用户名: 密码: 验证码:
纳米材料活细胞标记示踪及其生物毒性效应评估
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米科学与生物科学、医学以及环境科学的相互交叉、深度融合催生了纳米生物医学和纳米生物安全研究。本文对纳米材料在活细胞内蛋白质标记成像和示踪中的应用进行了研究,同时用斑马鱼对其生物毒性效应进行了系统评估。主要研究内容如下:
     1.构建了基于核酸适配子的纳米生物探针并将其成功用于朊蛋白细胞内在化途径研究。将巯基修饰的核酸适配子偶联到金纳米粒子表面,制备得到细胞型朊蛋白特异性核酸适配子修饰的金纳米粒子光学探针,并将其成功应用到细胞表面朊蛋白的光散射成像和电子透射显微成像分析。通过对核酸适配子修饰的金纳米粒子探针进入细胞的途径及其在细胞内转运命运的进一步研究表明,窖蛋白介导的内吞作用可能是其进入细胞的一个重要途径。核酸适配子修饰的金纳米粒子探针制备简单、成本低廉,可能被广泛应用于生物医学成像领域。
     2.发展了一种基于核酸适配子修饰银纳米粒子的新型光学探针。本文将银纳米粒子作为发光元件,核酸适配子作为分子识别元件,构建了细胞内蛋白质的标记成像探针并应用于单颗纳米粒子光谱分析。银纳米粒子用链霉亲和素包被并用核酸适配子功能化后,在细胞培养中显示出良好的生物相容性和稳定性,可同时作为暗场光散射成像和透射电子显微成像的光学探针;不仅如此,银纳米颗粒的超灵敏单粒子散射光谱还可能被潜在的用于细胞内微环境分析。进一步研究表明,窖蛋白介导的内吞作用可能是银纳米探针标记的朊蛋白进入神经瘤母细胞的一个必要途径。核酸适配子修饰的银纳米探针可作为暗场光散射成像和透射电子显微成像的双料成像代理,且具有超灵敏的单粒子光谱,这些优良的性质使其在未来的生物医学成像和疾病探测上具有极大的应用潜质。
     3.提出了一种通用而简单的基于多功能核酸适配子介导的活细胞表面蛋白质纳米标记新策略。通过设计使核酸适配子成为综合了靶标识别功能和配体连接功能为一体的双功能代理,成功地实现了活细胞表面靶蛋白的特异性标记和示踪。该策略运用分步标记的方法,先用生物素化的核酸适配子去捕获细胞表面的靶蛋白,然后再用链霉亲和素修饰的纳米探针识别靶蛋白上的生物素,从而实现对活细胞表面靶蛋白的特异性标记。我们应用该标记方法不但实现了多种纳米探针对核仁蛋白的标记及多模式成像,而且还用量子点对朊蛋白在细胞内转运和动力学过程实施了成功的监测。该标记策略操作简单,避免了传统纳米探针复杂的修饰和分离步骤。更为重要的是,我们提出的这一标记策略是一种可通用的蛋白质标记方法。
     4.采用水环境暴露和显微注射相结合的方法,系统考察了纳米荧光量子点在斑马鱼体内外的分布情况和毒性效应。研究结果表明,多聚乙二醇修饰的量子点在胚胎卵膜和仔鱼体表的吸附能力弱,表面的电荷对其在卵膜上的吸附能力无明显影响;水环境中的羧基化量子点可在斑马鱼卵膜上大量吸附,也会在仔鱼的口咽腔、鳃、鳍条、排泄孔等部位聚集,并可通过仔鱼的吞咽作用进入消化道。高浓度的羧基化量子点在水环境中暴露会诱导胚胎的畸形发育,这些毒性效应可能是由金属镉的释放所致。心脏显微注射的羧基化量子点会随血液循环进入到斑马鱼的静脉系统,但很少会在内脏中残留,其主要分布于后大脑静脉、眶鼻静脉、心脏壁、腹腔壁、后主静脉、体节动脉及尾部动脉和静脉。羧基化量子点在注射后6天仍大量残存于静脉血管内,不被机体排除,显示出较高的生物吸附能力和体内残存量,具有较高的生物毒性风险。
     5.以斑马鱼为模式生物,对石墨烯和多壁碳纳米管的生物毒性效应进行了比较研究。石墨烯是一种新型的碳纳米材料,优良的物理化学性质使其在未来的光热传感、电子传导等领域极具发展潜力,但到目前为止却未见其生物毒性研究报道。研究结果表明,石墨烯的生物毒性较弱,在浓度为50 mg/L才会引起明显的细胞生长抑制和轻微的斑马鱼胚胎孵化延迟效应,但不会导致胚胎内细胞凋亡的增加和严重的胚胎发育畸形。与之相比,多壁碳纳米管具有较强的生物毒性,在浓度为7.6 mg/L就能明显抑制细胞生长;在浓度为50 mg/L时,多壁碳纳米管会在斑马鱼胚胎卵膜表面大量吸附,导致胚胎内细胞凋亡数量明显增加,最终引起胚胎发育畸形。该研究结果提示,石墨烯和碳纳米管在一定条件下都表现出生物毒性效应。同时,石墨烯和多壁碳纳米管虽然具有相似的纳米形态结构,其生物毒性效应却差异较大,这可能是它们与生物体的作用方式和机制不同所致。
Nanomedicine and nanotoxicity are two important cross-disciplinary fields that were derived from the interdisciplinary and integrated from nanotechnology, life science, medicine and environmental science. In this contribution, we focus on the application of nanomaterials to intracellular protein labeling and tracking as well as its biological toxicity assessment. The mainly points are as follows:
     1. Aptamer-conjugated gold nanoparticles were developed as optical probes for imaging the internalization pathways of prion protein. By conjugating thiol-modified prion aptamer to the surface of gold nanoparticles, we prepared an aptamer-conjugated nanoparticles probe (Apt-AuNPs) specific to prion protein (PrPC) and then applied the probe for the light scattering imaging and electron transmission microscopic analysis of PrPC in cells. Further investigation showed that caveolin-related endocytosis was likely a necessary pathway for the internalization of PrPC labeled with Apt-AgNPs in human bone marrow neuroblastoma cells (SK-N-SH cells). Owing to its simple preparation and low productive costs, Apt-AuNPs probe offers high promising for further biomedical imaging applications.
     2. Aptamer adapted silver nanoparticles (Apt-AgNPs) were developed as a novel optical probe for simultaneous intracellular protein imaging and single nanoparticle spectral analysis, wherein AgNPs act as an illuminophore and aptamer as a biomolecule specific recognition unit, respectively. With protein conjugation and aptamer functionalization, AgNPs show satisfactory biocompatibility and stability in cell culture medium. It was found that streptavidin conjugated and aptamer-functionalized AgNPs show satisfactory biocompatibility and stability in cell culture medium, and thus not only can act as a high contrast imaging agent for both dark-field light scattering microscope and TEM imaging but also can inspire supersensitive single nanoparticle spectra for potential intercellular microenvironment analysis. Further investigations showed that caveolae-related endocytosis is likely a necessary pathway for Apt-AgNPs labeled PrPC internalization in human bone marrow neuroblastoma cells (SK-N-SH cells). The integrated capability of Apt-AgNPs to be used as light scattering and TEM imaging agents, along with their potential use for single nanoparticle spectral analysis, makes them a great promise for future biomedical imaging and disease diagnosis.
     3. A simple and general strategy for specifically protein labeling with nanoparticles is proposed by employing aptamer not only as the identifier for specifically protein recognizing, but also as a linker for targeting streptavidin conjugate nanoparticles (SA-NPs). In our approach, a cell membrane protein is pre-labeled by biotin modified aptamer (Bio-Apt) added to the medium, and then the biotin group serves as a handle for targeting SA-NPs. To demonstrate the feasibility of our strategy, nucleolin, a biomarker of cancer cells, was first labeling and imaging with three kinds of nanoprobes including gold nanoparticles, silver nanoparticles and quantum dots, respectively. Subsequently, single color and double color labeling with both QDs and fluophores to prion protein (PrPC) in neuroblastoma cells were achieved, and then the intercellular distribution of the PrPC as well as their colocalization with transferrin (Tf) were investigated. We further performed time-lapse imaging of QDs bound to PrPC to addressing the dynamic characteristics analysis of different cellular transportation. This new labeling method is simple in procedure, avoiding any complicated probe modification in comparison to traditional approaches. Furthermore, this strategy is generalizable since not only the sequences of aptamers can be changeable for various proteins recognition but also different types of reporters can in principle use for individual or double signal imaging.
     4. In vivo biodistribution and toxic effects of functionalized QDs in developing zebrafish was systemic investigated through the aquatic exposure and microinjection. Quantum dots are widely explored for biomedical applications, but there is very limited information regarding their in vivo biodistribution and biocompatibility, especially in aquatic animals. Our results demonstrate that multi-PEGylated QDs show weak adsorption capability both on the surface of egg membrane and larval body, and the surface charge of QDs have no effect on such adsorption. However, carboxylated quantum dots which exposure in aquatic environment, can not only adsorbed on the embryonic chorion in large numbers, but also effectively accumulated in the tissues of larvae, distributing in oropharyngeal cavity, gills, fins and anus. Furthermore, QDs can move easily into the digestive canal through the role of larval swallowing. High concentrations of carboxylated quantum dots exposure can induce abnormal embryonic development that may be caused by the release of metal cadmium. When introduced into the circulation system by heart microinjection, carboxylated quantum dots will be transported into the venous system through blood circulation of zebrafish, mainly distributing in the intravenous after brain, nasal orbital vein, heart, abdominal wall, spinal vein, as well as tail artery and vein. What is more important, a large number of carboxylated quantum dots still residue within the vein and were not cleaned out by the body at 6 days after the injection, showed a high adsorption capacity and in vivo biological residue, suggesting the high potential in biological toxicity.
