用户名: 密码: 验证码:
基于有机合成和核酸化学的生物医学检测体系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
DNA检测在现代生物医学中正在发挥越来越重要的作用。高选择性、高灵敏度的DNA检测体系在分子诊断、环境监测、疾病控制等方面都有应用。现有检测技术往往应用生物、有机、纳米技术,将DNA序列信息转化为各种可读的信号。近年来本领域的研究尽管取得了巨大成就,但具有高选择性和高灵敏度,简易便携,容易操作的DNA检测方法仍然有待开发。
     本论文报道了一种基于水蒸气冷凝的DNA检测方法。这种检测方法依赖于在目标DNA存在的情况下,通过核酸扩增,表面亲水程度发生改变,导致表面凝结出现水滴后表面形态发生变化,从而影响光线的漫反射/散射,形成肉眼可见的信号。实验证实这种方法灵敏度高,可以检测1微升溶液中600个目标DNA分子;选择性好,能够区分6种单一碱基错配的目标DNA;且能够进行多重检测。这种方法通过点样方法制备DNA芯片,不需要标记分子,适用于集成化,模块化检测技术。本检测技术理论上可以拓展应于其他生物分子的检测。
     论文报道了一种通过生物酶将合成的人工修饰核苷酸引入DNA序列的方法。利用DNA聚合酶对脱氧脲苷三磷酸的5位修饰具有相对的容忍性,我们设计了一种含有2-溴异丁酰基团的脲嘧啶脱氧核苷类似物。以市售的(+)-5-碘-2'-脱氧脲苷为起始原料,通过5步合成反应成功得到目标产物,产物通过1H-NMR,13C-NMR,31P-NMR,元素分析,电喷雾质谱和高分辨质谱表征。进一步通过三种特殊设计的引物延伸实验证明该化合物能够被四种DNA聚合酶作为底物识别利用,从而将人工合成的核苷酸引入DNA序列中。设计的实验避免采用常规放射自显影的方法。
     论文还报道了一些DNA检测相关技术。将上述合成的分子以滚换扩增的方式引入至DNA序列中后,通过原子转移自由基聚合(ATRP)的方式进行DNA检测;报道了在单一温度下一步合成掺杂型或合金型量子点的方法;还报道了一种在单一温度下进行的连接酶链反应(LCR),将其与滚换扩增的DNA检测方法相结合,可以检测出1微升溶液中的600个目标DNA分子。
Sequence-specific DNA detection is now becoming the key diagnostic tool in modern biomedical tests. Highly sensitive and selective biological detection systems have been developed for molecular diagnostics, environmental monitoring, and disease prevention, etc. These systems use biological, organic and nanomaterials, which translates sequence information facilely into a variety of read-out formats. Despite great progress, however, to our knowledge, sentivity of a single molecular detection level yet field portable, easy to operate DNA detection methods still awaits to be discovered.
     We have developed a surface condensation of water strategy for the on-chip detection of DNA. This strategy relies on a target-driven alteration of surface wettability, and consequently, a transition of morphological state of and light propagation mode in the surface-condensed water, for the signaling of target. High sensitivity, high selectivity, and multiplexed analysis capability have been achieved in a label-free, direct spot array fabrication/visualization/imaging format, thus offering significant assay advantages over conventional diagnostic systems. Given recent advances in the tailored control of morphological state of surface-condensed water, the underlying principle described herein is likely extendable to the detection of other types of biological targets.
     We have developed a method for the synthesis of artificial nucleotide and proved its incorporation into DNA strand by various DNA polymerases. Utilizing the enzyme's relatively tolerance for modification at the5-position of deoxyuridine triphosphate. We designed a uridine analogue containing2-Bromoisobutyryl functionalities. Starting from commercially available (+)-5-Iodo-2'-deoxyuridine, through a five step synthetic procedure, the target compound was successfully synthesized and charactered by1H-NMR,13C-NMR,31P-NMR, Elemental analysis, ESI-MS and HRMS. Further the recognization of the compound by four DNA polymerases was verified by three specially designed primer extension reactions. These designed reactions avoided the use of common autoradiography techniques.
     We have also developed other DNA detection related techniques. The utilization of the above synthesized compound was used in rolling circle amplification-ATRP related DNA detection systems. We also reported a method for one temperature synthesis of doped and alloyed Zn-Cd-Se nanocrystals. We have developed a one temperature ligase chain reaction method and by coupling with rolling circle amplification, the method was able to detect DNA at very low concentrations (600DNA molecules in1milliliter).
引文
[1]Petrie K J, Muller J T, Schirmbeck F, et al. Effect of providing information about normal test results on patients'reassurance:randomised controlled trial[J]. BRITISH MEDICAL JOURNAL,2007,334(7589):352-354.
    [2]Sox H J, Margulies I, Sox C H. Psychologically mediated effects of diagnostic tests[J]. Ann Intern Med,1981,95(6):680-685.
    [3]Cerda V, Avivar J, Cerda A. Laboratory automation based on flow techniques[J]. PURE AND APPLIED CHEMISTRY,2012,84(10):1983-1998.
    [4]Patton C J. Autonomous environmental water quality monitoring-The future of continuous flow analysis[J]. ENVIRONMENTAL CHEMISTRY, 2006,3(l):1-2.
    [5]Lapcik O.50 Years of Radioimmunoassay[J]. CHEMICKE LISTY, 2009,103(10):853-854.
    [6]Glick S M. Without a past there is no future:Berson and Yalow-reminiscences.[J]. Pediatric endocrinology reviews:PER,2011,8(4).
    [7]Ma L N, Zhang J, Chen H T, et al. An overview on ELISA techniques for FMD[J]. VIROLOGY JOURNAL,2011,8(419).
    [8]Lequin R M. Enzyme Immunoassay (EIA)/Enzyme-Linked Immunosorbent Assay (ELISA)[J]. CLINICAL CHEMISTRY,2005,51(12):2415-2418.
