用户名: 密码: 验证码:
基于遥感技术的河口三角洲湿地景观生态健康评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
河口三角洲湿地位于河/海/陆/气/人类社会五大介质作用的交集点上,既是气候变化的敏感区,也是生态环境的脆弱区,在调节气候、涵养水源、分散洪水、净化环境、保护生物多样性等方面有着极其重要的作用。河口三角洲湿地的生态健康不仅关系到地区的自然环境和生态安全,也影响到人类社会的和谐发展。
     河口三角洲湿地的生态健康状况研究一直是国际地圈生物圈计划(IGBP)的及国际生物多样性计划(DIVERSITAS)的核心研究区域和内容之一。生态环境健康安全研究是《国家中长期科学和技术发展规划纲要(2006-2020)》的重点领域和优先支持方向。2006年国家重点基础研究“黄淮海地区湿地水生态过程、水环境效应及生态安全调控”的启动,标志着我国的湿地研究步入了一个全新的发展时期。从国家海洋局目前正在进行的第12个5年计划的科研立项工作来看,河口区生态环境遥感监测技术及脆弱生态系统遥感监测技术都将成为未来5年,乃至今后更长时期我国沿海生态环境监测的一个重要科研方向和资助重点。
     国内外的湿地健康研究成果颇丰,但大多数都是基于野外观测和采集生物与化学实验室数据,而通过定量遥感和景观生态学相结合的健康研究仍不多见,滨海河口湿地分布面积广,研究区域内地貌复杂,很多区域人力无法到达,使遥感监测手段成为唯一可靠且可行的研究手段,而遥感监测的生物特征指标的反演方法研究又是目前定量遥感学界的研究热点与难点。本文尝试利用现场光谱数据建立湿地植被生物量和叶面积指数(LAI)的最佳遥感反演算法,利用景观生态学原理和方法,建立三角洲湿地生态系统健康评价体系,目的在于为将来我国沿海地区滨海湿地健康评价提供方法指导,为我国滨海湿地健康评价业务化运行提供理论和技术支持,为我国沿海生态环境监测综合集成示范研究提供相关的基础研究和信息资料支持。
     本文在三个研究区域内,分别开展了基于遥感技术的河口湿地景观生态健康评价研究,其中双台子河口主要是湿地植被翅碱蓬生物量和叶面积指数的遥感反演算法研究;大洋河河口湿地主要开展的是高分辨率遥感数据(精度1.5m)的景观生态健康评价研究;环渤海地区主要开展的是人类活动对滨海湿地的影响评价研究,以上研究得到的主要结论有:
     1).湿地敏感植被——翅碱蓬的光谱特征:在630nm红光波长出现明显的反射峰值,反射率达到了12—15%,在680~700nm,有明显的“红谷”形态,在760nm左右有明显的“红边”,反射率达到25—30%。翅碱蓬植被指数及叶面积指数的回归分析中,土壤调节植被指数(SAVI)和修改型土壤调整植被指数(MSAVI)指数与LAI的相关关系较其它指数好,最高的R2值达到0.711。对比不同指数的线性(Linear)回归方程发现,SAVI和MSAVI指数与LAI的相关关系R2值达到0.696,0.695;其次为比值植被指数(RVI)值0.664,归一化植被指数(NDVI)值0.649及垂直植被指数(PVI)值0.466。翅碱蓬生物量与RVI、NDVI的相关关系不高,线性回归方程的相关系数R2只有0.342和0.316;对数方程的相关系数也只有0.319和0.21;二次方程相关系数分别为0.589和0.568。Biomass与PVI、SAVI和MSAVI的相关系数R2较高,直线回归方程相关系数分别达到0.626、0.698和0.679;对数方程相关系数为0.592、0.706和0.683;二次方程相关系数分别为0.688、0.711和0.683。
     2).从1984~2008年的景观格局数据资料分析,大洋河河口湿地生态景观格局分布合理,主要以河口原始湿地植被和农业生产活动为主,工业生产活动相对较少,保持着较完整的河口湿地生态系统。但是近年来的围海养殖的发展使湿地——水田——水产养殖这三者之间的用地矛盾日益突出,从斑块类型的空间转移矩阵分析,围海养殖产业的开发是河口天然湿地消失的主要原因,在1984~2008年间,围海养殖分别从芦苇湿地和沿海滩涂侵占了881.5hm2和321.29hm2,分别占1984年芦苇湿地面积的17.6%和泥滩面积的19.56%,从水田侵占了870.93hm2,占1984年水田面积的9%。
     3).环渤海海岸带的人类活动开发强度很大,其中以渤海湾人类开发活动度最大,其次为莱州湾和辽东湾。渤海湾几乎已经没有自然原始的湿地生态环境;莱州湾西部的黄河三角洲地区的生境质量是比较理想的,而且随着黄河入海泥沙的堆积作用使得莱州湾新增的湿地面积在不断扩大,但是近年来该地区新增湿地被开发成了水产养殖场,破坏了当地海岸带的环境质量和抗风险灾害的能力。辽东湾区域海岸带仍以自然的湿地生态景观为主,并且拥有丰富的湿地资源,1995~2008年以来沿海湿地开采以及道路、管线的建设,该地区的湿地景观开始出现破碎化程度加剧的趋势,围海养殖用地规模逐渐扩大,不少海涂和泥滩都被开发成虾蟹养殖区域,破坏了当地的自然环境。
River Delta wetland is in the role of the intersection point of the five media, in the river / sea / land / air / human society. It is not only sensitive area of climate change, but also is fragile area of the ecological environment. It has a very important role of water conservation, distributed flood, cleaning up the environment, conservation of biological diversity. The ecological health of wetland is not only to connect the natural environment and ecological security, but also affect the harmonious development of human society.
     River Delta wetland health status has been the International Geosphere-Biosphere Programme (IGBP) and the International Biodiversity Programme's (DIVERSITAS) of the core study area and one of the elements. Environmental health and safety research is the "Long-term Scientific and Technological Development (2006-2020)" of key fields and priority support direction. National Key Basic Research in 2006, "Huang-Huai region wetland ecological processes, environmental effects and ecological safety of water control," the start, the wetland study indicates that China entered a new period of development.
     From the State Oceanic Administration's ongoing 12th five year plan view of the research planning of this project, estuarine ecological environmental remote sensing monitoring techniques and fragile ecosystems, remote sensing technologies will become the next 5 years, and even more for a long time China's coastal ecosystems in the future Environmental monitoring is an important research direction and funding priorities.
