用户名: 密码: 验证码:
基于大型底栖动物的小清河口沉积环境评价指标体系建立
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋大型底栖动物能对自然和人为活动导致的水和沉积物质量变化做出可预测的响应,因此利用底栖生物作为环境监测的生物指标和进行环境质量评价的生物指数已经得到了广泛的认可。本文通过2008年5月和11月、2009年8月、2010年5月和9月5个航次对小清河口及邻近海域沉积环境物理化学指标及大型底栖动物分布特征进行了分析,筛选出了能指示沉积环境特征的污染因子;采用Shannon-Wiener多样性指数和海洋生物指数AMBI对小清河口及其邻近海域沉积环境质量进行了初步评价,并根据筛选出的沉积环境特征的污染因子硫化物、有机指数和有机氮对能较好反映该区域沉积环境质量状态的海洋生物指数AMBI进行了校正,建立了基于大型底栖动物的小清河口海域沉积环境的评价指标体系。主要研究结论如下:
     小清河口及邻近海域沉积环境特征:沉积物以砂和粉砂为主,粘粒含量较低;沿河道、河口至近海,沉积物硫化物含量逐渐降低,变化范围在6.96~1231.58mg/kg之间,在河道和河口区27%的站位超过海洋沉积物三类标准,51%的站位超过海洋沉积物一类标准,近海区域均未超过一类标准;总氮和有机碳含量均在河道至河口附近较高,在近海区域较小,总氮含量在0.14~1.06mg/g之间,有机碳含量在1.57~13.47mg/g之间;总磷含量除了2010年9月变幅较大外,其它航次含量在0.42~0.87mg/g之间。总氮和总磷含量在河道至河口区域所有站位均超出安全级别范围,存在一定氮磷污染,有机碳含量虽未超过海洋沉积质量一类标准,但通过有机指数评价发现河道至河口区有机指数偏高,有机氮含量接近有机污染水平,存在富营养现象。除各别站位铜超过国家海洋沉积物质量一类标准,重金属含量总体水平较低,处于低污染水平和低潜在生态风险。
     小清河口及邻近海域大型底栖动物分布特征:在研究区域5个航次共采集到97种大型底栖动物,以多毛类、软体动物和甲壳类为主,分别占46.39%、28.86%和20.62%;沿着河道、河口至近海,多毛类种类逐渐降低,丰度总体也呈降低趋势,而软体动物和甲壳类种类和丰度均呈逐渐增多趋势。物种数和丰度季节分布上,春季较高,秋季次之,夏季最低。生物量组成以软体动物占优势,多毛类和甲壳类次之。春季生物量相对较大,夏季和秋季较小。在该区域出现频率较高的底栖动物有软体动物光滑河篮蛤和多毛类的尖刺缨虫、长双须虫、中蚓虫及寡节甘吻沙蚕。与同时期的莱州湾、黄河口、渤海湾比较可以发现,小清河口大型底栖动物丰度值和生物量最大,莱州湾和渤海湾次之,黄河口最小,小清河口是多毛类占优势,其他海域基本是软体动物占优势。
     通过分析大型底栖动物物种数、丰度和生物量与沉积环境因子的关系,并结合小清河口表层沉积物污染特征,筛选硫化物、有机指数和有机氮三项指标作为小清河口沉积环境污染指示因子。
     Shannon-Wiener多样性指数和海洋生物指数AMBI评价结果显示,从河道、河口至近海区域,多样性指数和AMBI指数均呈现先增大后降低的大体趋势,在河口区出现较大值。近海区域两种指数评价的结果差异较大,相对河道、河口更清洁的近海区域多样性指数很小,其评价的结果比AMBI指数评价结果污染程度高出两到三个级别,这与沉积环境污染特征是不符合的,因此AMBI指数比多样性指数能更好的反映该区域沉积环境质量特征。
     应用反映小清河口沉积环境污染的指示因子硫化物、有机指数和有机氮对AMBI指数中的大型底栖动物等级进行了校正,对未确定物种等级的,根据已有的生物等级列表中的近似属种给出初步的等级,然后结合环境污染的指示因子进行等级校正;对已经确定物种等级的,直接结合环境污染的指示因子进行等级校正。应用校正后的底栖动物等级进行小清河口沉积环境质量的AMBI指数评价,河道评价值在4.3-7.0之间,底栖群落健康处于重度扰动状态,反映的沉积环境质量状况为不健康,河口评价值在3.3-4.3之间,底栖群落健康处于中度扰动状态,反映的沉积环境质量状况为中等,近海评价值在2左右,底栖群落健康处于轻度扰动状态,反映的沉积环境质量状况为优良。AMBI指数同硫化物、有机指数和有机氮三项沉积环境污染因子在0.0001水平上达到极显著正相关关系,因此,建立的基于大型底栖动物的评价指标体系适用于小清河口海域沉积环境质量的评价,能客观地反映研究区域沉积环境质量和受污染状况。
Abundant researches have demonstrated that macrobenthos communities responds relatively rapidly to natural and man-induced changes in water and sediment quality, so benthic communities are used frequently as bio-indicators of marine monitoring and biotic indices of assessing the marine ecosystem health. Based on the data obtained from 5 cruises in May and November, 2008, August, 2009, May and September, 2010, the paper analyzed the physical and chemical indexes and distribution characteristics of the macrobenthos in the sediment