    [9]Zhao L X, Sun L, Chu X G. Chemiluminescence immunoassay[J]. TRAC-TRENDS IN ANALYTICAL CHEMISTRY,2009,28(4):404-415.
    [10]Huang M R, Gu G L, Ding Y B, et al. Advanced Solid-Contact Ion Selective Electrode Based on Electrically Conducting Polymers[J]. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY,2012,40(9):1454-1460.
    [11]Lorenz T C. Polymerase chain reaction:basic protocol plus troubleshooting and optimization strategies.[J]. Journal of visualized experiments:JoVE,2012(63).
    [12]Cocchi M. The Strange History of a Nobel Prize Winner Who Predicted the Meaning of Research[J]. NEUROQUANTOLOGY,2011,9(3):429-441.
    [13]Debnath M, Prasad G B K S, Bisen P S. Polymerase Chain Reaction[J]. Molecular Diagnostics:Promises and Possibilities,2010:129-152.
    [14]Veltman J A. Genomic microarrays in clinical diagnosis[J], Curr Opin Pediatr, 2006,18(6):598-603.
    [15]Gilbert D N, Spellberg B, Bartlett J G. An Unmet Medical Need:Rapid Molecular Diagnostics Tests for Respiratory Tract Infections[J]. CLINICAL INFECTIOUS DISEASES,2011,524:S384-S395.
    [16]Lee D W, Neumann P J, Rizzo J A. Understanding the Medical and Nonmedical Value of Diagnostic Testing[J]. VALUE IN HEALTH,2010,13(2):310-314.
    [17]Neumann P J, Hammitt J K, Mueller C, et al. Public attitudes about genetic testing for Alzheimer's disease[J]. HEALTH AFFAIRS,2001,20(5):252-264.
    [18]Schimke I. Quality and timeliness in medical laboratory testing[J]. ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2009,393(5):1499-1504.
    [19]许林东,张伟,许林勇,等.基因检测服务在医学中的应用[J].中国现代医学杂志,2011,21(16):1888-1891,1894.
    [20]Elkins K M, Kadunc R E. An Undergraduate Laboratory Experiment for Upper-Level Forensic Science, Biochemistry, or Molecular Biology Courses: Human DNA Amplification Using STR Single Locus Primers by Real-Time PCR with SYBR Green Detection[J]. JOURNAL OF CHEMICAL EDUCATION,2012,89(6):784-790.
    [21]Zhang M, Liu Y N, Chen L L, et al. One Simple DNA Extraction Device and Its Combination with Modified Visual Loop-Mediated Isothermal Amplification for Rapid On-Field Detection of Genetically Modified Organisms[J]. ANALYTICAL CHEMISTRY,2013,85(1):75-82.
    [22]Pierce K E, Peter H, Bachmann T T, et al. Rapid Detection of TEM-Type Extended-Spectrum beta-Lactamase (ESBL) Mutations Using Lights-On/Lights-Off Probes with Single-Stranded DNA Amplification.[J]. The Journal of molecular diagnostics:JMD,2013,15(3).
    [23]Dave N, Chan M Y, Huang P, et al. Regenerable DNA-Functionalized Hydrogels for Ultrasensitive, Instrument-Free Mercury(II) Detection and Removal in Water[J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY,2010,132(36):12668-12673.
    [24]Tone A. Medicalizing Reproduction:The Pill and Home Pregnancy Tests[J]. JOURNAL OF SEX RESEARCH,2012,49(4SI):319-327.
    [25]Johnson S, Shaw R, Parkinson P, et al. Home pregnancy test compared to standard-of-care ultrasound dating in the assessment of pregnancy duration[J]. CURRENT MEDICAL RESEARCH AND OPINION,2011,27(2):393-401.
    [26]Witkowski J. Drawing the Map of Life:Inside the Human Genome Project[J]. NATURE,2010,466(7309):921-922.
    [27]Parry J. H7N9 avian flu kills seven and infects 23 in China.[J]. BMJ (Clinical research ed.),2013,346.
    [28]Guan Y, Farooqui A, Zhu H, et al. H7N9 Incident, immune status, the elderly and a warning of an influenza pandemic.[J]. Journal of infection in developing countries,2013,7(4).
    [29]Lubinski J, Gorski B, Kurzawski G, et al. Molecular basis of inherited predispositions for tumors[J]. ACTA BIOCHIMICA POLONICA, 2002,49(3):571-581.
    [30]Sandvik A K, Alsberg B K, Norsett K G, et al. Gene expression analysis and clinical diagnosis[J]. Clin Chim Acta,2006,363(1-2):157-164.
    [31]Santos P C J L, Dinardo C L, Schettert I T, et al. CYP2C9 and VKORC1 polymorphisms influence warfarin dose variability in patients on long-term anticoagulation.[J]. European journal of clinical pharmacology,2013,69(4).
    [32]Zanger U M, Schwab M. Cytochrome P450 enzymes in drug metabolism: Regulation of gene expression, enzyme activities, and impact of genetic variation[J]. PHARMACOLOGY & THERAPEUTICS,2013,138(1):103-141.
    [33]Hong E, Hedberg S T, Abad R, et al. Target Gene Sequencing To Define the Susceptibility of Neisseria meningitidis to Ciprofloxacin[J]. ANTIMICROBIAL AGENTS AND CHEMOTHERAPY,2013,57(4):1961-1964.
    [34]Gymrek M, McGuire A L, Golan D, et al. Identifying Personal Genomes by Surname Inference[J]. SCIENCE,2013,339(6117):321-324.
    [35]Balajee S A, Sigler L, Brandt M E. DNA and the classical way:Identification of medically important molds in the 21st century[J]. MEDICAL MYCOLOGY, 2007,45(6):475-490.