     5. A comparative study of nano-toxicological effect to graphene and mutli-walled carbon nanotubes (MCNTs) was achieved through model organisms exposed methods. Graphene is a new type of carbon nanomaterials that has stimulated great interest due to their superior mechanical, electrical, and thermal properties. However, no special toxic assessment of graphene, so far, has been reported as far as we know. Our results demonstrate that graphene would cause obvious cell growth inhibition and slight hatching delay of zebrafish embryo at a concentration of 50 mg/L, but can not lead to increased apoptosis in embryonic and serious fetal malformations, showing a moderate toxicity. In comparison to mild toxicological effect of graphene, MCNTs exhibits acute toxicity to organisms. MCNTs can obviously inhibit cell growth at the concentration of 7.6 mg/L, and heavy accumulate in embryonic chorion at 50 mg/L, resulting in significantly increasing of apoptosis in embryo that eventually lead to fetal malformation. These results demonstrate that both graphene and MCNTs have shown toxic effect under certain condition. It is worth noting that graphene and MCNTs, while having a similar nano-morphology, exhibit quite different toxic effects, this may be derived from their distinctive interaction mode to the organisms.
引文
[1]Service, R. F., Nanotechnology Grows Up. Science 2004,304 (5678),1732-1734.
    [2]McNeil, S. E., Nanotechnology for the biologist.J. Leukoc. Biol.2005,78 (3),585-594.
    [3]Hillie, T.; Hlophe, M., Nanotechnology and the challenge of clean water. Nat. Nano.2007,2 (11),663-664.
    [4]Rosi, N. L.; Mirkin, C. A., Nanostructures in Biodiagnostics. Chem. Rev.2005,105 (4), 1547-1562.
    [5]Suh, W. H.; Suslick, K. S.; Stucky, G. D.; Suh, Y.-H., Nanotechnology, nanotoxicology, and neuroscience. Prog. Neurobiol.2009,87(3),133-170.
    [6]Wang, M. D.; Shin, D. M.; Simons, J. W.; Nie, S., Nanotechnology for targeted cancer therapy. Expert Rev. Anticancer Ther.2007,7 (6),833-837.
    [7]Liu, W.-T., Nanoparticles and their biological and environmental applications.J. Biosci. Bioeng. 2006,102 (1),1-7.
    [8]Singh, R.; Lillard Jr, J. W., Nanoparticle-based targeted drug delivery. Exp. Mol. Pathol.2009, 86 (3),215-223.
    [9]Riehemann, K.; Schneider, S. W.; Luger, T. A.; Godin, B.; Ferrari, M.; Fuchs, H., Nanomedicine-Challenge and perspectives. Angew. Chem. Int. Ed.2009,48 (5),872-897.
    [10]Farokhzad, O. C.; Langer, R., Impact of Nanotechnology on Drug Delivery. Acs Nano 2009,3 (1),16-20.
    [11]Ferrari, M., Cancer nanotechnology:opportunities and challenges. Nat. Rev. Cancer 2005,5 (3),161-171.
    [12]Grodzinski, P.; Silver, M.; Molnar, L. K., Nanotechnology for cancer diagnostics:promises and challenges. Expert Rev. Mol. Diagn.2006,6 (3),307-318.
    [13]Rosi, N. L.; Mirkin, C. A., Nanostructures in Biodiagnostics. Chem. Rev.2005,105, 1547-1562.
    [14]Nune, S. K.; Gunda, P.; Thallapally, P. K.; Lin, Y.-Y.; Laird Forrest, M.; Berkland, C. J., Nanoparticles for biomedical imaging. Expert Opin. Drug Deliv.2009,6 (11),1175-1194.
    [15]Brumfiel, G., Nanotechnology:A little knowledge. Nature 2003,424 (6946),246-248.
    [16]Nel, A. E.; Madler, L.; Velegol, D.; Xia, T.; Hoek, E. M. V.; Somasundaran, P.; Klaessig, F.; Castranova, V.; Thompson, M., Understanding biophysicochemical interactions at the nano-bio interface. Nat. Mater.2009,8 (7),543-557.
    [17]Dobrovolskaia, M. A.; McNeil, S. E., Immunological properties of engineered nanomaterials. Nat. Nanotechnol.2007,2 (8),469-478.
    [18]Niemeyer, C. M., Nanoparticles, Proteins, and Nucleic Acids:Biotechnology Meets Materials Science. Angew. Chem. Int. Ed.2001,40 (22),4128-4158.
    [19]Cedervall, T.; Lynch, I.; Lindman, S.; Berggard, T.; Thulin, E.; Nilsson, H.; Dawson, K. A.; Linse, S., Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc. Natl. Acad. Sci. USA 2007,104 (7), 2050-2055.
    [20]Linse, S.; Cabaleiro-Lago, C.; Xue, W.-F.; Lynch, I.; Lindman, S.; Thulin, E.; Radford, S. E.; Dawson, K. A., Nucleation of protein fibrillation by nanoparticles. Proc. Natl. Acad. Sci. USA 2007,104(21),8691-8696.
    [21]Lundqvist, M.; Stigler, J.; Elia, G.; Lynch, I.; Cedervall, T.; Dawson, K. A., Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc. Natl. Acad. Sci. USA 2008,105 (38),14265-14270.
    [22]Gao, H.; Shi, W.; Freund, L. B., Mechanics of receptor-mediated endocytosis. Proc. Natl. Acad. Sci. USA 2005,102 (27),9469-9474.
    [23]Decuzzi, P.; Ferrari, M., The role of specific and non-specific interactions in receptor-mediated endocytosis of nanoparticles. Biomaterials 2007,28 (18),2915-2922.
    [24]Chithrani, B. D.; Ghazani, A. A.; Chan, W. C. W., Determining the Size and Shape Dependence of Gold Nanoparticle Uptake into Mammalian Cells. Nano Lett.2006,6 (4), 662-668.
    [25]Verma, A.; Uzun, O.; Hu, Y.; Hu, Y.; Han, H.-S.; Watson, N.; Chen, S.; Irvine, D. J.; Stellacci, F., Surface-structure-regulated cell-membrane penetration by monolayer-protected nanoparticles. Nat. Mater.2008,7,588-595.
    [26]Chithrani, B. D.; Chan, W. C. W., Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett.2007,7 (6), 1542-1550.
    [27]Gratton, S. E. A.; Ropp, P. A.; Pohlhaus, P. D.; Luft, J. C.; Madden, V. J.; Napier, M. E.; DeSimone, J. M., The effect of particle design on cellular internalization pathways. Proc. Natl. Acad. Sci. USA 2008,105 (33),11613-11618.
    [28]Verma, A.; Stellacci, F., Effect of Surface Properties on Nanoparticle-Cell Interactions. Small 2010,6(1),12-21.
    [29]Savic, R.; Luo, L.; Eisenberg, A.; Maysinger, D., Micellar Nanocontainers Distribute to Defined Cytoplasmic Organelles. Science 2003,300 (5619),615-618.
    [30]Boddapati, S. V.; Souza, G. G. M.; Erdogan, S.; Torchilin, V. P.; Weissig, V., Organelle-Targeted Nanocarriers:Specific Delivery of Liposomal Ceramide to Mitochondria Enhances Its Cytotoxicity in Vitro and in Vivo. Nano Lett.2008,8 (8),2559-2563.
    [31]Chan, W. C. W.; Nie, S., Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 1998,281 (5385),2016-2018.
    [32]Dubertret, B.; Skourides, P.; Norris, D. J.; Noireaux, V.; H, A.; Brivanlou; Libchaber, A., In Vivo Imaging of Quantum Dots Encapsulated in Phospholipid Micelles. Science 2002,298, 1759-1762.
    [33]Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J. J.; Sundaresan, G.; Wu, A. M.; Gambhir, S. S.; Weiss, S., Quantum dots for live cells, in vivo imaging, and diagnostics. Science 2005,307 (5709),538-544.
    [34]Lidke, D. S.; Nagy, P.; Heintzmann, R.; Arndt-Jovin, D. J.; Post, J. N.; Grecco, H. E.; Jares-Erijman, E. A.; Jovin, T. M., Quantum dot ligands provide new insights into erbB/HER receptor-mediated signal transduction. Nat. Biotech.2004,22 (2),198-203.
    [35]Howarth, M.; Takao, K.; Hayashi, Y.; Ting, A. Y., Targeting quantum dots to surface proteins in living cells with biotin ligase. Proc. Natl. Acad. Sci. USA 2005,102 (21),7583-7588.
    [36]Joo, K.-I.; Lei, Y.; Lee, C.-L.; Lo, J.; Xie, J.; Hamm-Alvarez, S. F.; Wang, P., Site-specific labeling of enveloped viruses with quantum dots for single virus tracking. Acs Nano 2008,2 (8),1553-1562.
    [37]Freeman, R.; Gill, R.; Shweky, I.; Kotler, M.; Banin, U.; Willner, I., Biosensing and Probing of Intracellular Metabolic Pathways by NADH-Sensitive Quantum Dots. Angew. Chem. Int. Ed.2008,48(2),309-313.
    [38]Edgar, R.; McKinstry, M.; Hwang, J.; Oppenheim, A. B.; Fekete, R. A.; Giulian, G.; Merril, C.; Nagashima, K.; Adhya, S., High-sensitivity bacterial detection using biotin-tagged phage and quantum-dot nanocomplexes. Proc. Natl. Acad. Sci. USA 2006,103 (13),4841-4845.
    [39]Youngseon, C.; Hwa Pyung, K.; Suk Min, H.; Ji Young, R.; Sung Jun, H.; Rita, S., In situ Visualization of Gene Expression Using Polymer-Coated Quantum-Dot-DNA Conjugates. Small 2009,5 (18),2085-2091
    [40]Tada, H.; Higuchi, H.; Wanatabe, T. M.; Ohuchi, N., In vivo Real-time Tracking of Single Quantum Dots Conjugated with Monoclonal Anti-HER2 Antibody in Tumors of Mice. Cancer Res.2007,67(3),1138-1144.
    [41]Zhang, Q.; Cao, Y.-Q.; Tsien, R. W., Quantum dots provide an optical signal specific to full collapse fusion of synaptic vesicles. Proc. Natl. Acad. Sci. USA 2007,104 (45),17843-17848.
    [42]Shah, B. S.; Clark, P. A.; Moioli, E. K.; Stroscio, M. A.; Mao, J. J., Labeling of mesenchymal stem cells by bioconjugated quantum dots. Nano Lett.2007,7 (10),3071-3079.
    [43]Chen, L. D.; Liu, J.; Yu, X. F.; He, M.; Pei, X. F.; Tang, Z. Y.; Wang, Q. Q.; Pang, D. W.; Li, Y., The biocompatibility of quantum dot probes used for the targeted imaging of hepatocellular carcinoma metastasis. Biomaterials 2008,29 (31),4170-4176.