     Wetland health at home and abroad and achieved remarkable results, but most are based on field observation and collection of biological and chemical laboratory data, quantitative remote sensing and landscape ecology through the combination of health research is still rare, the distribution area of coastal wetland broad, complex topography of the region, many regional human can not reach, so the only reliable means of remote sensing and feasible research methods, and remote monitoring of indicators of biological characteristics of the inversion method is the current field of research of quantitative remote sensing and difficult.This paper we use field data to establish wetland vegetation spectral biomass and leaf area index (LAI) of the best remote sensing inversion algorithm, using landscape ecological principles and methods to establish Delta wetland ecosystem health evaluation system, aimed for the future coastal health of the coastal wetland evaluation methods to guide for the health of our coastal wetlands provide a theoretical evaluation of operational and technical support to run for our coastal environment monitoring provide comprehensive integrated model of basic research and information support.
     In this paper, three research areas, carried out based on remote sensing technology Wetland Landscape Ecosystem Health Assessment: Shuangtaizihekou mainly wetland vegetation Suaeda salsa biomass and leaf area index of remote sensing inversion studies; DaYang River estuary wetland mainly carried out Ecological health assessment of the landscape; Bohai region is mainly carried out by human activities impact on the coastal wetlands evaluation, the above study are the main conclusions are:
     1).By the end of September the spectral characteristics of Suaeda Salsa: In the red band, 630nm, there is a clear reflection of the peak, a reflection rate of 12-15%; between 680nm and 700nm, there is a clear“Red Valley”configuration; about 760nm there is a clear "Red Edge" reflection rate of 25-30%. Finding that between Vegetation Index(SAVI and MSAVI) and LAI correlation value is the best than other Vegetation Index in the regression analysis of the LAI and Vegetation Index. The correlation coefficient R2 is 0.711. By comparison of Vegetation index Linear regression equations, the correlation coefficient (SAVI and LAI) R2 is 0.696; the value of R2 (LAI and MSAV) is 0.695; the value of R2 (RVI) is 0.664; the value of R2 (NDVI) is 0.649 and the value of R2 (PVI) is 0.466. The value of correlation coefficient is low between the biomass and the vegetation indexes (RVI and NDVI) and the value of Linear regression equation R2 is 0.342 and 0.316, and the Logarithmic regression equation R2 is 0.319 and 0.21, and the Quadratic equation R2 is 0.589 and 0.568.the value of correlation coefficient is high between the biomass and the vegetation indexes (PVI, SAVI and MSAVI), the value of linear regression equation is 0.626、0.698 and 0.679, logarithmic regression equation is 0.592、0.706 and 0.683 and the Quadratic equation is 0.688、0.711 and 0.683。
     2). From 1984 to 2008, the landscape pattern of data analysis, DaYang River estuary wetland landscape pattern is reasonable, mainly estuaries original wetland vegetation and agricultural production activities, mainly industrial production is relatively small, maintaining a more complete estuarine wetlands system. But in recent years, with the development of the sea aquaculture, wetlands - paddy field - aquaculture conflicts have become increasingly prominent. The transfer from the matrix patch type of space, the sea around the development of fish farming is the main reason of the disappearance of natural wetlands estuary, in 1984 to 2008, respectively, around the sea farming from the reeds coastal wetlands and tidal flats occupied 881.5hm2 and 321.29hm2, accounting for reed wetland area to 17.6% in 1984 and 19.56% mudflat area, from the paddy fields occupied 870.93hm2, paddy field area in 1984 accounted for 9%.