    [36]Liang T, Fan X D, Li Q W, et al. Detection of dispersed short tandem repeats using reversible jump Markov chain Monte Carlo[J]. NUCLEIC ACIDS RESEARCH,2012,40(e14719).
    [37]Fan H, Chu J C P K. A brief review of short tandem repeat mutation[J]. Genomics Proteomics & Bioinformatics,2007,5(1):7-14.
    [38]Li L, Chen Q, Wei D Q. Prediction and Functional Analysis of Single Nucleotide Polymorphisms[J]. CURRENT DRUG METABOLISM, 2012,13(7):1012-1023.
    [39]Gao J, Xue J, Chen L, et al. Whole exome sequencing identifies a novel DFNA9 mutation, C162Y.[J]. Clinical genetics,2013,83(5).
    [40]Soler V J, Tran-Viet K N, Galiacy S D, et al. Whole exome sequencing identifies a mutation for a novel form of corneal intraepithelial dyskeratosis[J]. JOURNAL OF MEDICAL GENETICS,2013,50(4):246-254.
    [41]Schwartz S. Clinical Utility of Single Nucleotide Polymorphism Arrays[J]. CLINICS IN LABORATORY MEDICINE,2011,31(4):581.
    [42]Shen W, Deng H M, Ren Y Q, et al. An electronic sensor array for label-free detection of single-nucleotide polymorphisms [J]. BIOSENSORS & BIOELECTRONICS,2013,43:165-172.
    [43]Yang C H, Cheng Y H, Chuang L Y, et al. Drug-SNPing:an integrated drug-based, protein interaction-based tagSNP-based pharmacogenomics platform for SNP genotyping[J]. BIOINFORMATICS,2013,29(6):758-764.
    [44]Omran M H, Fotouh B E, Youssef S S, et al. Association between low molecular polypeptide 7 single nucleotide polymorphism and response to therapy in hepatitis C virus infection.[J]. World journal of hepatology, 2013,5(3).
    [45]Alarcon-Reverte R, Hanley S, Kaundun S S, et al. A SNaPshot assay for the rapid and simple detection of known point mutations conferring resistance to ACCase-inhibiting herbicides in Lolium spp.[J]. WEED RESEARCH, 2013,53(1):12-20.
    [46]Isabel N, Lamothe M, Thompson S L. A second-generation diagnostic single nucleotide polymorphism (SNP)-based assay, optimized to distinguish among eight poplar (Populus L.) species and their early hybrids[J]. TREE GENETICS & GENOMES,2013,9(2):621-626.
    [47]Syrmis M W, Moser R J, Kidd T J, et al. High-throughput single-nucleotide polymorphism-based typing of shared Pseudomonas aeruginosa strains in cystic fibrosis patients using the Sequenom iPLEX platform.[J]. Journal of medical microbiology,2013,62(Pt 5).
    [48]White P L L W, Barnes R A B C. Polymerase Chain Reaction (PCR)-Based Tests[J]. Aspergillosis:From Diagnosis to Prevention,2010:135-157.
    [49]Choudhary I, Chimanpure V, Patil A, et al. Single step detection of HIV-1 proviral DNA and housekeeping beta-actin gene from dried blood spots by a monoplex polymerase chain reaction[J]. JOURNAL OF VIROLOGICAL METHODS,2013,187(1):203-206.
    [50]Maleyev G V. Ligase chain reaction. Theory, practical use, prospects[J]. Vestnik Rossiiskoi Akademii Meditsinskikh Nauk,2005(2):40-44.
    [51]LANDEGREN U, KAISER R, SANDERS J, et al. A LIGASE-MEDIATED GENE DETECTION TECHNIQUE[J]. SCIENCE,1988,241(4869):1077-1080.
    [52]Belokhvostov A S. [Polymerase chain reaction and ligase reactions. Principles, traditional methods, and innovations].[J]. Molekuliarnaia genetika, mikrobiologiia i virusologiia,1995(2).
    [53]Rouwendal G J, Wolbert E J, Zwiers L H, et al. Ligase chain reaction for site-directed in vitro mutagenesis.[J]. Methods in molecular biology (Clifton, N.J.),1996,57.
    [54]Corneli H M. Nucleic acid amplification tests (polymerase chain reaction, ligase chain reaction) for the diagnosis of Chlamydia trachomatis and Neisseria gonorrhoeae in pediatric emergency medicine[J]. PEDIATRIC EMERGENCY CARE,2005,21(4):264-270.
    [55]WIEDMANN M, WILSON W J, CZAJKA J, et al. LIGASE CHAIN-REACTION (LCR)-OVERVIEW AND APPLICATIONS[J]. PCR-METHODS AND APPLICATIONS,1994,3(4):S51-S64.
    [56]Eickhoff M, Grewing T, Clancy D. Performance of the two-target-based artus (R) Chlamydia trachomatis plus ligase chain polymerase chain reaction kit[J]. INTERNATIONAL JOURNAL OF STD & AIDS,2006,171:40.
    [57]Young H, Manavi K, McMillan A. Evaluation of ligase chain reaction for the non-cultural detection of rectal and pharyngeal gonorrhoea in men who have sex with men[J]. SEXUALLY TRANSMITTED INFECTIONS, 2003,79(6):484-486.
    [58]Franklin W B, Katyal M, Mahajan R, et al. Chlamydia and gonorrhea screening using urine-based nucleic acid amplification testing among males entering New York City jails:a pilot study.[J]. Journal of correctional health care:the official journal of the National Commission on Correctional Health Care,2012,18(2).
    [59]SCHENA M, SHALON D, DAVIS R W, et al. QUANTITATIVE MONITORING OF GENE-EXPRESSION PATTERNS WITH A COMPLEMENT ARY-DNA MICRO ARRAY[J]. SCIENCE, 1995,270(5235):467-470.