environment of the Xiaoqing River estuary and its adjacent sea waters, and screeninged the polluted factors which indicated the characteristic of sediment environment. The pollution conditions of the sediment environment in the Xiaoqing River estuary and its adjacent sea waters were preliminary evaluated by the Shannon-wiener diversity index and A Marine Biotic Index(AMBI) which could better reflect the sediments quality status of this region. Moreover, AMBI was corrected by the selected indexes including sulphide, organic pollution index and organic nitrogen. The evaluation index system based on the macrobenthos in the sediment environment of the Xiaoqing River estuary was established. The main conclusions were as follows:
     The characteristics of the sediment environment in the Xiaoqing River estuary and adjacent sea waters were as follows: The granularity of the sediments was dominanted by sand and silt, the percent of clay was lower. Along the stream channel, estuary to coastal waters, the content of sulphide was reduced gradually, which was between 6.96 and 1231.58 mg/kg. The content of sulphide was badly exceeded nearby the stream channel and the estuary, the sulphide pollution in 27% and 51% sites exceeded the third and the first class of GB18668-2002 separately. While the content of sulphide in the coastal waters was in the range of the first class of GB18668-2002. The contents of total nitrogen and organic carbon were higher in the stream channel and the estuary, while lower in the coastal waters. The content of total nitrogen was between 0.14 and 1.06 mg/g, and the content of organic carbon ranged from 1.57 to 13.47 mg/g.Except for in September, 2010, the content of total phosphorous was between 0.42 and 0.87mg/g, and no significant variation.The content of total nitrogen and phosphorous exceeded the scope of the security level nearby the stream channel and the estuary, where were badly polluted. Though the content of organic carbon didn’t reach the first class of GB18668-2002, the organic pollution index was higher and the content of organic nitrogen was close to the level of organic pollution in the stream channel and estuary, where existed the eutrophication. Except for Cu, the average contents of other heavy metal were lower than the first class of GB18668-2002. The results showed a lower pollution degree and a lower potential ecological risk assessment in the Xiaoqing River estuary.
