用户名: 密码: 验证码:
一维纳米结构力学性能尺寸效应的实验及理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着纳米技术的迅速发展,纳米结构力学性能的实验测量和建模引起了广泛的关注。本文针对一维纳米结构的弹性模量,尤其是尺寸效应相关的问题进行了实验和理论建模研究。本文对纳米结构的研究主要集中在中等尺寸聚合物纳米纤维,直径100~1200纳米和超细金属纳米杆,直径小于10纳米.直径大于1200纳米的“宏观”纤维中,没有显示出明显的尺寸效应。
     实验部分,本文采用静电纺丝技术制备了不同直径的PCL纳米纤维,并对单根PCL纳米纤维进行了轴向拉伸、静态弯曲和动态弯曲三种类型的实验。实验中发现纳米纤维的横截面积是椭圆形,影响了分析结果的精度。本文分别利用AFM和SEM的测量数据,引入垂直直径和水平直径,对结果进行了修正。为研究纳米纤维的尺寸效应,对直径变化范围在100~1200纳米的纳米纤维的力学性能进行了实验研究。实验研究结果显示,在纳米纤维弯曲实验中,纤维弹性模量随纳米纤维直径的变化呈现相反的变化趋势,即直径越小,弹性模量越大,但对纤维拉伸实验的统计结果没有显示出尺寸效应。
     为了分析纳米纤维的尺寸效应,本文对应变梯度理论进行了部分的改进,发展了应变梯度弹性理论的动力学模型。该模型能描述纳米纤维弯曲时出现尺寸效应,而拉伸时无尺寸效应的情况,并且模型与实验数据符合良好。本文发展的应变梯度理论模型还预测了纳米纤维固有频率的尺寸效应变化趋势。
     为了进一步分析超细纳米杆的尺寸效应,本文发展了晶格理论的原子模型。晶格模型适应于解释超细纳米杆在拉伸情况下的微小的尺寸效应,这一结论好像与中等尺寸纳米纤维在拉伸加载情况下不显示尺寸效应的结论相矛盾,本文对于这一矛盾的解释是:超细尺度下的一维纳米结构,厚度仅有几层原子,结构变形时,表面能量的影响起主导作用。本文利用其它的原子模型即分子动力学模型对提出的晶格尺寸效应理论模型进行了检验,两种模型得到一致的结论。因此,我们认为一维纳米结构的拉伸也包含尺寸效应,但与中等尺寸纳米纤维弯曲时的尺寸效应相比,拉伸尺寸效应在更细的尺度,即一维超细纳米结构上表现出来。
With the rapid advancement of nanotechnology there is considerable interest in the measurement and modeling of the mechanical properties of nanostructures. Therefore, this dissertation is concerned with the experimental measurements and computational modeling of the elastic modulus of 1-dimensional nanostructures, with a special emphasis on the size-dependent phenomenon. The nanostructure studied in my research consists of moderately-fine polymeric nanofibers with diameters between 100 and 1200 nm, and ultra-fine metallic nanowires with diameters up to 10 nm. Macro fibers have diameters exceeding 1200nm and they do not exhibit the size-dependent trend.
     In the experimental measurements, a series of tests involving a single-strand, electrospun PCL nanofiber is conducted. Three kinds of test are carried out; uniaxial tensile, static bending and dynamic bending. Further, since the cross-section of the nanofiber is generally ellipsoidal in shape, it is necessary to correct for the lack of circularity. The analytical correction is performed using data from vertical and horizontal diameters provided by the AFM and SEM measurements, respectively. To study the size-dependent response, measurements on nanofibers of varying diameters that range from 100-1200 nm are carried out. The results on the elastic modulus clearly depict an inverse size-dependent trend with the fiber diameter; the smaller the diameter, the higher the elastic modulus is elevated. This is particularly pronounced in the results of the moderately-fine nanofibers for both the bending tests, but appears to be statistically unchanged for the tensile test.