    [60]Lashkari D A, DeRisi J L, McCusker J H, et al. Yeast microarrays for genome wide parallel genetic and gene expression analysis[J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA,1997,94(24):13057-13062.
    [61]Carrara S, Ghoreishizadeh S, Olivo J, et al. Fully Integrated Biochip Platforms for Advanced Healthcare[J]. SENSORS,2012,12(8):11013-11060.
    [62]Martins V C, Cardoso F A, Germano J, et al. Femtomolar limit of detection with a magnetoresistive biochip[J]. BIOSENSORS & BIOELECTRONICS, 2009,24(8):2690-2695.
    [63]Wang L, Lu J. Detection limit of micro-array biochip scanner[J]. Opto-Electronic Engineering, 2005,32(1003-501X(2005)32:3<47:SWXPSM>2.0.TX;2-#3):47-50.
    [64]Xia J, Yang B, Liu Y, et al. Screening of biomarks gene in aortic dissection lung injury by gene chip and fluorescent quantitative PCR[J]. Journal of Clinical Cardiology,2013,29(1001-1439(2013)29:1<60:JYXPLH>2.0.TX;2-11):60-63.
    [65]Fang X, Jin Q, Jing F, et al. Integrated biochip for label-free and real-time detection of DNA amplification by contactless impedance measurements based on interdigitated electrodes.[J]. Biosensors & bioelectronics,2013,44.
    [66]Hottin J, Moreau J, Bellemain A, et al. Biochip data normalization using multifunctional probes[J]. ANALYST,2012,137(13):3119-3125.
    [67]Jain K K. Nanodiagnostics:application of nanotechnology in molecular diagnostics[J]. EXPERT REVIEW OF MOLECULAR DIAGNOSTICS, 2003,3(2):153-161.
    [68]Mirkin C A, Letsinger R L, Mucic R C, et al. A DNA-based method for rationally assembling nanoparticles into macroscopic materials[J]. NATURE, 1996,382(6592):607-609.
    [69]Baptista P, Pereira E, Eaton P, et al. Gold nanoparticles for the development of clinical diagnosis methods[J]. ANALYTICAL AND BIOANALYTICAL CHEMISTRY,2008,391(3):943-950.
    [70]Taton T A, Mucic R C, Mirkin C A, et al. The DNA-mediated formation of supramolecular mono-and multilayered nanoparticle structures[J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY,2000,122(26):6305-6306.
    [71]Storhoff J J, Lazarides A A, Mucic R C, et al. What controls the optical properties of DNA-linked gold nanoparticle assemblies?[J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY,2000,122(19).4640-4650.
    [72]Jin R C, Wu G S, Li Z, et al. What controls the melting properties of DNA-linked gold nanoparticle assemblies?[J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY,2003,125(6):1643-1654.
    [73]Rosi N L, Mirkin C A. Nanostructures in Biodiagnostics[J]. Chemical Reviews, 2005,105(4):1547-1562.
    [74]Sato K, Hosokawa K, Maeda M. Rapid aggregation of gold nanoparticles induced by non-cross-linking DNA hybridization[J]. J Am Chem Soc, 2003,125(27):8102-8103.
    [75]Reynolds R A, Mirkin C A, Letsinger R L. Homogeneous, Nanoparticle-Based Quantitative Colorimetric Detection of Oligonucleotides[J]. Journal of the American Chemical Society,2000,122(15):3795-3796.
    [76]Xu W, Xue X, Li T, et al. Ultrasensitive and Selective Colorimetric DNA Detection by Nicking Endonuclease Assisted Nanoparticle Amplification[J]. Angewandte Chemie International Edition,2009,48(37):6849-6852.
    [77]Hong M, Zhou X, Lu Z, et al. Nanoparticle-Based, Fluorous-Tag-Driven DNA Detection[J]. Angewandte Chemie International Edition, 2009,48(50):9503-9506.
    [78]Shu X, Liu Y, Zhu J. DNA Detection Based on Fluorogenic Nanospheres[J]. Angewandte Chemie International Edition,2012,51 (44):11006-11009.
    [79]Taton T A, Mirkin C A, Letsinger R L. Scanometric DNA array detection with nanoparticle probes[J]. Science,2000,289(5485):1757-1760.
    [80]Cao Y C, Jin R, Mirkin C A. Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection[J]. Science, 2002,297(5586):1536-1540.
    [81]Nam J M, Thaxton C S, Mirkin C A. Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins[J]. Science,2003,301(5641):1884-1886.
    [82]Stoeva S I, Lee J S, Thaxton C S, et al. Multiplexed DNA detection with biobarcoded nanoparticle probes[J]. Angew Chem Int Ed Engl, 2006,45(20):3303-3306.
    [83]Hill H D, Mirkin C A. The bio-barcode assay for the detection of protein and nucleic acid targets using DTT-induced ligand exchange[J]. Nat Protoc, 2006,1(1):324-336.
    [84]Zhou X, Xia S, Lu Z, et al. Biomineralization-assisted ultrasensitive detection of DNA[J]. J Am Chem Soc,2010,132(20):6932-6934.
    [85]Xu Y H, Wang E K. Electrochemical biosensors based on magnetic micro/nano particles[J]. ELECTROCHIMICA ACTA,2012,84(S1):62-73.
    [86]Park S J, Taton T A, Mirkin C A. Array-based electrical detection of DNA with nanoparticle probes[J]. SCIENCE,2002,295(5559):1503-1506.
    [87]Zanoli L M, D'Agata R, Spoto G. Functionalized gold nanoparticles for ultrasensitive DNA detection[J]. Anal Bioanal Chem,2012,402(5):1759-1771.
    [88]Neely L A, Audeh M, Phung N A, et al. T2 magnetic resonance enables nanoparticle-mediated rapid detection of candidemia in whole blood[J]. Sci Transl Med,2013,5(182):154r-182r.