    [44]Lily, Y.; Hui, M.; Wang, Y. A.; Zehong, C.; Xianghong, P.; Xiaoxia, W.; Hongwei, D.; Chunchun, N.; Qingan, Y.; Gregory, A.; Mark, Q. S.; William, C. W.; Xiaohu, G.; Shuming, N., Single chain epidermal growth factor receptor antibody conjugated nanoparticles for in vivo tumor targeting and imaging. Small 2009,5 (2),235-243.
    [45]Nusz, G. J.; Marinakos, S. M.; Curry, A. C.; Dahlin, A.; Hook, F.; Wax, A.; Chilkoti, A., Label-Free Plasmonic Detection of Biomolecular Binding by a Single Gold Nanorod. Anal. Chem.2008,80 (4),984-989.
    [46]Baciu, C. L.; Becker, J.; Janshoff, A.; SOnnichsen, C., Protein-Membrane Interaction Probed by Single Plasmonic Nanoparticles. Nano Lett.2008,8 (6),1724-1728.
    [47]Haes, A. J.; Van Duyne, R. P., A Nanoscale Optical Biosensor:Sensitivity and Selectivity of an Approach Based on the Localized Surface Plasmon Resonance Spectroscopy of Triangular Silver Nanoparticles.J. Am. Chem. Soc.2002,124 (35),10596-10604.
    [48]Anker, J. N.; Hall, W. P.; Lyandres, O.; Shah, N. C.; Zhao, J.; Van Duyne, R. P., Biosensing with plasmonic nanosensors. Nat. Mater.2008,7 (6),442-453.
    [49]Kumar, S.; Harrison, N.; Richards-Kortum, R.; Sokolov, K., Plasmonic nanosensors for imaging intracellular biomarkers in live cells. Nano Lett.2007,7 (5),1338-1343.
    [50]Sonnichsen, C.; Alivisatos, A. P., Gold Nanorods as Novel Nonbleaching Plasmon-Based Orientation Sensors for Polarized Single-Particle Microscopy. Nano Lett.2005,5 (2), 301-304.
    [51]Nallathamby, P. D.; Lee, K. J.; Xu, X.-H. N., Design of stable and uniform single nanoparticle photonics for in vivo dynamics imaging of nanoenvironments of zebrafish embryonic fluids. Acs Nano 2008,2 (7),1371-1380.
    [52]Kreuter, J.; Ramge, P.; Petrov, V.; Hamm, S.; Gelperina, S. E.; Engelhardt, B.; Alyautdin, R.; von Briesen, H.; Begley, D. J., Direct Evidence That Polysorbate-80-Coated Poly(Butylcyanoacrylate) Nanoparticles Deliver Drugs to the CNS via Specific Mechanisms Requiring Prior Binding of Drug to the Nanoparticles. Pharma. Res.2003,20 (3),409-416.
    [53]Kroll, R. A.; Pagel, M. A.; Muldoon, L. L.; Roman-Goldstein, S.; Fiamengo, S. A.; Neuwelt, E. A., Improving Drug Delivery to Intracerebral Tumor and Surrounding Brain in a Rodent Model:A Comparison of Osmotic versus Bradykinin Modification of the Blood-Brain and/or Blood-Tumor Barriers. Neurosurgery 1998,43 (4),879-886.
    [54]Bisht, S.; Feldmann, G.; Soni, S.; Ravi, R.; Karikar, C.; Maitra, A.; Maitra, A., Polymeric nanoparticle-encapsulated curcumin ("nanocurcumin"):a novel strategy for human cancer therapy.J. Nanobiotechnol.2007,5(1),3-4.
    [55]Sutton, D.; Nasongkla, N.; Blanco, E.; Gao, J., Functionalized Micellar Systems for Cancer Targeted Drug Delivery. Pharma. Res.2007,24 (6),1029-1046.
    [56]Kim, J.; Kim, H. S.; Lee, N.; Kim, T.; Kim, H.; Yu, T.; Song, I. C.; Moon, W. K.; Hyeon, T., Multifunctional Uniform Nanoparticles Composed of a Magnetite Nanocrystal Core and a Mesoporous Silica Shell for Magnetic Resonance and Fluorescence Imaging and for Drug Delivery. Angew. Chem. Int. Ed.2008,47 (44),8322.
    [57]Nehilla, B. J.; Allen, P. G.; Desai, T. A., Surfactant-Free, Drug-Quantum-Dot Coloaded Poly(lactide-co-glycolide) Nanoparticles:Towards Multifunctional Nanoparticles. Acs Nano 2008,2 (3),538-544.
    [58]Bagalkot, V.; Zhang, L.; Levy-Nissenbaum, E.; Jon, S.; Kantoff, P. W.; Langer, R.; Farokhzad, O. C., Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Lett.2007,7 (10), 3065-3070.
    [59]Wang, Y.; Bansal, V.; Zelikin, A. N.; Caruso, F., Templated Synthesis of Single-Component Polymer Capsules and Their Application in Drug Delivery. Nano Lett.2008,8 (6),1741-1745.
    [60]Kim, Y.; Klutz, A. M.; Jacobson, K. A., Systematic investigation of polyamidoamine dendrimers surface-modified with poly(ethylene glycol) for drug delivery applications: synthesis, characterization, and evaluation of cytotoxicity. Bioconjugate Chem.2008,19 (8), 1660-1672.
    [61]Larson, T. A.; Bankson, J.; Aaron, J.; Sokolov, K., Hybrid plasmonic magnetic nanoparticles as molecular specific agents for MRI/optical imaging and photothermal therapy of cancer cells. Nanotechnology 2007,18 (32),325101.
    [62]Esther, A.; Stefan, Z.; Alireza, M.; Joyce, Y. W.; Marcus, T.; Erik, R., Surface Functionalization of Single Superparamagnetic Iron Oxide Nanoparticles for Targeted Magnetic Resonance Imaging. Small 2009,5(11),1334-1342.
    [63]Kobayashi, H.; Brechbiel, M. W., Dendrimer-based nanosized MRI contrast agents. Curr. Pharm. Biotechnol.2004,5 (6),539-549.
    [64]Hultman, K. L.; Raffo, A. J.; Grzenda, A. L.; Harris, P. E.; Brown, T. R.; x; Brien, S., Magnetic resonance imaging of major histocompatibility class Ⅱ expression in the renal medulla using immunotargeted superparamagnetic iron oxide nanoparticles. Acs Nano 2008,2 (3),477-484.
    [65]Shin, J.; Anisur, R. M.; Ko, M. K.; Im, G. H.; Lee, J. H.; Lee, I. S., Hollow Manganese Oxide Nanoparticles as Multifunctional Agents for Magnetic Resonance Imaging and Drug Delivery. Angew. Chem. Int. Ed.2009,48 (2),321-324.
    [66]El-Sayed, I. H.; Huang, X.; El-Sayed, M. A., Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: Applications in oral cancer. Nano Lett.2005,5 (5),829-834.
    [67]Huang, X.; EI-Sayed, I. H.; Qian, W.; EI-Sayed, M. A., Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods.J. Am. Chem. Soc.2006,128, 2115-2120.
    [68]Gao, X.; Cui, Y.; Levenson, R. M.; Chung, L. W. K.; Nie, S., In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotech.2004,22 (8),969-976.
    [69]Lee, S.; Chon, H.; Lee, M.; Choo, J.; Shin, S. Y.; Lee, Y. H.; Rhyu, I. J.; Son, S. W.; Oh, C. H., Surface-enhanced Raman scattering imaging of HER2 cancer markers overexpressed in single MCF7 cells using antibody conjugated hollow gold nanospheres. Biosens. Bioelectron.2009, 24 (7),2260-2263.
    [70]Oberdorster, G.; Oberdorster, E.; Oberdorster, J., Nanotoxicology:An Emerging Discipline Evolving from Studies of Ultrafine Particles. Environ. Health Perspect.2005,113 (7).
    [71]Hochella, M. F., Jr.; Lower, S. K.; Maurice, P. A.; Penn, R. L.; Sahai, N.; Sparks, D. L.; Twining, B. S., Nanominerals, Mineral Nanoparticles, and Earth Systems. Science 2008,319 (5870),1631-1635.
    [72]Service, R. F., Nanomaterials Show Signs of Toxicity. Science 2003,300 (5617),243.
    [73]Nel, A.; Xia, T.; Madler, L.; Li, N., Toxic Potential of Materials at the Nanolevel. Science 2006,311 (5761),622-627.
    [74]Lewinski, N.; Colvin, V.; Drezek, R., Cytotoxicity of Nanoparticles. Small 2008,4 (1),26-49.
    [75]Oberdorster, E., Manufactured nanomaterials (fullerences,C6o) induce oxidative stress in the brain of juvenile Largemouth Bass. Environ. Health Perspect.2004,112,1058-1062.
    [76]DunphyGuzman, K. A.; Taylor, M. R.; Banfield, J. F., Environmental Risks of Nanotechnology:National Nanotechnology Initiative Funding,2000-2004. Environ. Sci. Technol.2006,40 (5),1401-1407.
    [77]Hussain, S. M.; Javorina, A. K.; Schrand, A. M.; Duhart, H. M.; Ali, S. F.; Schlager, J. J., The interaction of manganese nanoparticles with PC-12 cells induces dopamine depletion. Toxicol. Sci.2006,92 (2),456-463.
    [78]Hardman, R., A toxicologic review of quantum dots:Toxicity depends on physicochemical and environmental factors. Environ. Health Perspect.2006,114 (2),165-172.
    [79]Soto, K.; Garza, K. M.; Murr, L. E., Cytotoxic effects of aggregated nanomaterials. Acta Biomaterialia 2007,351-358.
    [80]Schipper, M. L.; Nakayama-Ratchford, N.; Davis, C. R.; Kam, N. W. S.; Chu, P.; Liu, Z.; Sun, X.; Dai, H.; Gambhir, S. S., A pilot toxicology study of single-walled carbon nanotubes in a small sample of mice. Nat. Nano.2008,3 (4),216-221.
    [81]Griffitt, R. J.; Weil, R.; Hyndman, K. A.; Denslow, N. D.; Powers, K.; Taylor, D.; Barber, D. S., Exposure to Copper Nanoparticles Causes Gill Injury and Acute Lethality in Zebrafish (Danio rerio). Environ. Sci. Technol.2007,41 (23),8178-8186.