     To analytically investigate size-dependency in moderately-fine nanofibers, a strain-gradient (SG) model based on a dynamics formulation is developed. Application of the SG model to the moderately fine nanofibers produces a size-dependent behavior under bending loads and an absence of size-dependency under tensile loads. These predictions are consistent with the results of the experimental tests on the moderately-fine nanofibers. Further, our SG model shows a size-dependent trend in the natural frequency of the nanofibers.
     To study size-dependency in ultra-fine nanowires an atomic model consisting of lattice cells is developed. Our lattice model predicts a smaller-scale size-dependent trend in ultra-fine nanowires under tension. This result seems to contradict that of the tensile-loaded, moderately-fine nanofibers that do not exhibit size-dependency. Our explanation of this apparent contradiction is that at the ultra-fine scale, the nanowires are a few atom layers thick, making the surface energy predominate over the core energy. Our lattice model size-dependent predictions are checked against those of another atomic model - that of the molecular dynamics simulation, and the two results are consistent with each other. Therefore, we feel confident that ultra-fine nanowires do exhibit size-dependency, albeit at a much small scale compared to bending size-dependency in the moderately-fine nanofibers.
引文
[1]Feynman R P.There's Plenty of Room at the Bottom[J].Caltech's Engineering and Science Magazine,1960.
    [2]周瑞发,韩雅芳,陈祥宝.纳米材料技术[M].北京:国防工业出版社,2003.
    [3]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001.
    [4]Gleiter H,Marquardt P.Nanocrystalline Structures - an Approach to New Materials[J].Zeitschrift Fur Metallkunde.1984,75(4):263-267.
    [5]Birringer R,et al.Nanocrystalline materials an approach to a novel solid structure with gas-like disorder[J].Physics Letters A.1984,102(8):365-369.
    [6]Siegel R W,et al.Synthesis,Characterization,and Properties ofNanophase Tio2[J].Journal of Materials Research.1988,3(6):1367-1372.
    [7]Binnig G Q C,Gerber C.Atomic force microscopy[J].Physical Review Letters.1986,56:930-933.
    [8]Binnig G R H.Scanning tunneling microscopy[J].Helvetica Physica Aeta.1982,55:726-735.
    [9]白春礼.原子力显微镜的研制及应用[J].中国科学院院刊.1990,(04).
    [10]Iijima S.Helical Microtubules of Graphitic Carbon[J].Nature.1991,354(6348):56-58.
    [11]Kind H,et al.Nanowire ultraviolet photodetectors and optical switches[J].Advanced Materials.2002,14(2):158-165.
    [12]Rao C N R,et al.Inorganic nanowires[J].Progress in Solid State Chemistry.2003,31(1-2):5-147.
    [13]Taylor G.Disintegration of Water Drops in Electric Field[J].Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences.1964,280(138):383-390.
    [14]Baumgart Pk.Electrostatic Spinning of Acrylic Microfibers[J].Journal of Colloid and Interface Science.1971,36(1):71-77.
    [15]Tan E P S,Lim C T.Novel approach to tensile testing of micro- and nanoscale fibers[J].Review of Scientific Instruments.2004,75(8):2581-2585.
    [16]Huang Z M,et al.Electrospinning and mechancial characterization of gelatin naonofibers[J].Polymer.2004,45(15):5361-5368.
    [17]Matthews J A,et al.Electrospinning of collagen nanofibers[J].Biomacromolecule.2002,3(2):232-238.
    [18]Doshi J,Reneker D H.Electrospinning Process and Applications of Electrospun Fibers[J].Journal of Electrostatics.1995,35(2-3):151-160.
    [19]Williamson M R,et al.Gravity spun polycaprolactone fibers for applications in vascular tissue engineering:Proliferation and function of human vascular endothelial cells[J].Tissue Engineering.2006,12(1):45-51.