     3).Bohai coastal development intensity of human activities, much of which to the greatest degree of human activity in Bohai Bay, Laizhou Bay and Liaodong Bay followed. Bohai Bay has almost no natural original wetland habitat environment; Laizhou Bay west of the Yellow River Delta is an ideal habitat quality, and with the Yellow River to the stacking interaction makes the Laizhou Bay, the new wetland area is increasing But in recent years in the area of wetlands has been developed into new aquaculture farms, destruction of the local coastal environmental quality and risk disasters. Liaodong Bay area is still natural coastal landscape of wetlands, And the rich wetland resources, from 1995 to 2008, since the coastal wetlands mining and road, pipeline construction, the area of wetland landscape began to fragmentation exacerbated the trend, around the sea farming land while expanding, many shoals and mudflats have been developed into a crab breeding area, destroyed the local natural environment.
引文
[1] 2007 Wetland Health Evaluation Program Report Dakota County, MN. Coordinated By: Dakota County 14955 Galaxie Avenue Apple Valley, MN 55124-8579. Prepared by: Fortin Consulting, Inc. 2008
    [2] Allan J D and L B Johnson. Catchments- scale analysis of aquatic ecosystems[J]. Freshwater Biology. 1997, 37:107~111.
    [3] Costanza R, Norton B G, Haskell B D. Ecosystem Health: New Goal for Environmenttal Management[M]. Washingtong D C: Island press,1992
    [4] Costanza R et al. The Value of the world’s ecosystem services and natural capital[J].Nature.1997,387:253-260
    [5] Costanza R. The value of ecosystem services ecological economics[J]. Special section: forum on valuation of ecosystem services. 1998, 25:1-2
    [6] Cowardin, L. M., V. Carter, F. C. Golet, E. T. LaRoe. Classification of wetlands and deepwater habitats of the United States. U. S. Department of the Interior, Fish and Wildlife Service, Washington, D.C. 131pp. 1979.
    [7] CUI Li-juan, Anna van Paddenburg, ZHANG Man-yin. Applications of RS, GIS and GPS technologies in research, inventory and management of wetlands in China[J]. Journal of Forestry Resarch.2005,16(4):317-322
    [8] Curran P J, Dungan J L, Cholz H I. Seasonal LAI in slash pine estimated with Landsat TM[J]. Remote Sensing of Environment, 1992,39:3~13
    [9] Daolan Zheng, John Radamacherb, Jiquan Chena, et al. Estimating abovegruond biomass using Landsat 7 ETM+ data across a managed landscape in northern Wisconsin, USA[J].Remote Sensing of Environment, 2004,93:402~411
    [10] DE Jong S M S, Pebesma E J, Lacaze B. Above-ground Biomass Assessment of Mediterranean forests using airborne imaging spectrometry[J]. International Journal of Remote Sensing, 2003,24(7):1505~1520
    [11] Dechka J A, Franklin S E, Watmough M D, et al. Classification of wetland habitat and vegetation communities using multi-temporal Ikonos imagery in southern Saskathewan[J]. Canadian Journal of Remote Sensing, 2002,28(5):679-685
    [12] DIVERSITAS. http://www.diversitas-international.org/ 2008.8.28
    [13] Foody G M, Curran P J, ed. Environmental Remote Sensing from Regional to Global Scales[J]. Chichester: John Wiley & Sons. 1993
    [14] Forman R T T, Godron M. 1986.肖笃宁等译.1990景观生态学[M].北京:科学出版社
    [15] Forman R T T, Godron M. Landscape Ecology[M]. New York:John Wiley and Sons.1986.