    [82]Henry, T. B.; Menn, F.-M.; Fleming, J. T.; Wilgus, J.; Compton, R. N.; Sayler, G. S., Attributing effects of aqueous C60 nano-aggregates to tetrahydrofuran decomposition products in larval zebrafish by assessment of gene expression. Environ. Health Perspect.2007,115 (7), 1059-1065.
    [83]Cheng, J. P.; Flahaut, E.; Cheng, S. H., Effect of carbon nanotubes on developing zebrafish (Danio rerio) embryos. Environ. Toxicol. Chem.2007,26 (4),708-716.
    [84]King-Heiden, T.; Wiecinski, P.; Mangham, A.; Metz, K.; Nesbit, D.; Pedersen, J.; Hamers, R.; Heideman, W.; Peterson, R., Quantum dot nanotoxicity assessment using the zebrafish embryo. Environ. Sci. Technol.2009,43 (5),1605-1611.
    [85]Holbrook, R. D.; Murphy, K. E.; Morrow, J. B.; Cole, K. D., Trophic transfer of nanoparticles in a simplified invertebrate food web. Nat. Nano.2008,3 (6),352-355.
    [86]Service, R. F., Calls Rise for More Research on Toxicology of Nanomaterials. Science 2005, 310 (5754),1609-.
    [87]Hussain, S. M.; Braydich-Stolle, L. K.; Schrand, A. M.; Murdock, R. C.; Yu, K. O.; Mattie, D. M.; Schlager, J. J.; Terrones, M., Toxicity Evaluation for Safe Use of Nanomaterials:Recent Achievements and Technical Challenges. Adv. Mater.2009,21 (16),1549-1559.
    [88]Fischer, H. C.; Chan, W. C. W., Nanotoxicity:the growing need for in vivo study. Curr. Opin. Biotechnol.2007,18 (6),565-571.
    [89]Chen, X.; Conti, P. S.; Moats, R. A., In vivo Near-Infrared Fluorescence Imaging of Integrin avβ3 in Brain Tumor Xenografts. Cancer Res.2004,64 (21),8009-8014.
    [90]Jaiswal, J. K.; Mattoussi, H.; Mauro, J. M.; Simon, S. M., Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat. Biotech.2003,21 (1),47-51.
    [91]Derfus, A. M.; Chan, W. C. W.; Bhatia, S. N., Intracellular Delivery of Quantum Dots for Live Cell Labeling and Organelle Tracking. Adv. Mater.2004,16 (12),961-966.
    [92]Cui, B.; Wu, C.; Chen, L.; Ramirez, A.; Bearer, E. L.; Li, W.-P.; Mobley, W. C.; Chu, S., One at a time, live tracking of NGF axonal transport using quantum dots. Proc. Natl. Acad. Sci. USA 2007,104 (34),13666-13671.
    [93]Wu, X.; Liu, H.; Liu, J.; Haley, K. N.; Treadway, J. A.; Larson, J. P.; Ge, N.; Peale, F.; Bruchez, M. P., Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat. Biotech.2003,21 (1),41-46.
    [94]Pinaud, F.; Michalet, X.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J. J.; Iyer, G.; Weiss, S., Advances in fluorescence imaging with quantum dot bio-probes. Biomaterials 2006,27 (9), 1679-1687.
    [95]Ornberg, R. L.; Harper, T. F.; Liu, H., Western blot analysis with quantum dot fluorescence technology:a sensitive and quantitative method for multiplexed proteomics. Nat. Meth.2005, 2(1),79-81.
    [96]Sukhanova, A.; Devy, J.; Venteo, L.; Kaplan, H.; Artemyev, M.; Oleinikov, V.; Klinov, D.; Pluot, M.; Cohen, J. H. M.; Nabiev, I., Biocompatible fluorescent nanocrystals for immunolabeling of membrane proteins and cells. Anal. Biochem.2004,324 (1),60-67.
    [97]Kerman, K.; Endo, T.; Tsukamoto, M.; Chikae, M.; Takamura, Y.; Tamiya, E., Quantum dot-based immunosensor for the detection of prostate-specific antigen using fluorescence microscopy. Talanta 2007,71 (4),1494-1499.
    [98]Won Jun, K.; Ju Ri, C.; Ye Lim, C.; Jong Doo, L.; Soonhag, K., Multiplex imaging of single tumor cells using quantum-dot-conjugated aptamers. Small 2009,5 (22),2519-2522.
    [99]Tokumasu, F.; Dvorak, J., Development and application of quantum dots for immunocytochemistry of human erythrocytes.J. Microsc.2003,211,256-261.
    [100]Dennis, A. M.; Bao, G., Quantum dot-fluorescent proteinpairs as novel fluorescence resonance energy transfer probes. Nano Lett.2008,8 (5),1439-1445.
    [101]Huang, S.; Xiao, Q.; He, Z. K.; Liu, Y.; Tinnefeld, P.; Su, X. R.; Peng, X. N., A high sensitive and specific QDs FRET bioprobe for MNasew. Chem. Commun.2008,5990-5992.
    [102]Matthew 燡-Hangauer, C. B., A FRET-Based Fluorogenic Phosphine for Live-Cell Imaging with the Staudinger Ligation13. Angew. Chem. Int. Ed.2008,47 (13),2394-2397.
    [103]Feng, L.; Zhi-Ping, Z.; Jun, P.; Zong-Qiang, C.; Dai-Wen, P.; Ke, L.; Hong-Ping, W.; Ya-Feng, Z.; Ji-Kai, W.; Xian-En, Z., Imaging Viral Behavior in Mammalian Cells with Self-Assembled Capsid-Quantum-Dot Hybrid Particles. Small 2009,5 (6),718-726.
    [104]Rieger, S.; Kulkarni, R. P.; Darcy, D.; Fraser, S. E.; Koster, R. W., Quantum dots are powerful multipurpose vital labeling agents in zebrafish embryos. Dev. Dynam.2005,234 (3), 670-681.
    [105]Larson, D. R.; Zipfel, W. R.; Williams, R. M.; Clark, S. W.; Bruchez, M. P.; Wise, F. W.; Webb, W. W., Water-Soluble Quantum Dots for Multiphoton Fluorescence Imaging in Vivo. Science 2003,300 (5624),1434-1436.
    [106]Kim, S.; Lim, Y. T.; Soltesz, E. G.; De Grand, A. M.; Lee, J.; Nakayama, A.; Parker, J. A.; Mihaljevic, T.; Laurence, R. G.; Dor, D. M.; Cohn, L. H.; Bawendi, M. G.; Frangioni, J. V., Near-infrared fluorescent type Ⅱ quantum dots for sentinel lymph node mapping. Nat. Biotech. 2004,22 (1),93-97.
    [107]Stoletov, K.; Montel, V.; Lester, R. D.; Gonias, S. L.; Klemke, R., High-resolution imaging of the dynamic tumor cell vascular interface in transparent zebrafish. Proc. Natl. Acad. Sci. USA 2007,104 (44),17406-17411.
    [108]Cai, W.; Shin, D.-W.; Chen, K.; Gheysens, O.; Cao, Q.; Wang, S. X.; Gambhir, S.S.; Chen, X., Peptide-Labeled Near-Infrared Quantum Dots for Imaging Tumor Vasculature in Living Subjects. Nano Lett.2006,6 (4),669-676.
    [109]So, M.-K.; Xu, C.; Loening, A. M.; Gambhir, S. S.; Rao, J., Self-illuminating quantum dot conjugates for in vivo imaging. Nat. Biotech.2006,24 (3),339-343.
    [110]Schultz, S.; Smith, D. R.; Mock, J. J.; Schultz, D. A., Single-target molecule detection with nonbleaching multicolor optical immunolabels. Proc. Natl. Acad. Sci. USA 2000,97 (3), 996-1001.
    [I11]Sonnichsen, C.; Reinhard, B. M.; Liphardt, J.; Alivisatos, A. P., A molecular ruler based on plasmon coupling of single gold and silver nanoparticles. Nat. Biotech.2005,23 (6),741-745.
    [112]Aaron, J.; Travis, K.; Harrison, N.; Sokolov, K., Dynamic imaging of molecular assemblies in live cells based on nanoparticle plasmon resonance coupling. Nano Lett.2009,9 (10), 3612-3618.
    [113]Lee, K. J.; Nallathamby, P. D.; Browning, L. M.; Osgood, C. J.; Xu, X.-H. N., In vivo imaging of transport and biocompatibility of single silver nanoparticles in early development of zebrafish embryos. Acs Nano 2007,1 (2),133-143.
    [114]Qian, X.; Peng, X.-H.; Ansari, D. O.; Yin-Goen, Q.; Chen, G. Z.; Shin, D. M.; Yang, L. Young, A. N.; transduction, s.; Wang, M. D.; Nie, S., In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat. Biotech.2007, 26 (1),83-90
    [115]Nam, J.-M.; Thaxton, C. S.; Mirkin, C. A., Nanoparticle-Based Bio-Bar Codes for the Ultrasensitive Detection of Proteins. Science 2003,301 (5641),1884-1886.
    [116]Herr, J. K.; Smith, J. E.; Medley, C. D.; Shangguan, D.; Tan, W., Aptamer-conjugated nanoparticles for selective collection and detection of cancer cells. Anal. Chem.2006,78, 2918-2924.
    [117]Smith, J. E.; Medley, C. D.; Tang, Z.; Shangguan, D.; Lofton, C.; Tan, W., Aptamer-conjugated nanoparticles for the collection and detection of multiple cancer cells. Anal. Chem.2007,79 (8),3075-3082.
    [118]Peng, X.-H.; Qian, X.; Mao, H.; Wang, A. Y.; Chen, Z. G.; Nie, S.; Shin, D. M., Targeted magnetic iron oxide nanoparticles for tumor imaging and therapy. Int. J. Nanomedicine 2008, 3 (3),311-321.
    [119]Chellat, F.; Merhi, Y.; Moreau, A.; Yahia, L. H., Therapeutic potential of nanoparticulate systems for macrophage targeting. Biomaterials 2005,26 (35),7260-7275.
    [120]Lewin, M.; Carlesso, N.; Tung, C.-H.; Tang, X.-W.; Cory, D.; Scadden, D. T.; Weissleder, R., Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat. Biotech.2000,18 (4),410-414.
    [121]Kircher, M. F.; Allport, J. R.; Graves, E. E.; Love, V.; Josephson, L.; Lichtman, A. H.; Weissleder, R., In Vivo High Resolution Three-Dimensional Imaging of Antigen-Specific Cytotoxic T-Lymphocyte Trafficking to Tumors. Cancer Res.2003,63 (20),6838-6846.