    [20]Huang Z M,et al.A review on polymer nanofibers by electrospinning and their applications in nanocomposites[J].Composites Science and Technology.2003,63(15):2223-2253.
    [21]Shin Y M,et al.Experimental characterization of electrospinning:the electrically forced jet and instabilities[J]. Polymer. 2001,42(25): 9955-9967.
    [22] Ding B, et al. Fabrication of blend biodegradable nanofibrous nonwoven mats via multi-jet electrospinning[J]. Polymer. 2004,45(6): 1895-1902.
    [23] Loscertales I G, et al. Micro/nano encapsulation via electrified coaxial liquid jets[J]. Science.2002,295(5560): 1695-1698.
    [24] Sun Z C, et al. Compound core-shell polymer nanofibers by co-electrospinning[J]. Advanced Materials. 2003, 15(22): 1929-8.
    [25] Li D, Xia Y N. Direct fabrication of composite and ceramic hollow nanofibers by electrospinning[J]. Nano Letters. 2004,4(5): 933-938.
    [26] Larsen G, et al. A method for making inorganic and hybrid (organic/inorganic) fibers and vesicles with diameters in the submicrometer and micrometer range via sol-gel chemistry and electrically forced liquid jets[J]. Journal of the American Chemical Society. 2003, 125(5):1154-1155.
    [27] Zhang Y Z, et al. Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds[J]. Journal of Biomedical Materials Research Part B-Applied Biomaterials. 2005,72B(1): 156-165.
    [28] Tan E P S, et al. Tensile testing of a single ultrafine polymeric fiber[J]. Biomaterials. 2005,26(13): 1453-1456.
    [29] Chia S S. Design of an electrospinning apparatus with multiple spinneret system[J]. National University of Singapore. 2003(Singapore).
    [30] Dersch R, et al. Electrospun nanofibers: Internal structure and intrinsic orientation[J]. Journal of Polymer Science Part a-Polymer Chemistry. 2003, 41(4): 545-553.
    [31] Li D, et al. Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays[J]. Nano Letters. 2003,3(8): 1167-1171.
    [32] Theron A, Zussman E, Yarin A L. Electrostatic field-assisted alignment of electrospun nanofibres[J]. Nanotechnology. 2001(3): 384-390.
    [33] Inai R, et al. Structure and properties of electrospun PLLA single nanofibres[J].Nanotechnology. 2005, 16(2): 208-213.
    [34] Tan E P S, Ng S Y, Lim C T. Tensile testing of a single ultrafine polymeric fiber[J].Biomaterials. 2005,26: 1453-1456.
    [35] Ye Z X, et al. Template-based fabrication of nanowire-nanotube hybrid arrays[J].Nanotechnology. 2008, 19(32): 5706-6.
    [36] Zheng R K, et al. A simple template-based hot-press method for the fabrication of metal and polymer nanowires and nanotubes[J]. Nanotechnology. 2005, 16(9): 1928-1934.
    [37] Nakata Y, et al. Fabrication of dot matrix, comb, and nanowire structures using laser ablation by interfered femtosecond laser beams[J]. Applied Physics Letters. 2002, 81(22): 4239-4241.
    [38] Stern E, et al. Comparison of laser-ablation and hot-wall chemical vapour deposition techniques for nanowire fabrication[J]. Nanotechnology. 2006, 17(11): S246-S252.
    [39] Tang Z Y, et al. Spontaneous organization of single CdTe nanoparticles into luminescent nanowires[J]. Science. 2002, 297(5579): 237-240.
    [40] Huang M H, et al. Catalytic growth of zinc oxide nanowires by vapor transport[J]. Advanced Materials.2001,13(2):113-116.
    [41]Zhang W,et al.Modulated growth of thick GaN with hydride vapor phase epitaxy[J].Journal of Crystal Growth.2002,234(4):616-622.
    [42]Kuchibhatla S V N T,et al.One dimensional nanostructured materials[J].Progress in Materials Science.2007,52(5):699-913.