    [89]Bretagne S, Costa J M. Towards a nucleic acid-based diagnosis in clinical parasitology and mycology[J]. CLINICA CHIMICA ACTA, 2006,363(1-2):221-228.
    [90]Albuquerque P, Mendes M V, Santos C L, et al. DNA signature-based approaches for bacterial detection and identification[J]. Sci Total Environ, 2009,407(12):3641-3651.
    [91]Shen W, Deng H, Gao Z. Gold nanoparticle-enabled real-time ligation chain reaction for ultrasensitive detection of DNA[J]. J Am Chem Soc, 2012,134(36):14678-14681.
    [92]Cheng Y, Du Q, Wang L, et al. Fluorescently cationic conjugated polymer as an indicator of ligase chain reaction for sensitive and homogeneous detection of single nucleotide polymorphism [J]. Anal Chem,2012,84(8):3739-3744.
    [93]Huh Y S, Lowe A J, Strickland A D, et al. Surface-enhanced Raman scattering based ligase detection reaction[J]. J Am Chem Soc,2009,131(6):2208-2213.
    [94]Lowe A J, Huh Y S, Strickland A D, et al. Multiplex single nucleotide polymorphism genotyping utilizing ligase detection reaction coupled surface enhanced Raman spectroscopy[J]. Anal Chem,2010,82(13):5810-5814.
    [95]Craw P, Balachandran W. Isothermal nucleic acid amplification technologies for point-of-care diagnostics:a critical review[J]. Lab Chip, 2012,12(14):2469-2486.
    [96]Zhang D Y, Liu B. Detection of target nucleic acids and proteins by amplification of circularizable probes[J]. Expert Rev Mol Diagn, 2003,3(2):237-248.
    [97]Cheng Y, Li Z, Zhang X, et al. Homogeneous and label-free fluorescence detection of single-nucleotide polymorphism using target-primed branched rolling circle amplification[J]. Analytical Biochemistry,2008,378(2):123-126.
    [98]Smolina I V, Cherny D I, Nietupski R M, et al. High-density fluorescently labeled rolling-circle amplicons for DNA diagnostics[J]. Analytical Biochemistry,2005,347(1):152-155.
    [99]Smolina I V, Kuhn H, Lee C, et al. Fluorescence-based detection of short DNA sequences under non-denaturing conditions[J]. Bioorganic & Medicinal Chemistry,2008,16(1):84-93.
    [100]Nallur G, Luo C, Fang L, et al. Signal amplification by rolling circle amplification on DNA microarrays[J]. Nucleic Acids Res,2001,29(23):E118.
    [101]Wu L, Liu Q, Wu Z, et al. Detection of HIV cDNA point mutations with rolling-circle amplification arrays[J]. Molecules,2010,15(2):619-626.
    [102]Lizardi P M, Huang X, Zhu Z, et al. Mutation detection and single-molecule counting using isothermal rolling-circle amplification[J]. Nat Genet, 1998,19(3):225-232.
    [103]Demidov V V. Rolling-circle amplification in DNA diagnostics:the power of simplicity[J]. Expert Rev Mol Diagn,2002,2(6):542-548.
    [104]Ou L J, Liu S J, Chu X, et al. DNA encapsulating liposome based rolling circle amplification immunoassay as a versatile platform for ultrasensitive detection of protein[J]. Anal Chem,2009,81(23):9664-9673.
    [105]Hu J, Zhang C Y. Sensitive Detection of Nucleic Acids with Rolling Circle Amplification and Surface-Enhanced Raman Scattering Spectroscopy[J]. Anal Chem,2010.
    [106]Sato K, Ishii R, Sasaki N, et al. Bead-based padlock rolling circle amplification for single DNA molecule counting[J]. Anal Biochem,2013,437(1):43-45.
    [107]Sato K, Tachihara A, Renberg B, et al. Microbead-based rolling circle amplification in a microchip for sensitive DNA detection[J]. LAB ON A CHIP, 2010,10(10):1262-1266.
    [108]Ding C, Wang N, Zhang J, et al. Rolling circle amplification combined with nanoparticle aggregates for highly sensitive identification of DNA and cancercells[J]. Biosensors and Bioelectronics,2013,42(0):486-491.
    [109]Ding C, Wang N, Zhang J, et al. Rolling circle amplification combined with nanoparticle aggregates for highly sensitive identification of DNA and cancercells[J]. Biosensors and Bioelectronics,2013,42(0):486-491.
    [110]Li J S, Deng T, Chu X, et al. Rolling Circle Amplification Combined with Gold Nanoparticle Aggregates for Highly Sensitive Identification of Single-Nucleotide Polymorphisms[J]. ANALYTICAL CHEMISTRY, 2010,82(7):2811-2816.
    [111]Jaque D, Vetrone F. Luminescence nanothermometry[J]. Nanoscale, 2012,4(15):4301-4326.
    [112]Gibriel A A. Options available for labelling nucleic acid samples in DNA microarray-based detection methods[J]. Brief Funct Genomics, 2012,11(4):311-318.
    [113]Gerion D, Chen F, Kannan B, et al. Room-temperature single-nucleotide polymorphism and multiallele DNA detection using fluorescent nanocrystals and microarrays[J]. Anal Chem,2003,75(18):4766-4772.
    [114]Ho Y P, Kung M C, Yang S, et al. Multiplexed hybridization detection with multicolor colocalization of quantum dot nanoprobes[J]. Nano Lett, 2005,5(9):1693-1697.
    [115]Zhang C Y, Yeh H C, Kuroki M T, et al. Single-quantum-dot-based DNA nanosensor[J]. Nat Mater,2005,4(11):826-831.
    [116]Dyadyusha L, Yin H, Jaiswal S, et al. Quenching of CdSe quantum dot emission, a new approach for biosensing[J]. Chem Commun (Camb), 2005(25):3201-3203.