     The distribution characteristics of macrobenthos in the Xiaoqing River estuary and adjacent waters were as follows: A total of 97 macrobenthos species were identified in the study, which were dominanted by polychaetes (46.39%), mollusks (28.86%) and crustaceans (20.62%); Along the stream channel, estuary and the coastal waters, the species and abundance of polychaetes reduced gradually. While the species and abundance of mollusks and crustaceans increased gradually. As for seasonal distribution, the species and abundance were higher in spring, lower in autumn and lowest in summer.Compared with other macrobenthic species, mollusks are in the majority of biomass, while polychaetes and crustaceans took the second place. The biomass was higher in spring relatively, while lower in summer and autumn.The macrobenthos which appeared frequented were as follows: Potamocorbula laevis, Potamilla acuminate, Eteone longa, Mediomastus sp.and Glycinde gurjanovae. Compared with contemporaneous Laizhou Bay, Yellow River Delta and Bohai Bay, the abundance and biomass in the Xiaoqing River estuary were highest, while lower in the Laizhou Bay and Bohai Bay, lowest in Yellow River Delta. Xiaoqing River estuary was dominanted by polychaetes, while others were dominanted by mollusks.
     By means of the correlation analysis among species, abundance, biomass and factors of sediments, combined with the pollution characteristics of surface sediment in Xiaoqing River estuary, the indexes of sulphide, the organic pollution index and organic nitrogen were selected as the indicate factors of sediment environment of the Xiaoqing River estuary.
     The evaluation results of diversity index and AMBI (A Marine Biotic Index) showed that the values of the two indexs increased at first and then decreased along the stream channel, estuary and the coastal waters, which reached the maximum in the estuary. There were obvious differences in the results between diversity index and AMBI Index in the coastal waters. The values of diversity index were lower in the coastal waters compared with the stream channel and estuary.And the evaluation results were two to three times higher than the AMBI index, consequently, which didn’t correspond with the pollution characteristics of the sediment environment.So AMBI could better reflect the characteristics of sediment environment than diversity index.
     The indicate factors of sulphide, the organic pollution index and organic nitrogen were used to correct the ecological levels of macrobenthos. With regard to not assigned species, determine the initial levels according to the approximate species existing in the list of ecological groups and then correct the levels of macrobenthos combined with the indicate factors. As for identified species, levels were corrected combined with the indicate factors directly. The evaluation results of AMBI based on the corrected ecological groups of macrobenthos showed that the value of the stream channel was between 3.3 and 7.0, where the macrobenthos community health was in the status of heavily disturbed, the sediment environment condition was a poor status; the value of the estuary was between 3.3 and 4.3, where the macrobenthos community health was in the status of moderately disturbed, the sediment environment condition was a moderate status; the value of the coastal was about 2, where the macrobenthos community health was in the status of slightly disturbed, the sediment environment condition was a good status. The correlation among AMBI and the indicate factors of sulphide, the organic pollution index and organic nitrogen reached to significant positive correlation at the level of 0.0001. Therefore, the establishment of evaluation index system based on the macrobenthos applied to evaluate the sediment environment of Xiaoqing River estuary,which could reflect the pollution condition of the sediment environment in the research areas objectively.
引文
[1]孔繁翔.环境生物学[M].2000.北京:高等教育出版社.
    [2]Dauer,D.M. Biological criteria, environmental health and estuarine macrobenthic community structure[J]. Marine Pollution Bulletin, 1993, 26 (5):249-257.
    [3]Kaiser M.J., Ramsay C.A., Richardson C.A., et al. Chronic fishing disturbance has changed shelf sea benthic community structure [J]. Journal of Animal Ecology, 2000, 69:494-503.
    [4]Grall J., Chauvaud L. Marine eutriphication and benthos: the need for new approaches and concepts [J]. Global Change Biology, 2002,8:813-830.
    [5]A. Borja, J. Franco, V. Pérez. A marine biotic index to establish the ecological quality of soft bottom benthos within European estuarine and coastal environments[J]. Marine Pollution Bulletin, 2000, 40 (12):1100-1114.
    [6]Weisberg S B ,Ranasinghe J A , Dauer , et al .An estuarine benthic index of biotic integrity (B-IBI) for Chesapeake Bay[J] . Estuaries, 1997, 20 (1) :149-158.