    [43]Kolmakov A,Moskovits M.Chemical sensing and catalysis by one-dimensional metal-oxide nanostructures[J].Annual Review of Materials Research.2004,34:151-180.
    [44]Gleiter H.Nanostructured materials:Basic concepts and microstructure[J].ACTA MATERIALIA.2000,48(1):1-29.
    [45]何陵辉.小尺寸吲体变形中的表面效应[J].中国科学技术大学学报.2007,(10).
    [46]丁星兆,柳襄怀.纳米材料的结构、性能及应用[J].材料导报.1997,(04).
    [47]Brus L E.Electron Electron and Electron-Hole Interactions in Small Semiconductor Crystallites - the Size Dependence of the Lowest Excited Electronic State[J].Journal of Chemical Physics.1984,80(9):4403-4409.
    [48]朱静.纳米材料和器件[M].北京:清华大学出版社,2003.
    [49]丁秉钧.纳米材料[M].北京:机械工业出版社,2006.
    [50]杨卫,马新玲,王宏涛等.纳米力学进展[J].力学进展.2002,32(2):161-168.
    [51]沈海军,史友进.纳米实验力学中的相关测试技术[J].现代仪器.2006,(05):1-4.
    [52]Dai F L,Wang Z Y.Geometric micron-moire[J].Optics and Lasers in Engineering.1999,31(3):191-198.
    [53]Wang Z Y,et al.High resolution,high sensitivity moire method[J].Acta Mechanica Sinica.1999,15(2):176-181.
    [54]张泰华.纳米硬度计在MEMS力学检测中的应用[J].微纳电子技术.2003 40(7):212-214.
    [55]朱瑛,姚英学.纳米压痕技术及其试验研究[J].工具技术.2004,38(8):13-17.
    [56]Tan E P S,Lim C T.Nanoindentation study of nanofibers[J].Applied Physics Letters.2005,87(12):3106-3.
    [57]Tan E P S,et al.Tensile test of a single nanofiber using an atomic force microscope tip[J].Applied Physics Letters.2005,86(7):3115-3.
    [58]Wong E W,et al.Nanobeam mechanics:Elasticity,strength,and toughness of nanorods and nanotubes[J].Science.1997,277(5334):1971-1975.
    [59]Cuenot S,et al.Elastic modulus of polypyrrole nanotubes[J].Physical Review Letters.2000,85(8):1690-1693.
    [60]Yu M F,et al.Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load[J].Science.2000,287(5453):637-640.
    [61]Chen C Q,et al.Size dependence of Young's modulus in ZnO nanowires[J].Physical Review Letters.2006,96(7):55051-4.
    [62]Cuenot S,et al.Measurement of elastic modulus of nanotubes by resonant contact atomic force microscopy[J].Journal of Applied Physics.2003,93(9):5650-5655.
    [63]Andrew R L,Molecular modeling principles and applications[M],北京:世界图书出版公司,1996.
    [64] Cuenot S, et al. Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy[J]. Physical Review B. 2004, 69(16): 55-59.
    [65] Li X X, et al. Ultrathin single-crystalline-silicon cantilever resonators: Fabrication technology and significant specimen size effect on Young's modulus[J]. Applied Physics Letters. 2003,83(15): 3081-3083.
    [66] Nilsson S G, et al. Size effect on Young's modulus of thin chromium cantilevers[J]. Applied Physics Letters. 2004, 85(16): 3555-3557.
    [67] Shankar M R, King A H. How surface stresses lead to size-dependent mechanics of tensile deformation in nanowires[J]. Applied Physics Letters. 2007, 90(14): 19071-3.
    [68] Wang Z G, et al. Atomistic simulations of the size, orientation, and temperature dependence of tensile behavior in GaN nanowires[J]. Physical Review B. 2007, 76(4): 5310-9.