    [16] Forman R T T. Land Mosaics: The Ecology of Landscapes and Regions[M]. Cambridge: Cambridge University Press. 1995
    [17] Forman R T T. Some general principles of landscape and regional ecology[J]. Landscape Ecology. 1995,10:133-142
    [18] Fortin M-J. Spatial statistics in landscape ecology[J]. In:Klopatek J M, Gardner R H,ed. Landscape Ecological Analysis: Issue and Applications[C], New York: Spring-Verlag.1999,253-279
    [19] Fortin M-J, Boots B, Csillag F, Remmel T K. On the role of spatial stochastic models in understanding landscape indices in ecology[J]. Oikos.2003,102:203-212
    [20] Fortin M-J, Dale M R T. Spatial Analysis:A Guide for Ecologists[M]. Cambridge, UK: Cambridge University Press.2005
    [21] Fotheringham S, Rogerson P. Spatial Analysis and GIS. London: Taylor & Francis.1994
    [22] Gillson L. Evidence of hierarchical patch dynamics in an East African savanna?[J].Landscape Ecology. 2004,19:883-894
    [23] Gillson L, Lindsay K, Bulte E H, Damiana R. Elephants, Ecology, and nonequilibrium?[J].Science. 2005,307:673-674
    [24] Goodchild M F, Parks B O, Steyaert L T,ed. Environmental Modeling with GIS[M]. New York: Oxford University Press. 1993
    [25] Grifiths G H. Editorial: Remote Sensing and Landscape Ecology: Landscape Patterns and Landscape Change[J]. International journal of Remote Sensing.2000,21(13):2537~2539.
    [26] H.Saito, M.F.Bellan, A.AI-Habshi, et al. Mangrove research and coastal ecosystem studies with SPOT-4 HRVIR and TERRA ASTER in the Arabian Gulf[J]. International Journal of Remote Sensing. 2003,24(21): 4073 - 4092
    [27] Holderegger R, Wagner H. A brief guide to landscape genetics[J]. Landscape Ecology. 2006,21:793-796
    [28] Holland M M. Wetlands and Environment Gradients. In: Mulamoottil G, Warner B G, Mcbean E A. Wetland Environment Gradients. Boundaries and Buffers. CRC Press Inc. , 1996.112-131
    [29] http://61.155.107.154/ygdxfx/page/jiaoan/ch6.htm. 2008-8-28
    [30] http://www.nwc.gov.au/www/html/2094-index-of-stream-condition.asp.2010-04-11
    [31] http://www.licor.com/env/Products/AreaMeters/lai2000/2000_intro.jsp .2008-11-17
    [32] http://www.umass.edu/landeco/research/fragstats/fragstats.html 2008.12-30
    [33] Iverson. L. Adequate data of known accuracy are critical to advancing the field of landscape ecology. In: Wu J, Hobbs R, eds, Key Topics in Landscape Ecology. Cambridge[C], UK: Cambridge University Press. 2007, 11-38
    [34] Iverson L R, Graham R L, Cook E A. Applications of satellite remote sensing to forested ecosystems[J]. Landscape Ecology.1989,3:131-143
    [35] Johnston C A. Geographic Information Systems in Ecology. Oxford: Blackwell.1998
    [36] Levin S A. The problem of pattern and scale in ecology[J]. Ecology.1992,73:1943-1967
    [37] Levin S A Ecosystems and the biosphere as complex adaptive systems[J].Ecosystems. 1998,1:431-436
    [38] Li H, Wu J. Use and misuse of landscape indices[J]. Landscape Ecology. 2004,19:389-399
    [39] Li H, Wu J. Landscape pattern analysis: Key issues and challenges. In: Wu J, Hobbs R, eds. Key Topics in Landscape Ecology. Cambridge[M], UK: Cambridge University Press. 2007,39-61
    [40] Lillesand T M, Kiefer R W. Remote Sensing and Image Interpretation[M]. New York: Wiley.1994
    [41] Karr, J. R. and D. R. Dudley. 1981. Ecological perspectives on water quality goals[J]. Environmental Management 5: 55-68
    [42] Kelly JR, Harwell M A. Indicatoes of ecosystem response and recovery. In: S. A. Levin, M. A. Harwall, et al., eds. Ecotoxicology: problems and approaches[M]. New York: springer-verlag, 1989.9-35
    [43] Ladson A R, White L J, Doolan J A, et al. Development and testing of an index of stream condition for waterway management in Australia. Freshwater Biol[J], 1999,41:453-468
    [44] Landres P B. Ecological indicators: panacea or liability. In: Daninel H, Mckenzie D, Hyatt E, et al. , Ltd. Ecological indicators. Barking: Elsevier Science Publisher, 1992.1295-1318
    [45] Maing J K, Marsh S E. Assessment of environmental impacts of river basin development on the riverine forests of eastern Kenya using multi-temporal satellite data. [J] Remote Sensing.2001,22(14):2701~2729.