    [7]崔毅,马绍赛,李云平等.莱州湾污染及其对渔业资源的影响[J].海洋水产研究,2003,24(1):35-41.
    [8]张龙军,夏斌,桂祖胜等.2005年夏季环渤海16条主要入海河流的污染状况[J].环境科学, 2007, 28 (11) :2409-2415.
    [9]陆健健.2003.河口生态学[M].北京:海洋出版社.
    [10]李永祺,丁美丽.海洋污染生物学[M]. 1991.北京:海洋出版社:445-449.
    [11]Goldberg ED, Missel US. Result on trace metals and mdionuclides[J]. Estuarine Costal and Shelf. Science,1977-1978,16 (1):69-93.
    [12]Philippert CJM. Long-term impact of bottom fisheries on several bycatch species of demersal fish and benthic invertebrates in the south-eastern North Sea [J]. ICES Journal of Marine Science, 1998, 55: 342-52.
    [13]Adams S.M. Assessing cause and effect of multiple stressors on marine systems [J]. Marine Pollution Bulletin, 2005, 51: 649-657.
    [14]蔡立哲,洪华生,黄玉山.香港维多利亚港大型底栖生物群落的时空变化[J].海洋学报,1997, 19(2):65-70.
    [15]蔡立哲,厉红梅,林鹏等.深圳河口潮间带泥滩多毛类的数量变化及环境影响[J].厦门大学学报(自然科学版), 2001,40(3):741-750.
    [16]蔡立哲,马丽,高阳等.海洋底栖动物多样性指数污染程度评价标准的分析[J]厦门大学学报(自然科学版), 2002,41(5):641-646.
    [17]Warwick R.M., Clarke K.R. Comparing the severity of disturbance: a meta-analysis of marine macrobenthic community data[J]. Marine Ecology Progress Series,1993 92: 221-231.
    [18] Ludwig JA, Reynolds JF. Statistical ecology [M]. New York: Wiley, 1988: 337.
    [19]Salen-Picard C. Schémas d’évolution d’une biocénose macro-benthique du substrat meuble [J]. Comptes Rendus de l’Academie des Sciencies de Paris, 1983,296: 587-590.
    [20]Hily C.Variabilitéde la macrofaune benthique dans les milieux hypertrophiques de la Rade de Brest[J]. Thèse de Doctorat d’Etat, Univ. Bretagne Occidentale, 1984,1: 359; 2: 337.
    [21]Glémarec M. Ecological impact of an oil-spill: utilisation of biological indicators [J]. IAWPRC Journal, 1986,18: 203-211.
    [22]Hily C ,Le Bris H , Glémarec M. Impacts biologiques desémissaires urbains sur lesécosystèmes benthiques[J]. Oceanis , 1986,12:419-426.
    [23]Majeed S. A.Organic matter and biotic indices on the beaches of North Brittany[J]. Marine Pollution Bulletin, 1987,18 (9):490-495.
    [24]Grall J,Glémarec M.Using biotic indices to estimate macrobenthic community perturbations in the Bay of Brest [J]. Estuarine, Coastal and Shelf Science, 1997, 44: 43-53.
    [25]Van Dolah.A benthic index of biological integrity for assessing habitat quality in estuaries of the southeastern USA[J] . Marine Environmental Research, 1999,48:269-283.
    [26]Diaz R J,Cutter G R ,Dauer D M.A comparison of two methods for estimating the status of benthic habitat quality in the Virginia Chesapeake Bay[J].Journal of Experimental Marine Biology and Ecology, 2003,285-286:371-381.
    [27]李强,杨莲芳.底栖动物完整性指数评价西苕溪溪流健康[J].环境科学, 2007,28(9):2141-2147.
    [28]周晓蔚.基于底栖动物完整性指数的河口健康评价[J].环境科学, 2009,30(1):242-247.
