processes induced by changes in the cell wall structureand how are these processes connected with diseases?[J] Med Hypotheses.2003,60(1):69~83.
    [262].Albano E. Free radical mechanisms in immune reactions associated with alcoholic liverdisease [J]. Free Radic Biol Med.2002,32(2):110~114.
    [263].Xu JY, Fu YM, Chen AP. Activation of peroxisome proliferator-activatedreceptor-γcontributes to the inhibitory effects of curcumin on rat hepatic stellate cellgrowth[J]. Am J Physiol Gastrointest Liver Physiol.2003,285:20~30.
    [264].叶应妩主编.全国临床检验操作规程(第二版)[M].南京:东南大学出版社,1997:206~216.
    [265].Jiang Z, You DY, Chen XC, et al. Mornitoring of serum markers of fibrosis during CCl4-induced liver damage-effects of antifibrotiec agents [J]. J Hepatol.1992,16(3):282~289.
    [266].Maezono K, Kajiwara K, Mawatari K, et al. Alanine protects liver from injury caused byF-galactosamine and CC14[J]. Hepatology.1996,24(1):185~191.
    [267].Yoshikawa M, Ninomiya K, Shimoda H. Hepatoprotective and antioxidative properties ofSalacia reticulate: preventive effects of phenolic constituents on CCl4-induced liver injury inmice[J]. Biol Pharm Bull.2002,25(1):72~76.
    [268].Soni MG, Mehendale HM. Protection from Chlordecone amplified carbon tetrachloridetoxicity by cyanidanol: biochemical and histological studies [J].Toxicol Appl Pharmacol.1991,108:46~57.
    [269].卢艳如,褚燕君.螺旋藻对大鼠实验性肝纤维化的预防作用[J].中国新药与临床杂志.2001,20(3):198~199.
    [270].Kew MC. Serum aminotransferase concentration as evidence of hepatocellular damage [J].Lancet.2000,355:591~592.
    [271].Pablo Muriel, Mario G. Moreno, Maria del C, et al. Resolution of Liver Fibrosis in ChronicCCl4Administration in the Rat after Discontinuation of Treatment: Effect of Silymarin,Silibinin, Colchicine and Trimethylcolchicinic Acid[J]. Basic&Clinical Pharmacology&Toxicology.2005,96:375~380.
    [272].李学斌.利肝宁对实验性肝纤维化大鼠血清蛋白含量的影响[J].河南中医学院学报.2003,18(2):34~35.
    [273].Shi HB, Fu JF, Wang CL. Clinical value of hepatic fibrosis parameters and serum ferritin inobese children with nonalcoholic fatty liver disease [J]. Journal of Zhejiang University.2008,37:245~249.
    [274].Liang XH, Zheng H. Value of simultaneous determination of serum hyaluronic acid,collagen type IV and the laminin level in diagnosing liver fibrosis[J]. Bulletin of HunanMedical University.2002,27:67~68.
    [275].杨顺,肖燕,林军,等.肝纤维化血清学指标检测在病毒性肝炎肝纤维化诊断中的价值[J].苏州大学学报(医学版).2008,28(3):430~432.
    [276].Lieber CS, Weiss DG, Paronetto F. Veterans Affairs Cooperative Study391Group: Value offibrosis markers for staging liver fibrosis in patients with precirrhotic alcoholic liver disease[J]. Alcohol Clin Exp Res.2008,32(6):1031~1039.
    [277].Ding XJ, Li SB, Li SZ, et al. A quantitative study of the relationship between levels of liverfibrosis markers in sera and fibrosis stages of liver tissues of patients with chronic hepaticdiseases [J]. Chinese journal of hepatology.2005,13:911~914.
    [278].Liu J, Wang JY, Lu Y. Serum fibrosis markers in diagnosing liver fibrosis [J]. Chinesejournal of internal medicine.2006,45:475~457.
    [279].Gressner OA, Weiskirchen R, Gressner AM. Biomarkers of liver fibrosis: clinical translationof molecular pathogenesis or based on liver dependent malfunction tests[J]. Clin Chim Acta.2007,381:107~113.
    [280].Xu HG, Fang JP, Huang SL, et al. Diagnostic values of serum levels of HA, PCⅢ, CⅣ andLN to the liver fibrosis in children with beta-thalassemia major [J]. Zhonghua er ke za zhi.2003,41:603~606.
    [281].Zheng JF, Liang LJ, Wu CX, et al. Transplantation of fetal liver epithelial progenitor cellsameliorates experimental liver fibrosis in mice [J]. World J Gastroenterol.2006,12:7292~7298.
    [282].Attallah AM Mosa TE, Omran MM, Abo-Zeid MM, et al. Immunodetection of collagentypes Ⅰ,Ⅱ, Ⅲ, and Ⅳ for differentiation of liver fibrosis stages in patients with chronicHCV [J]. Journal of immunoassay&immunochemistry.2007,28:155~168.
    [283].Kucharz EJ. Serum hydroxyproline and hydroxylysine levels in patients withdecompensated cirrhosis [J]. Rom J Intern Med.1994,32(4):271~274.