    [69] Lee B, Rudd R E. First-principles study of the Young's modulus of Si < 001 > nanowires[J].Physical Review B. 2007, 75(4): 97-102.
    [70] Kohn W,Sham L J. Quantum Density Oscillations in an Inhomogeneous Electron Gas[J].Physical Review. 1965, 1(6A): 1697-1703.
    [71] Zhou L G,Huang H C. Are surfaces elastically softer or stiffer?[J]. Applied Physics Letters.2004,84(11): 1940-1942.
    [72] Diao J K., et al. Atomistic simulation of the structure and elastic properties of gold nanowires[J]. Journal of the Mechanics and Physics of Solids. 2004, 52(9): 1935-1962.
    [73] Toupin R A. Elastic Materials with Couple-Stresses[J]. Archive for Rational Mechanics and Analysis. 1963, 11(5): 385-414.
    [74] Toupin R A. Theories of Elasticity with Couple-Stress[J]. Archive for Rational Mechanics and Analysis. 1964, 17(2): 85-112.
    [75] Mindlin R D, Tiersten H F. Effects of Couple-Stresses in Linear Elasticity[J]. Archive for Rational Mechanics and Analysis. 1963, 11(5): 415-448.
    [76] Mindlin R D. Second gradient of strain and surface-tension in linear elasticity [J].International Journal of Solids and Structures 1965, 1: 417-438.
    [77] Fleck N A, et al. Strain Gradient Plasticity - Theory and Experiment[J]. Acta Metallurgica Et Materialia. 1994,42(2): 475-487.
    [78] Fleck N A, Hutchinson J W. A reformulation of strain gradient plasticity[J]. Journal of the Mechanics and Physics of Solids.2001,49(10): 2245-2271.
    [79] Fleck N A, Hutchinson J W. A Phenomenological Theory for Strain Gradient Effects in Plasticity[J]. Journal of the Mechanics and Physics of Solids. 1993,41(12): 1825-1857.
    [80] Stolken J S, Evan A G. A microbend test method for measuring the plasticity length scale[J].Acta Metall. Mater. 1998,46: 5109-5115.
    [81] Yang F, et al. Couple stress based strain gradient theory for elasticity[J]. International Journal of Solids and Structures. 2002, 39(10): 2731-2743.
    [82] Lam D C C, et al. Experiments and theory in strain gradient elasticity[J]. Journal of the Mechanics and Physics of Solids. 2003, 51(8): 1477-1508.
    
    [83] 周公度,结构与物性[M].北京:高等教育出版社,,2000.
    
    [84] Feynman R P, Lectures on physics[M]. Addison-Wesley: California, 1964.
    [85] Sun C T, Zhang H T. Size-dependent elastic moduli of platelike nanomaterials[J]. Journal of Applied Physics. 2003, 93(2): 1212-1218.
    [86] Zhang H T, Sun C T. Nanoplate model for platelike nanomaterials[J]. Aiaa Journal. 2004,42(10): 2002-2009.
    [87] Guo J G, Zhao Y P. The size-dependent elastic properties of nanofilm with surface effect[J].Journal of Applied Physics. 2006, 100(11): 074306-8.
    [88] Guo J G, Zhao Y P. The size-dependent bending elastic properties of nanobeams with surface effects[J]. Nanotechnology. 2007, 18(29): 57011 -6.
    [89] Sun C Q, et al. Bond-order-bond-length-bond-strength (bond-OLS) correlation mechanism for the shape-and-size dependence of a nanosolid[J]. Journal of Physics-Condensed Matter.2002, 14(34): 7781-7795.
    [90] Sun C Q, et al. An extended 'quantum confinement' theory: surface-coordination imperfection modifies the entire band structure of a nanosolid[J]. Journal of Physics D-Applied Physics.2001, 34(24): 3470-3479.
    [91] Sun C Q. Size dependence of nanostructures: Impact of bond order deficiency[J]. Progress in Solid State Chemistry. 2007, 35(1): 1-159.