    [29]Borja A,Muxika I,Franco J. The application of a Marine Biotic Index to different impact sources affecting soft-bottom benthic communities along European coasts [J]. Marine Pollution Bulletin, 2003a, 46: 835-845.
    [30]Borja A, Franco J, Muxika I.Classification tools for marine ecological quality assessment: the usefulness of macrobenthic communities in an area affected by a submarine outfall [C]. ICESCM2003/Session J-02, Tallin, Estonia 2003b: 24-28.
    [31]Borja A,Franco J,Valencia V, et al.Implementation of the European Water Framework Directive from the Basque country (northern Spain): a methodological approach (viewpoint) [J]. Marine Pollution Bulletin, 2004a,48: 209-218.
    [32]Glémarec M,Hily C.Perturbations apportéesàla macrofaune benthique de la baie de Concarneau par les effuents urbains et portuaires[J]. Acta Oecologica Oecologia Applicata, 1981,2: 139-150.
    [33]Grall, J. , Glémarec, M. Using biotic indices to estimate macrobenthic community perturbations in the Bay of Brest[J]. Estuarine, Coastal and Shelf Science , 1997, 44 (suppl. A): 43-53.
    [34]蔡立哲.河口港湾沉积环境质量的底栖生物评价新方法研究[D].厦门大学博士研究生学位论文,2003.
    [35]Muxika, I., Borja,á., Bald, J. Using historical data, expert judgement and multivariate analysis in assessing reference conditions and benthic ecological status, according to the European Water Framework Directive[J]. Marine Pollution Bulletin 2007a, 55, 16-29.
    [36]Muxika I, Borja A, Bonne W.The suitability of the Marine Biotic Index (AMBI) to new impact sources along European coasts[J]. Ecological Indicators, 2005,5:19-31.
    [37]Pablo Muniz, Natalia Venturini, Ana M.S,et al.Testing the applicability of a Marine Biotic Index (AMBI) to assessing the ecological quality of soft-bottom benthic communities, in the South America Atlantic region[J].Marine Pollution Bulletin, 2005,50:624-637.
    [38]Susana Carvalho, Miguel B. Gaspar, Ana Moura,et al.The use of the marine biotic index AMBI in the assessment of the ecological status of theóbidos lagoon (Portugal). Marine Pollution Bulletin, 2006, 52: 1414-1424.
    [39]I?igo Muxika, Leire Ibaibarriaga, JoséIgnacio Sáiz ,et al.Minimal sampling requirements for a precise assessment of soft-bottom macrobenthic communities, using AMBI[J].Journal of Experimental Marine Biology and Ecology, 2007,349:323-333.
    [40]Henning Reiss, Ingrid Kroncke.Seasonal variability of benthic indices: An approach to test the applicability of different indices for ecosystem quality assessment[J]. Marine Pollution Bulletin, 2005, 50:1490-1499.
    [41]Simboura,N.,Zenetos,A.Benthic indicators to use in Ecological Quality classification of Mediterranean soft bottom marine ecosystems, including a new Biotic Index[J]. Mediterranean Marine Science, 2002,3 (2):77-111.
    [42]Simboura,N., Panayotidis,P., Papathanassiou,E.A synthesis of the biological quality elements for the implementation of the European Water Framework Directive in the Mediterranean Ecoregion: the case of Saronikos Gulf[J]. Ecol. Ind. 2005,5:253-266.
    [43]Zenetos,A., Chadjianestis,I., Lantzouni,M.,et al. The Eurobulker oil spill: midterm changes of some ecosystem indicators[J]. Mar. Pollut. Bull. 2004, 48 (1/2):12-131.
    [44]N. Simboura , E. Papathanassiou, D. Sakellariou.The use of a biotic index (Bentix) in assessing long-term effects of dumping coarse metalliferous waste on soft bottom benthic communities[J]. Ecological Indicators, 2007, 7:164-180.