    [46] Matson P A, Ustin S L. The future of remote sensing in ecological studies[J]. Ecology. 1991,72:1917
    [47] Mitsch W J, Gosselink J G. Wetlands[M]. New York: Van Nostrand Reinhold Company, 2000
    [48] Millennium Ecosystem Assessment 2005. Ecosystems and Human Well-being: Synthesis. Island Press. Washington DC.
    [49] Munyati C. Wetland change detection on the Kafue Flats, Zambia, by classification of a multitemporal remote sensing image datase[J] Remote Sensing.2000,21 ( 9 ):1787~1806.
    [50] Naveh Z, Lieberman A S. Landscape Ecology: Theory and Application[M].New York: Springer-Verlag. 1984
    [51] O’Neill R V et al. Multiple landscape scales: an intersite comparison[J]. Landscape Ecology.1991,5(30):137-144
    [52] O’Neill R V et al. A hierarchical neutral model for landscape analysis[J].Landscape Ecology.1992,7(1):55-62
    [53] O’Neill R, Hunsaker C, Jones K B, et al. Monitoring environmental quality at the landscape scale[J].BioScience. 1997,47:513-519
    [54] Paul A Keddy. Wetland Ecology Principles and Conservation[M]. Cambridge: Cambridge University Press. 2000. 124-238
    [55] Paul M J and J L Meyer. Streams in the urban landscape Annual Review of Ecology and Systematics[J]. 2001, 32:333~365.
    [56] Preston F W. The canonical distribution of commonness and rarity. Ecology. 1962,43:185-215
    [57] PU R L, GONG Peng.Hyper Spectral Remote Sensing and its Applications[M]. Beijing: Higher Education Press, 2000. 127~131.
    [58] Rapport DJ, Evolution of indicators of ecosystem health[J]. In: Daniel H, Mckenzie D, Hyatt E, et al. Ecological indicators[C]. Barking: Elsevier Science Publishers Ltd. , 1992, 121-134
    [59] Red Beach Scenic Area”. http://www.honghaitan.com/docc/index.asp 2008-11-17
    [60] Tarnocai C, Adams G D, Glooschenko V, et al. The Canadian wetland classification system. In: National Wetlands Working Group, ed. Wetland of Canada. Ecological Land Classification series 24. Environment Canada, Ottawa, Ontario, Polyscience Publications, Montreal, Quebec, 1998, 413-427
    [61] The Outline of the National Program for Long- and Medium-Term Scientific and Technological Development(2006-2020). http://www.gov.cn/jrzg/2006-02/09 /content_1837 87. htm. 2008.8.28
    [62] Tomas Vives P. Monitoring Mediterranean wetlands: A methodological Guide. Lisbon: Medwet Publication[M], Wetlands international Slim bridge, 1996
    [63] Turner M G. Landscape ecology: The effect of pattern on process[J]. Annual Review of Ecology and Systematics.1989,20:171-197
    [64] Turner M G, Gardner R H ed. Quantitative Methods in Landscape Ecology: The Analysis and Interpretation of Landscape Heterogeneity[M]. New York: Spring-Verlag. 1991
    [65] Turner M G. Landscape ecology in North America: Past, present, and future[J]. Ecology.2005,86:1967-1974
    [66] Turner M G, Cardille J A. Spatial heterogeneity and ecosystem processes[J]. In: Wu J, Hobbs R, eds. Key Topic in Landscape Ecology. Cambridge[C], UK: Cambridge University Press. 2007,62-77
    [67] Urban D L, O’Neill R V, Shugart J H H. Landscape ecology. BioScience. 1987, 37:119-127
    [68] Ustin S L, Wessman C A, Curtiss B et al. Opportunities for using the eos imagingspectrometers and synthetic aperture radar in ecological models. Ecology. 1991, 72:1934-1945
    [69] Verburg P H. Simulating feedbacks in land use and land cover change models[J].Landscape Ecology.2006,21:1171-1183
    [70] Warner B G, Rubic C D A. The Canadian wetland classification system. National Wetlands Working Group, Wetlands Research Centre, University of Waterloo, Waterloo, Ontario. 1997
    [71] With K A and A W King.1997. The use and misuse of neutral landscape models in landscape ecology. Oikos. 97:219~229.