    [122]Gupta, A. K.; Naregalkar, R. R.; Vaidya, V. D.; Gupta, M., Recent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical applications. Nanomedicine 2007,2(1),23-39.
    [123]Brooks, H.; Lebleu, B.; Vives, E., Tat peptide-mediated cellular delivery:back to basics. Adv. Drug Deliv. Rev.2005,57 (4),559-577.
    [124]Lindsay, M. A., Peptide-mediated cell delivery:application in protein target validation. Curr. Opin. Pharm.2002,2 (5),587-594.
    [125]Weissleder, R.; Moore, A.; Mahmood, U.; Bhorade, R.; Benveniste, H.; Chiocca, E. A.; Basilion, J. P., In vivo magnetic resonance imaging of transgene expression. Nat. Med.2000,6 (3),351-354.
    [126]Sitharaman, B.; Kissell, K.; Hartman, K.; Tran, L. A.; Baikalov, A.; Rusakova, I.; Sun, Y.; Khant, H. A.; Ludtke, S. J.; Chiu, W.; Laus, S.; Toth, E.; Helm, L.; Merbach, A. E.; Wilson, L. J., Superparamagnetic Gadonanotubes Are High-Performance MRI Contrast Agents. Chem. Commun.2005,31,3915-3917.
    [127]Zavaleta, C.; de la Zerda, A.; Liu, Z.; Keren, S.; Cheng, Z.; Schipper, M.; Chen, X.; Dai, H.; Gambhir, S. S., Noninvasive Raman spectroscopy in living mice for evaluation of tumor targeting with carbon nanotubes. Nano Lett.2008,8 (9),2800-2805.
    [128]Porter, A. E.; Gass, M.; Muller, K.; Skepper, J. N.; Midgley, P. A.; Welland, M., Direct imaging of single-walled carbon nanotubes in cells. Nat. Nano.2007,2 (11),713-717.
    [129]Liu, Z.; Fan, A. C.; Rakhra, K.; Sherlock, S.; Goodwin, A.; Chen, X. Y.; Yang, Q. W,; Felsher, D. W.; Dai, H. J., Supramolecular Stacking of Doxorubicin on Carbon Nanotubes for In Vivo Cancer Therapy. Angew. Chem. In. Ed.2009,48 (41),7668-7672.
    [130]Chen, Z.; Tabakman, S. M.; Goodwin, A. P.; Kattah, M. G.; Daranciang, D.; Wang, X.; Zhang, G.; Li, X.; Liu, Z.; Utz, P. J.; Jiang, K.; Fan, S.; Dai, H., Protein microarrays with carbon nanotubes as multicolor Raman labels. Nat. Biotech.2008,26 (11),1285-1292.
    [131]Zerda, A. D. L.; Zavaleta, C.; Keren, S.; Vaithilingam, S.; Bodapati, S.; Liu, Z.; Levi, J.; Smith, B. R.; Ma, T.-J.; Oralkan, O.; Cheng, Z.; Chen, X.; Dai, H.; Khuri-Yakub, B. T.; Gambhir, S. S., Carbon nanotubes as photoacoustic molecular imaging agents in living mice. Nat. Biotech.2008,3,557-562.
    [132]Liu, Z.; Cai, W.; He, L.; Nakayama, N.; Chen, K.; Sun, X.; Chen, X.; Dai, H., In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat. Nano. 2007,2 (1),47-52.
    [133]Wang, H.; Wang, J.; Deng, X.; Sun, H.; Shi, Z.; Gu, Z.; Liu, Y.; Zhao, Y., Biodistribution of carbon single-wall carbon nanotubes in mice.J. Nanosci. Nanotech.2004,4 (8),1019-1024.
    [134]Cherukuri, P.; Gannon, C. J.; Leeuw, T. K.; Schmidt, H. K.; Smalley, R. E.; Curley, S. A.; Weisman, R. B., Mammalian pharmacokinetics of carbon nanotubes using intrinsic near-infrared fluorescence. Proc. Natl. Acad. Sci. USA 2006,103 (50),18882-18886.
    [135]McDevitt, M. R.; Chattopadhyay, D.; Kappel, B. J.; Jaggi, J. S.; Schiffman, S. R.; Antczak, C.; Njardarson, J. T.; Brentjens, R.; Scheinberg, D. A., Tumor Targeting with Antibody-Functionalized, Radiolabeled Carbon Nanotubes.J. Nucl. Med.2007,48 (7), 1180-1189.
    [136]Handy, R.; Owen, R.; Valsami-Jones, E., The ecotoxicology of nanoparticles and nanomaterials:current status, knowledge gaps, challenges, and future needs. Ecotoxicology 2008,17(5),315-325.
    [137]Perez, S.; Farre, M.1.; Barcelo, D., Analysis, behavior and ecotoxicity of carbon-based nanomaterials in the aquatic environment. Trends Anal. Chem.2009,28 (6),820-832.
    [138]Kroto, H. W.; Heath, J. R.; O'Brien, S. C.; Curl, R. F.; Smalley, R. E., C60: Buckminsterfullerene. Nature 1985,318 (6042),162-163.
    [139]Zhu, S.; Oberdoster, E.; Haasch, M. L., Toxicity of an engineered nanoparticle (fullerene, C60) in two aquatic species, Daphnia and fathead minnow. Mar. Environ. Res.2006,62 (Supplement 1), S5-S9.
    [140]Oberdoster, E.; Zhu, S.; Blickley, T. M.; McClellan-Green, P.; Haasch, M. L., Ecotoxicology of carbon-based engineered nanoparticles:Effects of fullerene (C60) on aquatic organisms. Carbon 2006,44 (6),1112-1120.
    [141]Usenko, C. Y.; Harper, S. L.; Tanguay, R. L., In vivo evaluation of carbon fullerene toxicity using embryonic zebrafish. Carbon 2007,45 (9),1891-1898.
    [142]Smith, C. J.; Shaw, B. J.; Handy, R. D., Toxicity of single walled carbon nanotubes to rainbow trout, (Oncorhynchus mykiss):Respiratory toxicity, organ pathologies, and other physiological effects. Aquat. Toxicol.2007,82 (2),94-109.
    [143]Lovern, S. B.; Klaper, R., Daphnia magna mortality when exposed to titanium dioxide and fullerene(C60) nanoparticles. Environ. Toxicol. Chem.2006,25 (4),1132-1137.
    [144]Baun, A.; S(?)ensen, S. N.; Rasmussen, R. F.; Hartmann, N. B.; Koch, C. B., Toxicity and bioaccumulation of xenobiotic organic compounds in the presence of aqueous suspensions of aggregates of nano-C60. Aquat. Toxicol.2008,86 (3),379-387.
    [145]Green, J. J.; Chiu, E.; Leshchiner, E. S.; Shi, J.; Langer, R.; Anderson, D. G., Electrostatic Ligand Coatings of Nanoparticles Enable Ligand-Specific Gene Delivery to Human Primary Cells. Nano Lett.2007,7 (4),874-879.
    [146]Ghaffari, P.; St-Deins, C. H.; Power, M.; Jin, X.; Tsou, V.; Mandal, H.; Bols, N. C.; Tang, X. S., Impact of carbon nanotubes on the ingestion and digestion of bacteria by ciliated protozoa. Nat. Nanotechnol.2008,3,347-351.
    [147]Usenko, C. Y.; Harper, S. L.; Tanguay, R. L., Fullerene C60 exposure elicits an oxidative stress response in embryonic zebrafish. Toxicol. Appl. Pharmacol.2008,229 (1),44-55.
    [148]Handy, R. D.; Henry, T. B.; Scown, T. M.; Johnston, B. D.; Tyler, C. R., Manufactured nanoparticles:their uptake and effects on fish-a mechanistic analysis. Ecotoxicology 2008,17, 287-314.
    [149]Pan, Y.; Neuss, S.; Leifert, A.; Fischler, M.; Wen, F.; Simon, U.; Schmid, G.; Brandau, W.; Jahnen-Dechent, W., Size-Dependent Cytotoxicity of Gold Nanoparticles. Small 2007,3 (11), 1941-1949.
    [150]Ofek Bar-Ilan, R. M. A. V. E. F. D. Y. F., Toxicity Assessments of Multisized Gold and Silver Nanoparticles in Zebrafish Embryos. Small 2009,5 (16),1897-1910.
    [151]Asharani, P. V.; Wu, Y. L.; Gong, Z. Y.; Valiyaveettil, S., Toxicity of silver nanoparticles in zebrafish models. Nanotechnology 2008,19 (25),8-15.
    [152]Chen, Z.; Meng, H.; Xing, G.; Chen, C.; Zhao, Y.; Jia, G.; Wang, T.; Yuan, H.; Ye, C.; Zhao, F.; Chai, Z.; Zhu, C.; Fang, X.; Ma, B.; Wan, L., Acute toxicological effects of copper nanoparticles in vivo. Toxicol. Lett.2006,163 (2),109-120.
    [153]Griffitt, R. J.; Hyndman, K.; Denslow, N. D.; Barber, D. S., Comparison of Molecular and Histological Changes in Zebrafish Gills Exposed to Metallic Nanoparticles. Toxicol. Sci.2009, 107 (2),404-415.
    [154]Adams, L. K.; Lyon, D. Y.; Alvarez, P. J. J., Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Res.2006,40 (19),3527-3532.
    [155]Heinlaan, M.; Ivask, A.; Blinova, I.; Dubourguier, H.-C.; Kahru, A., Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere 2008,71 (7),1308-1316.
    [156]Hu, X. K.; Cook, S.; Wang, P.; Hwang, H. M., In vitro evaluation of cytotoxicity of engineered metal oxide nanoparticles.Sci. Total Environ.2009,407 (8),3070-3072.
    [157]Federici, G.; Shaw, B. J.; Handy, R. D., Toxicity of titanium dioxide nanoparticles to rainbow trout (Oncorhynchus mykiss):Gill injury, oxidative stress, and other physiological effects. Aquat. Toxicol.2007,84 (4),415-430.
    [158]Zhu, X. S.; Zhu, L.; Duan, Z. H.; Qi, R. Q.; Li, Y.; Lang, Y. P., Comparative toxicity of several metal oxide nanoparticle aqueous suspensions to Zebrafish (Danio rerio) early developmental stage. J. Environ. Sci. Health Part A-Toxic/Hazard. Subst. Environ. Eng.2008, 43 (3),278-284.