    [117]Song Y, Zhang Y, Wang T H. Single quantum dot analysis enables multiplexed point mutation detection by gap ligase chain reaction[J]. Small, 2013,9(7):1096-1105.
    [118]Wang J, Zhao W W, Zhou H, et al. Amplified electrochemiluminescence detection of DNA-binding protein based on the synergy effect of electron and energy transfer between CdS nanocrystals and gold nanoparticles[J]. Biosens Bioelectron,2013,41:615-620.
    [119]Zhou J, Wang Q X, Zhang C Y. Liposome-quantum dot complexes enable multiplexed detection of attomolar DNAs without target amplification[J]. J Am Chem Soc,2013,135(6):2056-2059.
    [120]Liu S, Wang C, Zhang C, et al. Label-free and ultrasensitive electrochemical detection of nucleic acids based on autocatalytic and exonuclease Ⅲ-assisted target recycling strategy[J]. Anal Chem,2013,85(4):2282-2288.
    [121]Sikes H D, Hansen R R, Johnson L M, et al. Using polymeric materials to generate an amplified response to molecular recognition events[J]. Nat Mater, 2008,7(1):52-56.
    [122]Lou X, Lewis M S, Gorman C B, et al. Detection of DNA point mutation by atom transfer radical polymerization[J]. Anal Chem,2005,77(15):4698-4705.
    [123]Qian H, He L. Surface-initiated activators generated by electron transfer for atom transfer radical polymerization in detection of DNA point mutation[J]. Anal Chem,2009,81(11):4536-4542.
    [124]Lou X H, He L. Surface passivation using oligo(ethylene glycol) in ATRP-assisted DNA detection[J]. SENSORS AND ACTUATORS B-CHEMICAL,2008,129(1):225-230.
    [125]Okelo G O, He L. Cu(0) as the reaction additive in purge-free ATRP-assisted DNA detection[J]. BIOSENSORS & BIOELECTRONICS, 2007,23(4):588-592.
    [126]Craw P, Balachandran W. Isothermal nucleic acid amplification technologies for point-of-care diagnostics:a critical review[J]. LAB ON A CHIP, 2012,12(14):2469-2486.
    [1]Debnath M, Prasad G B K S, Bisen P S. Immunoassay[J]. Molecular Diagnostics:Promises and Possibilities,2010:171-180.
    [2]Wang K M, Tang Z W, Yang C, et al. Molecular Engineering of DNA: Molecular Beacons[J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION,2009,48(5):856-870.
    [3]Lin C X, Jungmann R, Leifer A M, et al. Submicrometre geometrically encoded fluorescent barcodes self-assembled from DNA[J]. NATURE CHEMISTRY, 2012,4(10):832-839.
    [4]Nicewarner-Pena S R, Freeman R G, Reiss B D, et al. Submicrometer metallic barcodes[J]. SCIENCE,2001,294(5540):137-141.
    [5]Pregibon D C, Toner M, Doyle P S. Multifunctional encoded particles for high-throughput biomolecule analysis[J]. SCIENCE, 2007,315(5817):1393-1396.
    [6]Li Y G, Cu Y, Luo D. Multiplexed detection of pathogen DNA with DNA-based fluorescence nanobarcodes[J]. NATURE BIOTECHNOLOGY, 2005,23(7):885-889.
    [7]Han M Y, Gao X H, Su J Z, et al. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules[J]. NATURE BIOTECHNOLOGY, 2001,19(7):631-635.
    [8]Lee H, Kim J, Kim H, et al. Colour-barcoded magnetic microparticles for multiplexed bioassays[J]. NATURE MATERIALS,2010,9(9):745-749.
    [9]Braeckmans K, De Smedt S C, Roelant C, et al. Encoding microcarriers by spatial selective photobleaching[J]. NATURE MATERIALS, 2003,2(3):169-173.
    [10]Fournier-Bidoz S, Jennings T L, Klostranec J M, et al. Facile and rapid one-step mass preparation of quantum-dot barcodes[J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION,2008,47(30):5577-5581.
    [11]Giljohann D A, Mirkin C A. Drivers of biodiagnostic development[J]. NATURE,2009,462(7272):461-464.
    [12]Rosi N L, Mirkin C A. Nanostructures in biodiagnostics[J]. CHEMICAL REVIEWS,2005,105(4):1547-1562.
    [13]Donnelly P. Progress and challenges in genome-wide association studies in humans[J]. NATURE,2008,456(7223):728-731.
    [14]Ohno Y, Maehashi K, Matsumoto K. Label-Free Biosensors Based on Aptamer-Modified Graphene Field-Effect Transistors[J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY,2010,132(51):18012-18013.
    [15]Brousseau L C. Label-free "digital detection" of single-molecule DNA hybridization with a single electron transistor[J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY,2006,128(35):11346-11347.
    [16]Markov D A, Swinney K, Bornhop D J. Label-free molecular interaction determinations with nanoscale interferometry[J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY,2004,126(50):16659-16664.
    [17]Homola J. Surface plasmon resonance sensors for detection of chemical and biological species[J]. CHEMICAL REVIEWS,2008,108(2):462-493.
    [18]Fritz J, Bailer M K, Lang H P, et al. Translating biomolecular recognition into nanomechanics[J]. SCIENCE,2000,288(5464):316-318.
    [19]Zheng G F, Patolsky F, Cui Y, et al. Multiplexed electrical detection of cancer markers with nanowire sensor arrays[J]. NATURE BIOTECHNOLOGY, 2005,23(10):1294-1301.
    [20]Zhu C L, Liu L B, Yang Q, et al. Water-Soluble Conjugated Polymers for Imaging, Diagnosis, and Therapy[J]. CHEMICAL REVIEWS, 2012,112(8):4687-4735.