    [72] Wu J, Gao W, Tueller P T. Effects of changing spatial scale on the results of statistical analysis with landscape data: A case study[J]. Geographic Information Sciences.1997,3:30-41
    [73] Wu J. Hierarchy and scaling: Extrapolating information along a scaling ladder[J]. Canadian Journal of Remote Sensing. 1999,25:367-380
    [74] Wu J, Hobbs R. Key issues and research priorities in landscape ecology : An idiosyncraticsynthesis. Landscape Ecology.2002,17:761-782
    [75] Wu Effects of changing scale on landscape pattern analysis: Scaling relations[J].2004,19:125-138
    [76] Wu J, Hobbs R. Landscape ecology: The state of the science[J].In:Wu J, Hobbs R, eds. Key Topics in Landscape Ecology[C].Cambridge,UK:Cambridge University Press.2007,271-287
    [77] Zoltai S C, Vitt D H. Canadian wetlands: Enironment gradients and classification. Vegetatio, 1995, 118: 131-137
    [78]蔡晓明.生态系统生态学[M].北京:科学出版社
    [79]陈昌笃.论地生态学[J].生态学报.1986,6(4):289-294
    [80]陈健,倪绍祥,李云梅.基于神经网络方法的芦苇叶面积指数遥感反演[J].国土资源遥感.2008,2,62-67
    [81]陈君颖,田庆久.高分辨率遥感植被分类研究[J].遥感学报.2007,11(2):221-227
    [82]陈俊,宫鹏著.实用地理信息系统[M].北京:科学出版社.1998
    [83]陈文波,肖笃宁,李秀珍.景观指数分类、应用及构建研究[J].应用生态学报[J].2002,13(1):121~125
    [84]陈文波,肖笃宁,李秀珍.景观指数分类、应用及构建研究[J].应用生态学报[J]. 2002,13(1):121~125
    [85]承继成,江美球.流域地貌数学模型[M].北京:科学出版社.1986
    [86]崔保山,贺强,赵欣胜.水盐环境梯度下翅碱蓬(Suaeda salsa)的生态阀值[J].生态学报.2008,28(4): 1408-1418]
    [87]崔保山,杨志峰.湿地生态系统健康评价指标体系I.理论[J].生态学报.2002, 22(7): 1005-1011
    [88]崔保山,杨志峰.《湿地学》[M].北京:北京师范大学出版社.2006.Pp3~15
    [89]崔保山,杨志峰.《湿地学》[M].北京:北京示范大学出版社.2006.Pp397-409
    [90]崔保山,杨志峰.湿地生态系统健康的时空尺度特征[J].应用生态学报.2003.14(1):121-125
    [91]崔保山,杨志峰.湿地生态系统健康研究进展[J].生态学杂志.2001.20(3): 31-36
    [92]戴小华,余孝.遥感技术支持下的植被生产力与生物量研究进展[J].生态学杂志2004,23(4):92~98
    [93]丁志,刘培君,张琳.博斯腾湖芦苇光谱特性及其在芦苇资源考察中的应用[J].干旱区研究.1984,1,64-70
    [94]董厚德,全奎国,邵成等.辽河河口湿地自然保护区植物群落生态研究[J].应用生态学报.1995,6(2):190~195