    [159]Zhu, X. S.; Wang, J. X.; Zhang, X. Z.; Chang, Y.; Chen, Y. S., The impact of ZnO nanoparticle aggregates on the embryonic development of zebrafish (Danio rerio). Nanotechnology 2009,20 (19),9.
    [160]Jamieson, T.; Bakhshi, R.; Petrova, D.; Pocock, R.; Imani, M.; Seifalian, A. M., Biological applications of quantum dots. Biomaterials 2007,28 (31),4717-4732.
    [161]Li, H. C.; Zhou, Q. F.; Liu, W.; Yan, B.; Zhao, Y.; Jiang, G. B., Progress in the toxicological researches for quantum dots. Sci. China Ser. B-Chem.2008,51 (5),393-400.
    [162]Gagn, F.; Auclair, J.; Turcotte, P.; Fournier, M.; Gagnon, C.; Sauv, S.; Blaise, C., Ecotoxicity of CdTe quantum dots to freshwater mussels:Impacts on immune system, oxidative stress and genotoxicity. Aquat. Toxicol.2008,86 (3),333-340.
    [163]Wang, J.; Zhang, X.; Chen, Y.; Sommerfeld,M.; Hu, Q., Toxicity assessment of manufactured nanomaterials using the unicellular green alga Chlamydomonas reinhardtii. Chemosphere 2008,73 (7),1121-1128.
    [164]Marquis, B. J.; Love, S. A.; Braun, K. L.; Haynes, C. L., Analytical methods to assess nanoparticle toxicity. Analyst 2009,134,425-439.
    [165]Male, K. B.; Lachance, B.; Hrapovic, S.; Sunahara, G.; Luong, J. H. T., Assessment of cytotoxicity of quantum dots and gold nanoparticles using cell-based impedance spectroscopy. Anal. Chem.2008,8 (14),5487-5493.
    [166]Zhang, T.; Stilwell, J. L.; Gerion, D.; Ding, L.; Elboudwarej, O.; Cooke, P. A.; Gray, J. W.; Alivisatos, A. P.; Chen, F. F., Cellular Effect of High Doses of Silica-Coated Quantum Dot Profiled with High Throughput Gene Expression Analysis and High Content Cellomics Measurements. Nano Lett.2006,6 (4),800-808.
    [167]Jan, E.; Byrne, S. J.; Cuddihy, M.; Davies, A. M.; Volkov, Y.; Gun; x; ko, Y. K.; Kotov, N. A., High-Content Screening as a Universal Tool for Fingerprinting of Cytotoxicity of Nanoparticles. Acs Nano 2008,2 (5),928-938.
    [168]Shaw, S. Y.; Westly, E. C.; Pittet, M. J.; Subramanian, A.; Schreiber, S. L.; Weissleder, R., Perturbational profiling of nanomaterial biologic activity. Proc. Natl. Acad. Sci. USA 2008, 105(21),7387-7392.
    [169]Jungwoo Lee; Lilly, G. D.; Doty, R. C.; Podsiadlo, P.; Kotov, N. A., In vitro Toxicity Testing of Nanoparticles in 3D Cell Culture. Small 2009,5 (10),1213-1221.
    [170]Stevens, M. M., Toxicology:Testing in the third dimension. Nat. Nano.2009,4 (6),342-343.
    [171]Nel, A., Enhanced:Air Pollution-Related Illness:Effects of Particles. Science 2005,308 (5723),804-806.
    [172]Leroueil, P. R.; Hong, S. Y.; Mecke, A.; Baker, J. R.; Orr, B. G.; Holl, M. M. B., Nanoparticle interaction with biological membranes:Does nanotechnology present a janus face? Acc. Chem. Res.2007,40 (5),335-342.
    [173]Muhlfeld, C.; Rothen-Rutishauser, B.; Blank, F.; Vanhecke, D.; Ochs, M.; Gehr, P., Interactions of nanoparticles with pulmonary structures and cellular responses. Am. J. Physiol. Lung Cell Mol. Physiol.2008,294 (5), L817-829.
    [174]Semmler-Behnke, M.; Takenaka, S.; Fertsch, S.; Wenk, A.; Seitz, J.; Mayer, P.; Oberdorster, G.; Kreyling, W. G., Efficient Elimination of Inhaled Nanoparticles from the Alveolar Region: Evidence for Interstitial Uptake and Subsequent Reentrainment onto Airways Epithelium. Environ. Health Perspect.2007,115 (5),728-733.
    [175]Zhao, Y. L.; Xing, G. M.; Chai, Z. F., Nanotoxicology:Are carbon nanotubes safe? Nat. Nanotechnol.2008,3 (4),191-192.
    [176]Zhu, M. T.; Feng, W. Y.; Wang, Y.; Wang, B.; Wang, M.; Ouyang, H.; Zhao, Y. L.; Chai, Z. F., Particokinetics and Extrapulmonary Translocation of Intratracheally Instilled Ferric Oxide Nanoparticles in Rats and the Potential Health Risk Assessment. Toxicol. Sci.2009,107 (2), 342-351.
    [177]Wang, J. X.; Liu, Y.; Jiao, F.; Lao, F.; Li, W.; Gu, Y. Q.; Li, Y. F.; Ge, C. C.; Zhou, G. Q.; Li, B.; Zhao, Y. L.; Chai, Z. F.; Chen, C. Y., Time-dependent translocation and potential impairment on central nervous system by intranasally instilled TiO2 nanoparticles. Toxicology 2008,254 (1-2),82-90.
    [178]Zhu, M. T.; Feng, W. Y.; Wang, B.; Wang, T. C.; Gu, Y. Q.; Wang, M.; Wang, Y.; Ouyang, H.; Zhao, Y. L.; Chai, Z. F., Comparative study of pulmonary responses to nano-and submicron-sized ferric oxide in rats. Toxicology 2008,247 (2-3),102-111.
    [179]Meng, H.; Chen, Z.; Xing, G.; Yuan, H.; Chen, C.; Zhao, F.; Zhang, C.; Zhao, Y., Ultrahigh reactivity provokes nanotoxicity:Explanation of oral toxicity of nano-copper particles. Toxicol. Lett.2007,175 (1-3),102-110.
    [180]Wang, J. X.; Chen, C. Y.; Liu, Y.; Jiao, F.; Li, W.; Lao, F.; Li, Y. F.; Li, B.; Ge, C. C.; Zhou, G. Q.; Gao, Y. X.; Zhao, Y. L.; Chai, Z. F., Potential neurological lesion after nasal instillation of TiO2 nanoparticles in the anatase and rutile crystal phases. Toxicol. Lett.2008,183 (1-3), 72-80.
    [181]Cai, W. B.; Chen, X. Y., Nanoplatforms for targeted molecular imaging in living subjects. Small 2007,3(11),1840-1854.
    [182]Cognet, L.; Tardin, C.; Boyer, D.; Choquet, D.; Tamarat, P.; Lounis, B., Single metallic nanoparticle imaging for protein detection in cells. Proc. Natl. Acad. Sci. USA 2003,100 (20), 11350-11355.
    [183]Akin, D.; Sturgis, J.; Ragheb, K.; Sherman, D.; Burkholder, K.; Robinson, J. P.; Bhunia, A. K.; Mohammed, S.; Bashir, R., Bacteria-mediated delivery of nanoparticles and cargo into cells. Nat. Nanotechnol.2007,2 (441-449).
    [184]Park, J.-H.; Maltzahn, G. v.; Ruoslahti, E.; Bhatia, S. N.; Sailor, M. J., Micellar hybrid nanoparticles for simultaneous magnetofluorescent imaging and drug delivery. Angew. Chem. Int. Ed.2008,47 (38),7284-7288.
    [185]Farokhzad, O. C.; Cheng, J.; Teply, B. A.; Sherifi, I.; Jon, S.; Kantoff, P. W.; Richie, J. P.; Langer, R., Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc. Natl. Acad. Sci. USA 2006,103 (16),6315-6320.
    [186]Agrawal, A.; Tripp, R. A.; Anderson, L. J.; Nie, S., Real-time detection of virus particles and viral protein expression with two-color nanoparticle probes.J. Virol.2005,79 (13), 8625-8628.
    [187]Peer, D.; Karp, J. M.; Hong, S.; Farokhzad, O. C.; Margalit, R.; Langer, R., Nanocarriers as an emerging platform for cancer therapy. Nat. Nano.2007,2(12),751-760.
    [188]Chang, E.; Thekkek, N.; Yu, W. W.; Colvin, V. L.; Drezek, R., Evaluation of quantum dot cytotoxicity based on intracellular uptake. Small 2006,2 (12),1412-1417.
    [189]Farokhzad, O. C.; Jon, S.; Khademhosseini, A.; Tran, T.-N. T.; LaVan, D. A.; Langer, R., Nanoparticle-aptamer bioconjugates:A new approach for targeting prostate cancer cells. Cancer Res 2004,64 (21),7668-7672.
    [190]Popovtzer, R.; Agrawal, A.; Kotov, N. A.; Popovtzer, A.; Balter, J.; Carey, T. E.; Kopelman, R., Targeted gold nanoparticles enable molecular CT imaging of cancer. Nano Lett.2008,8 (12),4593-4596.
    [191]Connor, E. E.; Mwamuka, J.; Gole, A.; Murphy, C. J.; Wyatt, M. D., Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 2005,1 (3),325-327.
    [192]Javier, D. J.; Nitin, N.; Levy, M.; Ellington, A.; Richards-Kortum, R., Aptamer-targeted gold nanoparticles as molecular-specific contrast agents for reflectance imaging. Bioconjugate Chem.2008,19 (6),1309-1312.
    [193]Jain, P. K.; Huang, X.; El-Sayed, I. H.; El-Sayed; M. A., Noble metals on the nanoscale: Optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc. Chem. Res.2008,41 (12),1578-1586.
    [194]Murphy, C. J.; Gole, A. M.; Stone, J. W.; Sisco, P. N.; Alkilany, A. M.; Goldsmith, E. C.; Baxter, S. C., Gold nanoparticles in biology:Beyond toxicity to cellular imaging. Acc. Chem. Res.2008,41 (12),1721-1730.
    [195]Jayasena, S. D., Aptamers:An emerging class of molecules that rival antibodies in diagnostics. Clin. Chem.1999,45 (9),1628-1650.