    [21]Ho H A, Najari A, Leclerc M. Optical detection of DNA and proteins moth cationic polythiophenes[J]. ACCOUNTS OF CHEMICAL RESEARCH, 2008,41(2):168-178.
    [22]Prusty D K, Herrmann A. A Fluorogenic Reaction Based on Heavy-Atom Removal for Ultrasensitive DNA Detection[J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY,2010,132(35):12197-12199.
    [23]Shu X, Liu Y H, Zhu J. DNA Detection Based on Fluorogenic Nanospheres[J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012,51(44):11006-11009.
    [24]Zhou X, Xia S, Lu Z, et al. Biomineralization-Assisted Ultrasensitive Detection of DNA[J]. Journal of the American Chemical Society, 2010,132(20):6932-6934.
    [25]Zhou X, Cao P, Tian Y, et al. Expressed Peptide Assay for DNA Detection[J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010,132(12):4161-4168.
    [26]Hong M, Zhou X, Lu Z Q, et al. Nanoparticle-Based, Fluorous-Tag-Driven DNA Detection[J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2009,48(50):9503-9506.
    [27]Qiu F, Jiang D W, Ding Y B, et al. Monolayer-barcoded nanoparticles for on-chip DNA hybridization assay[J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION,2008,47(27):5009-5012.
    [28]Maniatis T, Jeffrey A, van DeSande H. Chain length determination of small double-and single-stranded DNA molecules by polyacrylamide gel electrophoresis[J]. Biochemistry,1975,14(17):3787-3794.
    [29]Murakami T, Sumaoka J, Komiyama M. Sensitive isothermal detection of nucleic-acid sequence by primer generation-rolling circle amplification[J]. Nucleic Acids Res,2009,37(3):e19.
    [1]Jager S, Famulok M. Generation and enzymatic amplification of high-density functionalized DNA double strands[J]. Angew Chem Int Ed Engl, 2004,43(25):3337-3340.
    [2]Fa M, Radeghieri A, Henry A A, et al. Expanding the substrate repertoire of a DNA polymerase by directed evolution[J]. J Am Chem Soc, 2004,126(6):1748-1754.
    [3]Ghadessy F J, Ong J L, Holliger P. Directed evolution of polymerase function by compartmentalized self-replication[J]. Proc Natl Acad Sci U S A, 2001,98(8):4552-4557.
    [4]Gutsmiedl K, Fazio D, Carell T. High-Density DNA Functionalization by a Combination of Cu-Catalyzed and Cu-Free Click Chemistry [J]. CHEMISTRY-A EUROPEAN JOURNAL,2010,16(23):6877-6883.
    [5]Brakmann S, Lobermann S. High-density labeling of DNA:Preparation and characterization of the target material for single-molecule sequencing[J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION,2001,40(8):1427.
    [6]Chaput J C, Szostak J W. TNA synthesis by DNA polymerases[J]. J Am Chem Soc,2003,125(31):9274-9275.
    [7]Masud M M, Ozaki-Nakamura A, Kuwahara M, et al. Modified DNA bearing 5-(methoxycarbonyl-methyl)-2'-deoxyuridine:Preparation by PCR with thermophilic DNA polymerase and post-synthetic derivation[J]. CHEMBIOCHEM,2003,4(7):584-588.
    [8]Kuwahara M, Ohbayashi T, Hanawa K, et al. Enzymatic incorporation of chemically-modified nucleotides into DNAs[J]. Nucleic Acids Res Suppl, 2002(2):83-84.
    [9]Thum O, Jager S, Famulok M. Functionalized DNA:A new replicable biopolymer[J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2001,40(21):3990.
    [10]Anderson J P, Angerer B, Loeb L A. Incorporation of reporter-labeled nucleotides by DNA polymerases[J]. BIOTECHNIQUES,2005,38(2):257-264.
    [11]Giller G, Tasara T, Angerer B, et al. Incorporation of reporter molecule-labeled nucleotides by DNA polymerases. I. Chemical synthesis of various reporter group-labeled 2'-deoxyribonucleoside-5'-triphosphates[J]. NUCLEIC ACIDS RESEARCH,2003,31(10):2630-2635.
    [12]Tasara T, Angerer B, Damond M, et al. Incorporation of reporter molecule-labeled nucleotides by DNA polymerases. II. High-density labeling of natural DNA[J]. NUCLEIC ACIDS RESEARCH,2003,31(10):2636-2646.
    [13]Rasched G, Ackermann D, Schmidt T L, et al. DNA minicircles with gaps for versatile functionalization[J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION,2008,47(5):967-970.
    [14]Murata S, Mizumura Y, Hino K, et al. Modular bent DNAs:A new class of artificial DNAs with a protein binding ability[J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY,2007,129(34):10300.
    [15]Borsenberger V, Kukwikila M, Howorka S. Synthesis and enzymatic incorporation of modified deoxyuridine triphosphates[J]. Org Biomol Chem, 2009,7(18):3826-3835.
    [16]Fischler M, Simon U, Nir H, et al. Formation of bimetallic Ag-Au nanowires by metallization of artificial DNA duplexes[J]. Small,2007,3(6):1049-1055.
    [17]Jiang C, Li B, Guan Z, et al. Synthesis and recognition of novel isonucleoside triphosphates by DNA polymerases[J]. Bioorg Med Chem, 2007,15(8):3019-3025.
    [18]Thoresen L H, Jiao G S, Haaland W C, et al. Rigid, conjugated, fluoresceinated thymidine triphosphates:syntheses and polymerase mediated incorporation into DNA analogues[J]. Chemistry,2003,9(19):4603-4610.
    [19]Weizman H, Tor Y. Redox-active metal-containing nucleotides:synthesis, tunability, and enzymatic incorporation into DNA[J]. J Am Chem Soc, 2002,124(8):1568-1569.