    [95]杜红艳,张洪岩,张正祥.GIS支持下的湿地遥感信息高精度分类方法研究[J].遥感技术与应用.2004.19(4):244-248
    [96]方秀琴,张万昌.叶面积指数(LAI)的遥感定量方法综述[J].国土资源遥感. 2003,3,58~62
    [97]付在毅,许学工,林辉平等.辽河三角洲湿地区域生态风险评价[J].生态学报.2001,21(3):365-373
    [98]傅伯杰.黄土区农业景观空间格局分析[J].生态学报.1995,15(2):113-120
    [99]傅伯杰,陈利顶.景观多样性的类型及其生态意义[J].地理学报.1996,,51(5):454-461
    [100]傅伯杰等.景观生态学原理及应用[M].北京:科学出版社.2001
    [101]高占国,张利权.上海盐沼植被的多季相地面光谱测量与分析[J].生态学报.2006,26(3): 794-800
    [102]宫鹏,黎夏,徐冰.高分辨率影像解译理论与应用方法中的一些问题[J].遥感学报.2006,10(1): 1-5
    [103]洪元灼.高分辨率卫星遥感技术在环境保护中的优化应用试探[J].梅安新等.高分辨率卫星遥感应用专集[C].广州:广东省地图出版社2008
    [104]贾永红,李芳芳.一种新的湿地信息遥感提取方法研究[J].华中师范大学学报(自然科学版).2007,41(4).641~644
    [105]蒋卫国,李京,李加洪等.辽河三角洲湿地生态系统健康评价[J].生态学报.2005.25(3):408-414
    [106]康艳华.盘锦海岸带翅碱蓬种群退化原因的调查与分析[J]辽宁农业职业技术学院学报2004,6(3)27~28,38
    [107]李春华,沙晋明.厦门市湿地时空演化的遥感动态分析[J].水土保持研究. 2007,14(1):43~46.
    [108]李春晖,崔嵬,庞爱萍等.流域生态健康评价理论与方法研究进展[J].地理科学进展.2008,27(1):9~17
    [109]李哈滨,王政权,王庆成.空间异质性定量研究理论与方法[J].应用生态学报.1998,9(6):651-657
    [110]李哈滨,邬建国.空间分析方法在景观生态学中的应用[M].北京:高等教育出版社.2007
    [111]李开丽,蒋建军,茅荣正等.植被叶面积指数遥感监测模型[J].生态学报. 2005,25(6):1491~1496
    [112]李书娟,曾辉.遥感技术在景观生态学研究中的应用[J].遥感学报.2002,6(3):233~240.
    [113]李秀珍,布仁仓,常禹等.景观格局指标对不同景观格局的反应[J].生态学报.2004,24(1):123~134
    [114]刘庆生,刘高焕,储晓雷.水稻、大豆与芦苇农田冠层光谱特征研究——以辽河三角洲为例[J].中国生态农业学报.2006,14(2):66-69]
    [115]罗彩莲,谭芳林,陈杰等.基于分类方法的泉州湾湿地信息提取[J].福建林业科技.2007.34(3):122-126
    [116]马妍妍,李广雪,刘勇等.胶州湾湿地动态变化的遥感分析及质量评价[J].海洋地质与第四纪地质.2008,28(1):69-75]
    [117]马妍妍,李广雪,史经昊等.胶州湾大沽河口湿地现状的遥感分析[J].中国海洋大学学报.2006,36(Sup):179-184
    [118]乔磊.SPOT-5数据处理及其在青岛胶州湾的应用[D].中国海洋大学. 2006
    [119]邵成,陈中林,董厚德.辽河河口湿地芦苇的生长及生物量研究[J].辽宁大学学报(自然科学版),1995,22(1):89-94]
    [120]沈芳,周云轩,周杰等九段沙湿地植被时空遥感监测与分析[J].海洋与湖沼2006.37(6):498-504
    [121]索安宁,赵冬至,张丰收等.景观指标与滨海湿地生态系统健康评价[J].海洋环境科学. 2008.27(Supp2):
    [122]汤国安,杨昕.ArcGIS地理信息系统空间分析实验教程[M].北京:科学出版社.2006.