    [196]Bunka, D. H.; Stockley, P. G., Aptamers come of age-at last. Nat. Rev. Microbiol.2006,4, 588-596.
    [197]Li, W.; Yang, X.; Wang, K.; Tan, W.; He, Y.; Guo, Q.; Tang, H.; Liu, J., Real-time imaging of protein internalization using aptamer conjugates. Anal. Chem.2008,80 (13),5002-5008.
    [198]Tang, Z.; Shangguan, D.; Wang, K.; Shi, H.; Sefah, K.; Mallikratchy, P.; Chen, H. W.; Li, Y.; Tan, W., Selection of aptamers for molecular recognition and characterization of cancer cells. Anal. Chem.2007,79 (13),4900-4907.
    [199]Medley, C. D.; Smith, J. E.; Tang, Z.; Wu, Y.; Bamrungsap, S.; Tan, W., Gold nanoparticle-based colorimetric assay for the direct detection of cancerous cells. Anal. Chem. 2008,80 (4),1067-1072.
    [200]Takemura, K.; Wang, P.; Vorberg, I.; Surewicz, W.; Priola, S. A.; Kanthasamy, A.; Pottathil, R.; Chen, S. G.; Sreevatsan, S., DNA aptamers that bind to PrPc and not PrPsc show sequence and structure specificity. Exp. Biol. Med.2006,231 (2),204-214.
    [201]Liu, J.; Lu, Y., Preparation of aptamer-linked gold nanoparticle purple aggregates for colorimetric sensing of analytes. Nat. Protoc.2006,1(1),246-252.
    [202]Yguerabide, J.; Yguerabide, E. E., Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications Ⅱ. experimental characterization. Anal. Biochem.1998,262 (2),157-176.
    [203]Yguerabide, J.; Yguerabide, E. E., Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications. Anal. Biochem.1998,262 (2),137-156.
    [204]Campana, V.; Sarnataro, D.; Zurzolo, C., The highways and by ways of prion protein trafficking. Trends Cell Biol.2005,15 (2),102-111.
    [205]Peters, P. J.; Alexander Mironov, J.; David Peretz; Donselaar, E. v.; Leclerc, E.; Erpel, S.; DeArmond, S. J.; Burton, D. R.; Williamson, R. A.; Vey, M.; Prusiner, S. B., Trafficking of prion proteins through a caveolae-mediated endosomal pathway.J. Cell Biol.2003,162 (4), 703-717.
    [206]Yu, C.; Nakshatri, H.; Irudayaraj, J., Identity profiling of cell surface markers by multiplex gold nanorod probes. Nano Lett.2007,7 (8),2300-2306.
    [207]Choi, Y.; Kang, T.; Lee, L. P., Plasmon resonance energy transfer (PRET)-based molecular imaging of cytochrome c in living cells. Nano Lett.2009,9 (1),85-90.
    [208]Huang, T.; Nallathamby, P. D.; Gillet, D.; Xu, X.-H. N., Design and synthesis of single-nanoparticle optical biosensors for imaging and characterization of single receptor molecules on single living cells. Anal. Chem.2007,79,7708-7718.
    [209]Hu, R.; Yong, K.-T.; Roy, I.; Ding, H.; He, S.; Prasad, P. N., Metallic Nanostructures as Localized Plasmon Resonance Enhanced Scattering Probes for Multiplex Dark-Field Targeted Imaging of Cancer Cells.J. Phys. Chem. C 2009,113 (7),2676-2684.
    [210]Aslan, K.; Lakowicz, J. R.; Geddes, C. D., Plasmon light scattering in biology and medicine: new sensing approaches, visions and perspectives. Curr. Opin. Chem. Biol.2005,9 (5), 538-544.
    [211]Johnson, S.; Evans, D.; Laurenson, S.; Paul, D.; Davies, A. G.; KoFerrigno, P.; Walti, C., Surface-immobilized peptide aptamers as probe molecules for protein detection. Anal. Chem. 2008,80,978-983.
    [212]Cho, E. J.; lee, J.-W.; Ellington, A. D., Applications of aptamers as sensors. Annu. Rev. Anal. Chem.2009,2,241-264.
    [213]Prusiner, S. B., Prions. Proc. Natl. Acad. Sci. USA 1998,95 (23),13363-13383.
    [214]Collinge, J.; Clarke, A. R., A General Model of Prion Strains and Their Pathogenicity. Science 2007,318 (5852),930-936.
    [215]Aguzzi, A.; Heikenwalder, M., Pathogenesis of prion diseases:current status and future outlook. Nat. Rev. Microbiol.2006,4,765-775.
    [216]Lee, P. C.; Meisel, D., Adsorption and surface-enhanced Raman of dyes on silver and gold sols.J. Phys. Chem.1982,86 (17),3391-3395.
    [217]David D. Evanoff, J.; Chumanov, G., Size-controlled synthesis of nanoparticles.2. Measurement of extinction,ccattering,and absorption cross sections.J. Phys. Chem. B 2004, 108,13957-13962.
    [218]Zhang, C.; Zhang, Z.; Yu, B.; Shi, J.; Zhang, X., Application of the biological conjugate between antibody and colloid Au nanoparticles as analyte to inductively coupled plasma mass spectrometry. Anal. Chem.2002,74(1),96-99.
    [219]Li, X.; Zhang, J.; Xu, W.; Jia, H.; Wang, X.; Yang, B.; Zhao, B.; Li, B.; Ozaki, Y., Mercaptoacetic acid-capped silver nanoparticles colloid:formation, morphology, and SERS activity. Langmuir 2003,19 (10),4285-4290.
    [220]Ling, J.; Li, Y. F.; Huang, C. Z., Visual sandwich immunoassay system on the casis of plasmon resonance scattering signals of silver nanoparticles. Anal. Chem.2009,81 (4), 1707-1714.
    [221]Pauly, P. C.; Harris, D. A., Copper Stimulates Endocytosis of the Prion Protein.J. Biol. Chem. 1998,273,33107-33110.
    [222]Cancellotti, E.; Barron, R. M.; Bishop, M. T.; Hart, P.; Wiseman, F.; Manson, J. C., The role of host PrP in transmissible spongiform encephalopathies. Biochim. Biophys. Acta 2007,1772 (6),673-680.
    [223]Kim, D.; Lenneke, P.; Dick, W. S.; Chris, P. M. R.; Erik, A. L. B.; Tilman, M. H.; Mark, J. P.; Marc, A. M. J. v. Z., Nanoparticles for optical molecular imaging of atherosclerosis. Small 2009,5 (5),544-557.
    [224]Resch-Genger, U.; Grabolle, M.; Cavaliere-Jaricot, S.; Nitschke, R.; Nann, T., Quantum dots versus organic dyes as fluorescent labels. Nat. Methods 2008,5 (9),763-775.
    [225]Giepmans, B. N. G.; Adams, S. R.; Ellisman, M. H.; Tsien, R. Y., The fluorescent toolbox for assessing protein location and function. Science 2006,312.(5771),217-224.
    [226]Groc, L.; Lafourcade, M.; Heine, M.; Renner, M.; Racine, V.; Sibarita, J.-B.; Lounis, B.; Choquet, D.; Cognet, L., Surface Trafficking of Neurotransmitter Receptor:Comparison between Single-Molecule/Quantum Dot Strategies.J. Neurosci.2007,27 (46),12433-12437.
    [227]Bonasio, R.; Carman, C. V.; Kim, E.; Sage, P. T.; Love, K. R.; Mempel, T. R.; Springer, T. A.; von Andrian, U. H., Specific and covalent labeling of a membrane protein with organic fluorochromes and quantum dots. Proc. Natl. Acad. Sci. USA 2007,104 (37),14753-14758.
    [228]Sunbul, M.; Yen, M.; Zou, Y.; Yin, J., Enzyme catalyzed site-specific protein labeling and cell imaging with quantum dots. Chem. Commun.2008,45,5927-5929.
    [229]Tominaga, J.; Kemori, Y.; Tanaka, Y.; Maruyama, T.; Kamiya, N.; Goto, M., An enzymatic method for site-specific labeling of recombinant proteins with oligonucleotides. Chem. Commun.2007, (4),401-403.
    [230]Fernandez-Suarez, M.; Ting, A. Y., Fluorescent probes for super-resolution imaging in living cells. Nat. Rev. Mol. Cell Biol.2008,9 (12),929-943.
    [231]Cho, E. J.; Lee, J.-W.; Ellington, A. D., Applications of aptamers as sensors. Annu. Rev. Anal. Chem.2009,2 (1),241-264.
    [232]Stahl, N.; Borchelt, D. R.; Hsiao, K.; Prusiner, S. B., Scrapie prion protein contains a phosphatidylinositol glycolipid. Cell 1987,51 (2),229-240.
    [233]Morris, R. J.; Parkyn, C. J.; Jen, A., Traffic of prion protein between different compartments on the neuronal surface, and the propagation of prion disease. FEBS Lett.2006,580, 5565-5571.
    [234]Sunyach, C.; Jen, A.; Deng, J.; T.Fitzgerald, K.; Frobert, Y.; Grassi, J.; W.McCaffrey, M.; Morris, R., The mechanism of internalization of glycosylphosphatidylinositol-anchored prion protein. EMBO J.2003,22,3591-3601.
    [235]Qi, L.; Gao, X., Quantum dot-amphipol nanocomplex for intracellular delivery and real-time imaging of siRNA. Acs Nano 2008,2 (7),1403-1410.
    [236]Cambi, A.; Lidke, D. S.; Arndt-Jovin, D. J.; Figdor, C. G.; Jovin, T. M., Ligand-conjugated quantum dots monitor antigen uptake and processing by dendritic cells. Nano Lett.2007,7 (4), 970-977.
    [237]Rajan, S. S.; Liu, H. Y.; Vu, T. Q., Ligand-bound quantum dot probes for studying the molecular scale dynamics of receptor endocytic trafficking in live cells. Acs Nano 2008,2 (6), 1153-1166.
    [238]Piran, U.; Riordan, W. J., Dissociation rate constant of the biotin-streptavidin complex.J. Immunol. Methods 1990,133 (1),141-143.
    [239]AshaRani, P. V.; Mun, G. L. K.; Hande, M. P.; Valiyaveettil, S., Cytotoxicity and Genotoxicity of Silver Nanoparticles in Human Cells. Acs Nano 2009,3 (2),279-290.