    [45]Rosenberg, R., Blomqvist, M., Nilsson, et al.Marine quality assessment by use of benthic species-abundance distributions:a proposed new protocol within the European Union Water Framework Directive[J]. Marine Pollution Bulletin, 2004,49:728-739.
    [46]田家怡,高奎江,窦洪云等.小清河流域暴雨与渤海莱州湾近海突发性污染风险评价的研究[J].海洋环境科学,1993,13(3):59-68.
    [47]童钧安.莱州湾主要污染物来源及分布特征[J].黄渤海海洋,1994,12(4):16-20.
    [48]高会旺,吴德星,白洁等.2000年夏季莱州湾生态环境要素的分布特征[J].2003,33(2):185-191.
    [49]纪大伟,杨建强,高振会等.莱州湾西部海域枯水期富营养化程度的初步研究[J].海洋通报,2007,26(1):78-81.
    [50]孙庆振.小清河口富营养化评价及亚硝酸盐偏高问题探讨[D].中国海洋大学硕士研究生学位论文,2009.
    [51]罗先香,张蕊,杨建强等.莱州湾表层沉积物重金属分布特征及污染评价[J].生态环境学报,2010,19(2):262-269.
    [52]国家技术监督局.海洋调查规范,海洋生物调查,中华人民共和国国家标准GB. [S]北京:中国标准出版社, 1991.
    [53]武倩倩,马启敏,王继纲等.黄河口近岸海域沉积物酸可挥发性硫化物(AVS)的研究.海洋环境科学, 2007 (26) ,2:16-129.
    [54]Leonard E N, Mattson V R, Benoit D A, et al. Seasonal variation of acid volatile sulfide concentration in sediment cores from three northeastern Minnesota lakes [J]. Hydrobiologia, 1993,271: 87- 95.
    [55]N.J. Oehm,T.J. Luben & M.L.Ostrofsky. Spatial distribution of acid-volatile sulfur in the sediments of Canadohta Lake, PA[J].Hydrobiologia, 1997,345:79-85.
    [56]Mackey,A.P.,Mackay,S. Spatial distribution of acid-volatile sulphide concentration and metalbioavailability in mangrove sediments from the Brisbane River,Australia[J].Environmental Pollution, 1996, 93 (2) :205-209.
    [57]Klump,J.V.,Martens,C.S..Biogeochemical cycling in an organic-rich coastal marine basin. 5.Sedimentary nitrogen and Phosphorus budgets based upon kinetic models, mass balances, and the stoichiometry of the nutrient regeneration. Geochim. Cosmochim. Acta ,1987,51,1161-1173.
    [58]童成立,张文菊,王洪庆等.三江平原湿地沉积物有机碳与水分的关系[J].环境科学, 2005, 26(6): 38-42.
    [59]杨钙仁,张文菊,童成立等.温度对湿地沉积物有机碳矿化的影响[J].生态学报,2005,25(2):243-248.
    [60]马吉刚,梅泽本,夏泉等.山东小清河污水治理现状及对策[J].水土保持研究,2003,10(2):108-111.
    [61]Brunnegard J,Grandel S,Stahl H et al.Nitrogen cycling in deep-sea sediments of the Porcupine Abyssal Plain , NE Atlantic[J]. Progress in Oceanography, 2004, 63 :159-181.
    [62]Dean W E.The carbon cycle and biogeochemical dynamics in lake sediments[J].Journal of Paleolimnology, 1999,21(4) :375-393.
    [63]Kendall C, Silva SR, Kelly VJ. Carbon and nitrogen isotopic compositions of particulate organic matter in four large river systems across the United States[J]. Hydrol Proced ,2001,15:1301-1346.
    [64]Meyers PA. Organic geochemical proxies of paleoceanographic, paleolimnic, and paleoclimatic processes. Org Geochem, 1997, 27:213-250.
    [65]李学刚,宋金明,李宁等.胶州湾沉积物中氮与磷的来源及其生物地球化学特征[J].海洋与湖沼, 2005, 36(6): 562-571.