    [123]童庆禧,郑兰芬,王晋年等.湿地植被成像光谱遥感研究[J] .遥感学报. 1997,1(1):50-57]
    [124]王备新,杨莲芳,刘正文。生物完整性指数与水生态系统健康评价[J].生态学杂志.2006,25(6):707~710
    [125]王坚,张继贤,刘正军等.基于经验模态分解的高分辨率影像融合[J].遥感学报.2007,11(1): 55-61
    [126]王谦,陈景玲,孙治强.冠层分析仪在不同植物群体光分布特征研究中的应用[J].中国农业科学. 2006,39(5):922-927]
    [127]王薇.黄河三角洲湿地生态系统健康综合评价研究[D]山东农业大学2007.6
    [128]王宪礼,胡远满,布仁仓.辽河三角洲湿地的景观变化分析[J].地理科学.1996,16(3):260-265
    [129]王宪礼,肖笃宁,布仁仓等.辽河三角洲湿地的景观格局分析[J].生态学报.1997,17(3):317—323.
    [130]王园园,李京.基于决策树的高光谱数据特征选择及其对分类结果的影响分析[J].遥感学报.2007,11(1):69-76
    [131]邬建国.岛屿生物地理学理论:模型与应用[J].生态学杂志.1989,8(6):34-39
    [132]邬建国.景观生态学——概念与理论[J].生态学杂志.2000,19(1):42-52
    [133]邬建国.景观生态学中的十大研究论题[J].生态学报.2004,24(9):2074-2076
    [134]邬建国.景观生态学——格局、过程、尺度与等级[M].北京:高等教育出版社2001
    [135]肖笃宁,苏文贵,贺红仕.景观生态学的发展及应用[J].生态学杂志.1988,,7(6):43-48
    [136]肖笃宁.宏观生态变化的观测与研究[J].生态学进展.1989,6(3):149-155
    [137]肖笃宁等.当代景观生态学的进展和展望[J].地理科学,1997.17(4):356~364
    [138]肖笃宁等.生态空间理论与景观异质性研究[J].生态学报.1997,17(5):453-461
    [139]肖笃宁等.景观生态学研究进展[M].长沙:湖南科学技术出版社.1999
    [140]肖笃宁,胡远满,李秀珍等.环渤海三角洲湿地的景观生态学研究[M].北京:科学出版社.2001
    [141]肖海燕,曾辉,咎启杰等.基于高光谱数据和专家决策法提取红树林群落类型信息[J].遥感学报. 2007,11(4):531~537
    [142]徐希孺.遥感物理[M]北京:北京大学出版社2005
    [143]薛利宏,曹卫星,罗卫红等.光谱植被指数与水稻叶面积指数相关性的研究[J].植物生态学报.2004,28(1):47-52
    [144]颜梅春.高分辨率影像的植被分类方法对比研究[J].遥感学报.2007,11(2):235-240
    [145]杨帆,赵冬至,马小峰等.RS和GIS技术在湿地景观生态研究中的应用进展[J].遥感技术与应用.2007,22(3): 471~478
    [146]杨帆,赵冬至,索安宁.双台子河口湿地景观时空变化研究[J].遥感技术与应用2008,23(1):51~56
    [147]杨飞,张柏,宋开山等.玉米光合有效辐射分量高光谱估算的初步研究[J].中国农业科学.2008,41(7):1947-1954
    [148]杨景春.李有利等.地貌学原理[M].北京:北京大学出版社. 2005
    [149]杨志峰,崔保山,黄国和等.黄淮海地区湿地水生态过程、水环境效应及生态安全调控[J].地球科学进展.2006, 21 (11): 1119-1126
    [150]于伯华,吕昌河.基于DPSIR概念模型的农业可持续发展宏观分析[J].中国人口资源与环境.2004,14(5):68-72
    [151]余明,李慧.基于SPOT影像的水体信息提取以及在湿地分类中的应用研究[J].应用技术2006,3,44~47
    [152]俞小明,石纯,陈春来等.河口滨海湿地评价指标体系研究[J].国土与自然资源研究.2006,2, 42-44
    [153]曾德慧等.生态系统健康与人类可持续发展[J].应用生态学报.1999,10(6):751~756
    [154]张华,苗苗,孙才志等.辽宁省滨海湿地资源类型及景观格局分析[J].资源科学.2007,29(3):139-146
    [155]张慧芳,张晓丽,黄瑜.遥感技术支持下的森林生物量研究进展[J].2007.20(4):30~34
    [156]张晓萍,杨勤科,李锐.流域健康诊断指标——一种生态环境评价的新方法.水土保持通报.1998,18(4):57~62
    [157]赵文吉,段福州等.ENVI遥感影像处理专题与实践[M].北京:中国环境科学出版社.2007
    [158]周维才,陈永富.湿地资源遥感变化监测方法[J].世界林业研究.2007,20(2):45-49

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700