    [240]Lovric, J.; Bazzi, H. S.; Cuie, Y.; Fortin, G. R. A.; Winnik, F. M.; Maysinger, D., Differences in subcellular distribution and toxicity of green and red emitting CdTe quantum dots.J. Mol. Med 2005,83,337-385.
    [241]Hagens, W. I.; Oomen, A. G.; de Jong, W. H.; Cassee, F. R.; Sips, A. J. A. M., What do we (need to) know about the kinetic properties of nanoparticles in the body? Regul. Toxicol. Pharm.2007,49 (3),217-229.
    [242]Hirano, S., A current overview of health effect research on nanoparticles Environ. Health Prevent. Medicine 2009,14 (4),223-225.
    [243]Wang, J. X.; Zhou, G. Q.; Chen, C. Y.; Yu, H. W.; Wang, T. C.; Ma, Y. M.; Jia, G.; Gao, Y. X.; Li, B.; Sun, J.; Li, Y. F.; Jiao, F.; Zhao, Y. L.; Chai, Z. F., Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration. Toxicol. Lett.2007,168 (2),176-185.
    [244]Yang, S.-T.; Wang, X.; Jia, G.; Gu, Y.; Wang, T.; Nie, H.; Ge, C.; Wang, H.; Liu, Y., Long-term accumulation and low toxicity of single-walled carbon nanotubes in intravenously exposed mice. Toxicol. Lett.2008,181 (3),182-189.
    [245]Meng, H.; Chen, Z.; Xing, G. M.; Yuan, H.; Chen, C. Y.; Zhao, F.; Zhang, C. C.; Zhao, Y. L. Ultrahigh reactivity-provokes nanotoxicity:Explanation of oral toxicity of nano-copper particles. Toxicol. Lett.2007,175 (1-3),102-110.
    [246]Song, Y.; Li, X.; Du, X., Exposure to nanoparticles is related to pleural effusion, pulmonary fibrosis and granuloma. Eur. Respir. J.2009,34 (3),559-567.
    [247]Zhu, X. S.; Zhu, L.; Lang, Y. P.; Chen, Y. S., Oxidative stress and growth inhibition in the freshwater fish Carassius auratus induced by chronic exposure to sublethal fullerene aggregates. Environ. ScL Technol. 2008,27 (9),.1979-1985.
    [248]Ispas, C.; Andreescu, D.; Patel, A.; Goia, D. V.; Andreescu, S.; Wallace, K. N., Toxicity and Developmental Defects of Different Sizes and Shape Nickel Nanoparticles in Zebrafish. Environ. Sci. Technol.2009,43 (16),6349-6356.
    [249]Moucheta, F.; Landoisb, P.; Sarremejeana, E.; Bernarda, G.; Puechc, P.; Pinellia, E.; Flahautb, E.; Gauthiera, L., Characterisation and in vivo ecotoxicity evaluation of double-wall carbon nanotubes in larvae of the amphibian Xenopus laevis. Aquat. Toxicol.2008,87 (2),127-137.
    [250]Kashiwada, S., Distribution of Nanoparticles in the See-through Medaka(Oryzias latipes). Environ. Health Perspect.2006,114 (11),1697-1702.
    [251]Scholz, S.; Fischer, S.; Gundel, U.; Kuster, E.; Luckenbach, T.; Voelker, D., The zebrafish embryo model in environmental risk assessment-applications beyond acute toxicity testing. Environ. Sci. Pollut. Res.2008,15 (5),394-404.
    [252]Fako, V. E.; Furgeson, D. Y., Zebrafish as a correlative and predictive model for assessing biomaterial nanotoxicity. Adv Drug Del. Rev.2009,61 (6),478-486.
    [253]Ryman-Rasmussen, J. P.; Riviere, J. E.; Monteiro-Riviere, N. A., Variables Influencing Interactions of Untargeted Quantum Dot Nanoparticles with Skin Cells and Identification of Biochemical Modulators.Nano Lett.2007,7(5), L344-1348.
    [254]Guo, L.; Liu, X. Y.; Sanchez, V.; Vaslet, C.; Kane, A. B.; Hurt, R. H., A Window of Opportunity:Designing Carbon Nanomaterials for Environmental Safety and Health. Mater. Sci. Forum 2007,544-545,511-516.
    [255]Magrez, A.; Kasas, S.; Salicio, V.; Pasquier,N.; Seo, J. W.; Celio, M.;Catsicas, S.; Schwaller, B.; Forro, L., Cellular Toxicity of Carbon-Based Nanomaterials. Nano Lett.2006,6 (6),1121-1125.
    [256]Jia, G.; Wang, H. F.; Yan, L.; Wang, X.; Pei, R. J.; Yan, T.; Zhao, Y. L.; Guo, X. B., Cytotoxicity of carbon nanomaterials:Single-wall nanotube, multi-wall nanotube, and fullerene. Environ. Sci Technol.2005,39(5),1378-1383.
    [257]Sayes, C. M.;-Gobin, A. M.; Ausman,K. D.; Mendez, J.;-West, J, L.;Colvin, V. L., Nano-C60 cytotoxicity is due to lipid peroxidation. Biomaterials 2005,26 (36),-7587-7595.
    [258]Meyer, J. C.;Geim, A. K.; Katsnelson, M. I., Novoselov, K.S., Booth, T.J.,Roth, S., The structure of suspended graphene sheets. Nature 2007,446 (7131),60-63.
    [259]Ohta, T.; Bostwick, A.; Seyller, T.; Horn, K.; Rotenberg, E., Controlling the electronic structure of bilayer graphene. Science 2006,313 (5789),951-954.
    [260]Li, X. L.; Wang, X. R.; Zhang, L.; Lee, S. W.; Dai, H. J., Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 2008,319 (5867),1229-1232.
    [261]Berger, C.; Song, Z. M.; Li, X. B.; Wu, X. S.; Brown, N.; Naud, C.; Mayou, D.; Li, T. B.; Hass, J.; Marchenkov, A. N.; Conrad, E. H.; First, P. N.; de Heer, W. A., Electronic confinement and coherence in patterned epitaxial graphene. Science 2006,312 (5777), 1191-1196.
    [262]Castro Neto, A. H.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K., The electronic properties of graphene. Rev. Modern Phys.2009,81 (1),109-162.
    [263]Katsnelson, M. I.; Novoselov, K. S.; Geim, A. K., Chiral tunnelling and the Klein paradox in graphene. Nat. Phys.2006,2 (9),620-625.
    [264]Zhang, Y. B.; Tan, Y. W.; Stormer, H. L.; Kim, P., Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature 2005,438 (7065),201-204.
    [265]Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A., Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005,438 (7065),197-200.
    [266]Geim, A. K.; Novoselov, K. S., The rise of graphene. Nat. Mater.2007,6 (3),183-191.
    [267]Gilje, S.; Han, S.; Wang, M.; Wang, K. L.; Kaner, R. B., A chemical route to graphene for device applications. Nano Lett.2007,7 (11),3394-3398.
    [268]Patchkovskii, S.; Tse, J. S.; Yurchenko, S. N.; Zhechkov, L.; Heine, T.; Seifert, G., Graphene nanostructures as tunable storage media for molecular hydrogen. Proc. Natl. Acad. Sci. USA 2005,102,10439-10444.
    [269]Watcharotone, S.; Dikin, D. A.; Stankovich, S.; Piner, R.; Jung, I.; Dommett, G. H. B.; Evmenenko, G.; Wu, S. E.; Chen, S. F.; Liu, C. P.; Nguyen, S. T.; Ruoff, R. S., Graphene-silica composite thin films as transparent conductors. Nano Lett.2007,7 (7), 1888-1892.
    [270]Ni, Z. H.; Wang, H. M.; Kasim, J.; Fan, H. M.; Yu, T.; Wu, Y. H.; Feng, Y. P.; Shen, Z. X., Graphene thickness determination using reflection and contrast spectroscopy. Nano Lett.2007, 7,2758-2763.
    [271]Farre, M.; Gajda-Schrantz, K.; Kantiani, L.; Barcelo, D., Ecotoxicity and analysis of nanomaterials in the aquatic environment. Anal. Bioanal. Chem.2009,393 (1),81-95.
    [272]Usenkoa, C. Y.; Harpera, S. L.; Tanguay, R. L., Fullerene C60 exposure elicits an oxidative stress response in embryonic zebrafish. Toxicol. Appl. Pharmacol.2008,229 (1),44-55.
    [273]Kimmel, C. B.; Ballard, W. W.; Kimmel, S. R.; Ullmann, B.; Schilling, T. F., Stages of embryonic development of the zebrafish. Dev. Dynam.1995,203 (3),253-310.
    [274]Miyachi, Y.; Kanao, T.; Okamoto, T., Marked depression of time interval between fertilization period and hatching period following exposure to low-dose X-rays in zebrafish. Environ. Res.2003,93 (2),216-219.
    [275]Baaijens, F. P. T.; Trickey, W. R.; Laursen, T. A.; Guilak, F., Large Deformation Finite Element Analysis of Micropipette Aspiration to Determine the Mechanical Properties of the Chondrocyte. Ann. Biomed. Eng.2005,33 (4),494-501.
    [276]Hallare, A. V.; Kohler, H. R.; Triebskorn, R., Developmental toxicity and stress protein responses in zebrafish embryos after exposure to diclofenac and its solvent, DMSO. Chemosphere 2004,56 (7),659-666.
    [277]Baughman, R. H.; Zakhidov, A. A.; de Heer, W. A., Carbon Nanotubes--the Route Toward Applications. Science 2002,297 (5582),787-792.
    [278]Song, E.-Q.; Wang, G.-P.; Xie, H.-Y.; Zhang, Z.-L.; Hu, J.; Peng, J.; Wu, D.-C.; Shi, Y.-B.; Pang, D.-W., Visual recognition and efficient isolation of apoptotic cells with fluorescent-magnetic-biotargeting multifunctional nanospheres. Clin. Chem.2007,53 (12), 2177-2185.
    [279]Tasciotti, E.; Liu, X.; Bhavane, R.; Plant, K.; Leonard, A. D.; Price, B. K.; Cheng, M. M.-C.; Decuzzi, P.; Tour, J. M.; Robertson, F.; Ferrari, M., Mesoporous silicon particles as a multistage delivery system for imaging and therapeutic applications. Nat. Nano.2008,3 (3), 151-157.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700