    [92] Behm R J, et al. Structure of Co Adsorbed on Pd(100) - Leed and Hreels Analysis[J]. Surface Science. 1979, 88(2-3): L59-L66.
    [93] Burchhardt J, et al. The surface structures of Pd(100)-(1x1) and c(2x2)-K[J]. Surface Review and Letters. 1996,3(3): 1339-1343.
    [94] Quinn J, et al. Anomalous Multilayer Relaxation of Pd(001)[J]. Physical Review B. 1990,42(17): 11348-11351.
    [95] Fery P, et al. Structure Determination of the (1x2) and (1x3) Reconstructions of Pt(110) by Low-Energy Electron-Diffraction[J]. Physical Review B. 1988, 38(11): 7275-7286.
    [96] Fenter P, Gustafsson T. Bilayer Growth in a Metallic System - Au on Ag(110)[J]. Physical Review Letters. 1990,64(10): 1142-1145.
    [97] Hetterich W, et al. Surface Crystallographic Data of the Ir(110)(1X-3) Surface[J]. Surface Science. 1992, 264(1-2): L177-L180.
    [98] Meyerheim H L, et al. Interlayer relaxation of W(110) studied by surface X-ray diffraction[J].Surface Science. 2001,475(1-3): 103-108.
    
    [99] Allen M P, Tildesley D J, Computer Simulation of Liquids[M]. 1987, Clarendon: UK.
    [100] Verlet L. Computer Experiments on Classical Fluids .I. Thermodynamical Properties of Lennard-Jones Molecules[J]. Physical Review. 1967, 159(1): 98-105.
    [101] Komanduri R, et al. Molecular dynamics (MD) simulation of uniaxial tension of some single-crystal cubic metals at nanolevel[J]. International Journal of Mechanical Sciences.2001,43(10): 2237-2260.
    [102] Doyama M, Kogure Y. Embedded atom potentials in fcc and bcc metals[J]. Computational Materials Science. 1999, 14(1-4): 80-83.
    [103] TersofTJ. Empirical Interatomic Potential for Silicon with Improved Elastic Properties[J].Physical Review B. 1988, 38(14): 9902-9905.
    [104] Tersoff J. Empirical Interatomic Potential for Carbon, with Applications to Amorphous-Carbon[J]. Physical Review Letters. 1988, 61(25): 2879-2882.
    [105] Mayo S L, et al. Dreiding - a Generic Force-Field for Molecular Simulations[J]. Journal of Physical Chemistry. 1990, 94(26): 8897-8909.
    [106] Girifalco L A, Lad R A. Energy of Cohesion, Compressibility, and the Potential Energy Functions of the Graphite System[J]. Journal of Chemical Physics. 1956,25(4): 693-697.
    
    [107] Hu Y H, Sinnott S B. Constant temperature molecular dynamics simulations of energetic particle-solid collisions: comparison of temperature control methods[J]. Journal of Computational Physics. 2004, 200(1): 251-266.
    [108] Adelman S A,Doll J D. Generalized Langevin Equation Approach for Atom-Solid-Surface Scattering - General Formulation for Classical Scattering Off Harmonic Solids[J]. Journal of Chemical Physics. 1976, 64(6): 2375-2388.
    [109] Nose S. A Molecular-Dynamics Method for Simulations in the Canonical Ensemble[J].Molecular Physics. 1984, 52(2): 255-268.
    [110] Hoover W G. Canonical Dynamics - Equilibrium Phase-Space Distributions[J]. Physical Review A. 1985,31(3): 1695-1697.
    [111] Kondo Y, Takayanagi K. Synthesis and characterization of helical multi-shell gold nanowires[J]. Science. 2000, 289(5479): 606-608.
    [112] Iroh J O, Poly(E-caprolactone), in Polymer data handbook[M]. 1999: Oxford University Press. 361-362.