    [20]Kawai R, Kimoto M, Ikeda S, et al. Site-specific fluorescent labeling of RNA molecules by specific transcription using unnatural base pairs[J]. J Am Chem Soc,2005,127(49):17286-17295.
    [21]Jager S, Rasched G, Kornreich-Leshem H, et al. A versatile toolbox for variable DNA functionalization at high density[J]. J Am Chem Soc, 2005,127(43):15071-15082.
    [22]Gilar M, Belenky A, Budman Y, et al. Impact of 3'-exonuclease stereoselectivity on the kinetics of phosphorothioate oligonucleotide metabolism[J]. ANTISENSE & NUCLEIC ACID DRUG DEVELOPMENT, 1998,8(1):35-42.
    [23]Gilar M, Belenky A, Budman Y, et al. Study of phosphorothioate-modified oligonucleotide resistance to 3'-exonuclease using capillary electrophoresis[J]. JOURNAL OF CHROMATOGRAPHY B,1998,714(1):13-20.
    [1]Cheesman B T, Willott J D, Webber G B, et al. pH-Responsive Brush-Modified Silica Hybrids Synthesized by Surface-Initiated ARGET ATRP[J]. ACS MACRO LETTERS,2012,1(10):1161-1165.
    [2]Huang X, Hauptmann N, Appelhans D, et al. Synthesis of Hetero-Polymer Functionalized Nanocarriers by Combining Surface-Initiated ATRP and RAFT Polymerization[J]. SMALL,2012,8(23):3579-3583.
    [3]Li C Y, Xu F J, Yang W T. Simple Strategy to Functionalize Polymeric Substrates via Surface-Initiated ATRP for Biomedical Applications[J]. LANGMUIR,2013,29(5):1541-1550.
    [4]Mazurowski M, Gallei M, Rehahn M. Convenient Quantification of Accessible Surface-Attached ATRP Initiators and RAFT Chain Transfer Agents on Cross-Linked Polystyrene Nanoparticles[J]. ACS MACRO LETTERS, 2012,1(11):1362-1366.
    [5]Qiu X Y, Ren X Q, Hu S W. Fabrication of dual-responsive cellulose-based membrane via simplified surface-initiated ATRP[J]. CARBOHYDRATE POLYMERS,2013,92(2):1887-1895.
    [6]Wang M, Yuan J, Huang X B, et al. Grafting of carboxybetaine brush onto cellulose membranes via surface-initiated ARGET-ATRP for improving blood compatibility[J]. COLLOIDS AND SURFACES B-BIOINTERFACES, 2013,103:52-58.
    [7]Bao Z Y, Bruening M L, Baker G L. Rapid growth of polymer brushes from immobilized initiators[J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY,2006,128(28):9056-9060.
    [8]Chen Y H, Wang L, Jiang W. Micrococcal nuclease detection based on peptide-bridged energy transfer between quantum dots and dye-labeled DNA[J]. TALANTA,2012,97:533-538.
    [9]Liu H Y, Xu S M, He Z M, et al. Supersandwich Cytosensor for Selective and Ultrasensitive Detection of Cancer Cells Using Aptamer-DNA Concatamer-Quantum Dots Probes[J]. ANALYTICAL CHEMISTRY, 2013,85(6):3385-3392.
    [10]Qiu T, Zhang B, Hu Z Y, et al. Detection of DNA based on fluorescence resonance energy transfer of polyelectrolyte-protected CdTe quantum dots as energy donors[J]. ANALYST,2012,137(11):2608-2613.
    [11]Song W Q, Lau C W, Lu J Z. Quantum dot-based isothermal chain elongation for fluorescence detection of specific DNA sequences via template-dependent surface-hybridization[J]. ANALYST,2012,137(7):1611-1617.
    [12]Sun W L, Yao J L, Yao T M, et al. Label-free fluorescent DNA sensor for the detection of silver ions based on molecular light switch Ru complex and unmodified quantum dots[J]. ANALYST,2013,138(2):421-424.
    [13]Wu Y Z, Eisele K, Doroshenko M, et al. A Quantum Dot Photoswitch for DNA Detection, Gene Transfection, and Live-Cell Imaging[J]. SMALL, 2012,8(22):3465-3475.
    [14]Zhang C L, Xu J, Zhang S M, et al. One-Pot Synthesized DNA-CdTe Quantum Dots Applied in a Biosensor for the Detection of Sequence-Specific Oligonucleotides[J]. CHEMISTRY-A EUROPEAN JOURNAL, 2012,18(27):8296-8300.
    [15]Zhang L, Zhu K, Ding T, et al. Quantum dot-phenanthroline dyads:detection of double-stranded DNA using a photoinduced hole transfer mechanism[J]. ANALYST,2013,138(3):887-893.
    [16]Wang Y Z, Xiao J H, Liu L G, et al. Simultaneous detection of hepatitis B virus genotypes and mutations associated with resistance to lamivudine, adefovir, and telbivudine by the polymerase chain reaction-ligase detection reaction[J]. Braz J Infect Dis,2011,15(6):560-566.
    [17]Das S, Pingle M R, Munoz-Jordan J, et al. Detection and serotyping of dengue virus in serum samples by multiplex reverse transcriptase PCR-ligase detection reaction assay[J]. J Clin Microbiol,2008,46(10):3276-3284.
    [18]Wang P, Guo Y, Cheng J, et al. Development of multiplex reverse transcription-ligase detection reaction-polymerase chain reaction (MRLP) mediated universal DNA microarray for diagnostic platform[J]. Biosens Bioelectron,2011,26(8):3719-3724.
    [19]Yi P, Lu W, Guo J, et al. Development of a PCR/ligase detection reaction/nanogold-based universal array approach for the detection of low-abundant DNA point mutations[J]. Cell Biochem Biophys, 2011,61(3):629-636.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700