    [66]SIN S N, CHUA H, LO W, et al. Assessment of heavy metal cations in sediments of Shing Mun River, Hong Kong[J]. Environmental International, 2001, 26:297-301.
    [67]SANTOS I R, SILVA E V, SCHAEFER C E G R, et al. Heavy metal contamination in coastal sediments and soils near the Brazilian Antarctic Station, King George Island[J]. Marine Pollution Bulletin, 2005,50: 185-194.
    [68]BLILALI L EI, RASMUSSEN P E, HALL G E M, et al. Role of sediment composition in tracemetal distribution in lake sediments[J]. Applied Geochemistry, 2002, 17: 1171-1181.
    [69]国家技术监督局. GB18668-2002海洋沉积物质量标准[S].北京:中国标准出版社, 2002.
    [70]李任伟,沉积物污染和环境沉积学[J].地球科学进展,1998,13(4):398--402.
    [71]孙顺才,黄漪平.太湖[M].北京:海洋出版社, 1993. 224- 228.
    [72]张雷,郑丙辉,田自强等.西太湖典型河口区湖滨带表层沉积物营养评价[J].环境科学与技术,2006,29(5):4-13.
    [73]HAKANSON L. An ecological risk index for aquatic pollution control: a sedimentological approach [J]. Water Res., 1980,14(8): 975-1001.
    [74]RUBIO B, NOMBELA M A, Vilas F. Geochemistry of major and trace elements in sediments of the Ria de Vigo (NW Spain): an assessment of metal pollution[J]. Marine Pollution Bulletin, 2000, 40 (11) : 968-980.
    [75]李淑媛,苗丰民,刘国贤,等.渤海沉积重金属环境背景值初步研究[J].海洋学报,1995,17(2): 78-85.
    [76]HANSON P J,EVANS D W,COLLBY D R. Assessment of elemental contamination in estuarine and coastal environments based on geochemical and statical modeling of sediments[J].Mar Environ Res.,1993,(36):237-266.
    [77]Robert A,Wheatcroft. Time-series measurements of macrobenthos abundance and sediment bioturbation intensity on a flood-dominated shelf[J]. Progress in Oceanography, 2006, 71:88-122.
    [78]Glud, R.N., Gundersen, J.K. et al. Seasonal dynamics of benthic O2 uptake in a semi enclosed bay: importance of diffusion and fauna activity[J]. Limnology and Oceanography, 2003, 48 : 1265-1276.
    [79]张龙军,孙庆振,罗先香.小清河口春季亚硝酸盐偏高问题探讨[J].中国海洋大学学报, 2010,40(2):111-116.
    [80]Pinkas L, Oliphant M S, Iverson I L K. Food habits of albacore, bluefintuna, and bonito in California waters. California Department of Fish and Game Fish Bulletin,1971, (152) : 1-105.
    [81]韩洁,张志南,于子山.渤海中、南部大型底栖动物的群落结构[J].生态学报,2004,24(3):531-537.
    [82]王瑜,刘录三,刘存歧等.渤海湾近岸海域春季大型底栖动物群落特征[J].环境科学研究, 2010, 23 (4) :430-436.
    [83]Gray, J.S., 1974. Animal-sediment relationships. Oceanography and Marine Biology: An Annual Review 12, 223-262.
    [84]Snelgrove, P.V.R., Butman, C.A., 1994. Animal-sediment relationships revisited: cause versus effect. Oceanography and Marine Biology: An Annual Review 32, 111-177.
    [85]中华人民共和国国家环境保护标准HJ442-2008,近岸海域环境监测规范, 2008, P27.
    [86]A. Borja, D.M. Dauer, R. D?′az,et al.Assessing estuarine benthic quality conditions in Chesapeake Bay: A comparison of three indices[J]. Ecological Indicators, 2008 ,8: 395-403.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700