    [284].Koda M, Murawaki Y, Hirayama C. Free and small peptide-bound [14C] hydroxyprolinesynthesis in rat liver in vitro in CCl4induced hepatic fibrosis [J]. Biochem Biophs ResCommun.1988,151(3):1128~1135.
    [285].Laurin J, Lindor KD, Crippin JS, et al. Ursodeoxycholic acid or clofibrate in the treatmentof non-alcoholic steatohepatitis: A pilot study [J]. Hepatology.1996,23:1464~1467.
    [286].Kim JI, Tsujino T, Fujioka Y, et al. Bezafibrate improves hypertension and insulin sensitivityin humans [J]. Hypertens Res.2003,26:307~313.
    [287].Kaplowitz N. Biochemica land cellular mechanisms of toxic liver injury [J]. Semin Liver Dis.2002,22(2):137~144.
    [288].Benz FW, Nerland DE, Corbett D, et al. Biological markers of acute acrylonitrileintoxication in rats as a function of dose and time[J]. Fundam Appl Toxicol.1997,36:141~148.
    [289].Elliott SJ, Koliwad SK. Redox control of ion channel activity in vascular endothelial cellsby glutathione[J]. Microcirculation.1997,36:341~347.
    [290].Dalton T, Harrer J, Robinson L, et al. Glutamate-cysteine ligase regulatory (GCLR) subunitmRNA is increased in response to oxidative stress: evidence that oxidized glutathione (GSSG)mediates this effect [J]. The Toxicologist.1998,42Suppl1:276.
    [291].Ogeturk M, Kus I, Pekmez H, et al. Inhibition of carbon tetrachloride-mediated apoptosisand oxidative stress by melatonin in experimental liver fibrosis[J]. Toxicology and industrialhealth.2008,24:201~208.
    [292].Torok NJ. Recent advances in the pathogenesis and diagnosis of liver fibrosis [J]. Journal ofgastroenterology.2008,43:315~321.
    [293].Di Sario A, Candelaresi C, Omenetti A, et al. Vitamin E in chronic liver diseases and liverfibrosis[J]. Vitamins and hormones.2007,76:551~573.
    [294].Gebhardt R. Oxidative stress, plant-derived antioxidants and liver fibrosis [J]. Planta medica.2002,68:289~296.
    [295].Parola M, Robino G. Oxidative stress-related molecules and liver fibrosis [J]. Journal ofhepatology.2001,35:297~306.
    [296].Poli G. Pathogenesis of liver fibrosis: role of oxidative stress [J]. Molecular aspects ofmedicine.2000;21:49~98.
    [297].Refik Mas M, Comert B, Oncu K, et al. The effect of taurine treatment on oxidative stress inexperimental liver fibrosis [J]. Hepatol Res.2004;28:207~215.
    [298].Feng L, Liu H, Liu Y, et al. Power of deep sequencing and agilent microarray for geneexpression profiling study[J]. Molecular biotechnology.2010,45(2):101~110.
    [299].Audic S. and Claverie JM.. The significance of digital gene expression profiles [J].GenomeRes..1997,7(10):986~995.
    [300].Benjamini, Y., Yekutieli D. The control of the false discovery rate in multiple testing underdependency [J].The Annals of Statistics.2001,29:1165~1188.
    [301].Eisen M.B, Spellman PT, Brown PO, et al. Cluster analysis and display of genome-wideexpression patterns [J]. Proc Natl Acad Sci USA.1998,95(25):14863~14868.
    [302].Saldanha A. J. Java Treeview--extensible visualization of microarray data.[J].Bioinformatics.2004,20(17):3246~3248.
    [303].Kanehisa M, Araki M, Goto S, et al. KEGG for linking genomes to life and the environment[J]. Nucleic Acids Res.2008,36(Database issue):480~484.
    [304].Rebhan M, Chalifa-Caspi V, Prilusky J, et al. GeneCards: a novel functional genomicscompendium with automated data mining and query reformulation support[J].Bioinformatics.1998,14(8):656~664.
    [305].Porreca GJ, Zhang K, Li JB, et al. Multiplex amplification of large sets of human exons [J].Nat Methods.2007,11:931~936.
    [306].Ashburner M, Ball CA, Blake JA, et al. Geneontology: tool for the unification of biology [J].Nature Genet.2000,25:25~29.
    [307].尤元海,张建中.基因表达谱芯片的数据挖掘[J].中国生物工程杂志.2009,29(10):87~91.
    [308].Cohen P, Miyazaki M, Socci ND, et al. Role for stearoyl-CoA desaturase-1inleptin-mediated weight loss [J]. Science2002,297:240~243.
    [309].Aoyama Y, Morifuji M. Dietary orotic acid increases1,2-diacylglycerol level and lowerssuperoxide dismutase activity in rat liver [J]. J Nutr Sci Vitaminol (Tokyo).2002,48(1):40~46.
    [310].Griffin JL, Bonney SA, Mann C, et al. An integrated reverse functional genomic andmetabolic approach to understanding orotic acid-induced fatty liver[J]. Physiol Genomics.2004,17(2):140~149.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700