    [113] Ma Z W, et al. Potential of nanofiber matrix as tissue-engineering scaffolds[J]. Tissue Engineering. 2005, 11(1-2): 101-109.
    [114] Lannutti J, et al. Electrospinning for tissue engineering scaffolds[J]. Materials Science & Engineering C-Biomimetic and Supramolecular Systems. 2007, 27(3): 504-509.
    [115] Kim T G, Park T G. Biomimicking extracellular matrix: Cell adhesive RGD peptide modified electrospun poly( D,L-lactic-Co-glycolic acid) nanofiber mesh[J]. Tissue Engineering. 2006, 12(2): 221-233.
    [116] Shin M K, et al. Size-dependent elastic modulus of single electroactive polymer nanofibers[J]. Applied Physics Letters. 2006, 89: 231929-3.
    [117] Yuan B W J, Han R P S and Lim C T Tensile testing and surface characterization of electrospun PCL nanofibers (in press) [J]. J. Polymer Mat. Sc. & Eng. 2008.
    [118] Sun L, Han R P S, Wang J, Lim C T. Modeling the size-dependent elastic properties of polymeric nanofibers [J]. Nanotechnology. 2008, 19: 455706.
    [119] Poole W J, et al. Micro-hardness of annealed and work-hardened copper polycrystals[J].Scripta Materialia. 1996, 34(4): 559-564.
    [120] Lam D C C, et al. Experiments and theory in strain gradient elasticity[J]. J. Mech. Phys.Solids. 2003, 51: 1477-1508.
    [121] Arinstein A, et al. Effect of supramolecular structure on polymer nanofibre elasticity[J].Nature Nanotechnology. 2007, 2(1): 59-62.
    [122] Yang F, et al. Couple stress based strain gradient theory for elasticity[J]. Int. J. Solids Struct.2002,39:2731-2743.
    [123] Laura A. Miller Structural dynamics and resonance in plants with nonlinear stiffness[J]. Journal of theoretical biology.2005,234:511-524.
    [124]Cuenot S,et al.Resonant contact-AFM measurement of the elastic properties of nanomaterials.[J].Abstracts of Papers of the American Chemical Society.2002,224:U405-U406.
    [125]Liang H Y,et al.Size-dependent elasticity of nanowires:Nonlinear effects[J].Physical Review B.2005,71(24):11-16.
    [126]Olsson P A T,et al.Atomistic simulations of tensile and bending properties of single-crystal bcc iron nanobeams[J].Physical Review B.2007,76(22):41121-15.
    [127]武际可,王敏中等.弹性力学引论(修订版)[M].北京:北京大学出版社,2001.
    [128]Thomas H C.Mechanical Behavior of Materials[M].Beijing:China machine press,2004.
    [129]Feibelman P J,Stumpf R.Adsorption-induced lattice relaxation and diffusion by concerted substitution[J].Physical Review B.1999,59(8):5892-5897.
    [130]Feibelman P J.Relaxation of hcp(0001) surfaces:A chemical view[J].Physical Review B.1996,53(20):13740-13746.
    [131]Pauling L.Atomic Radii and Interatomic Distances in Metals[J].Journal of the American Chemical Society.1947,69(3):542-553.
    [132]Goldschmidt V M.Crystal structure and chemical correlation[J].Berichte Der Deutschen Chemischen Gesellschaft.1927,60:1263-1296.
    [133]Ma F,Xu K W.Size-dependent multilayer relaxation of nanowires and additional effect of surface stresses[J].Solid State Communications.2007,141(5):273-278.
    [134]Kitamura T,et al.Atomic simulation on deformation and fracture of nano-single crystal of nickel in tension[J].Jsme International Journal Series a-Solid Mechanics and Material Engineering.1997,40(4):430-435.
    [135]Gear C W.Numerical initial value problems in ordinary differential equations[M].N J,USA:Prentice-Hall,1971.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700