用户名: 密码: 验证码:
有机碳源促进土壤中五氯酚还原降解的生物化学机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻土中五氯酚(PCP)的转化与归宿被广泛研究。PCP在缺氧/厌氧条件下的降解比好氧条件下更快。水稻土的淹水条件创造了好氧-厌氧的兼性环境,致使土-水界面的生物地球化学过程更为复杂,从而有关土-水界面PCP降解过程的研究也变得更加引入关注。本文揭示了水稻土中PCP还原降解与Fe(Ⅱ)累积的关系及其影响因素,阐明了不同种类低分子量水溶性有机化合物(LMW-DOC)和绿肥水溶性有机物(紫云英DOM)两类有机碳源作为电子供体、有机配体或电子穿梭体对PCP还原降解的促进作用及其生物化学机制,评估了绿肥(紫云英和苕子)作为修复调理剂对土壤PCP的转化的影响,取得的主要结果如下:
     (1)研究了不同种类的LMW-DOC(包括14种低分子量有机酸和8种中性单糖)对土冰界面PCP降解和Fe(Ⅱ)累积动力学的影响。Logistic非线性拟合和聚类分析的结果表明,动力学参数因不同LMW-DOC种类而异,主要表现为因LMW-DOC分子的碳原子数、解离常数和还原度不同,而导致了乙酸钠提取态Fe(Ⅱ)[Fe(Ⅱ)NaOAc]和盐酸提取态Fe(Ⅱ)[Fe(Ⅱ)Hcl]的最大累积量、累积速率常数和最大累积速率明显不同;LMW-DOC分子的还原度不同,也导致了PCP的最大累积量明显不同。相关分析的结果表明,Fe(Ⅱ)NaOAc和Fe(Ⅱ)Hc1的最大累积量与PCP的最大降解率之间存在显著的相关性。根据这一现象,采用生物化学、化学和电化学分析手段并结合相关分析、多元回归分析、冗余分析等数理统计方法进一步研究了微生物参数和环境变量的动态与Fe(Ⅱ)累积和PCP降解动态的关系。结果表明,Fe(Ⅱ)Hc1是对PCP降解起决定性作用的环境变量;pH是影响微生物群落结构分布的关键因子,且因不同LMW-DOC种类而异,总体上pH值的升高有利于Fe(II)NaOAc含量的增加,后者明显促进了PCP的降解,pH值降低和Eh升高时PCP的降解速率也有所下降;Fe(II)/Fe(Ⅲ)电对是对阳极氧化峰电位(Ep)起决定作用的氧化还原电对,在不同LMW-DOC作用下,pH和/或可溶性有机碳(WSOC)变化引起Ep值随时间变化表现出明显的差异,同时也导致Fe(II)Hc1累积和PCP降解的程度有所不同;Fe(II)Hc1和Ep分别比Fe(II)NaOAc和Eh更能反映PCP还原降解的生物化学机制。
     (2)研究了淹水/好气腐解过程中紫云英DOM的产生、消耗与性质动态变化,评价了不同紫云英DOM的氧化还原容量和氧化还原态的差异性。相关分析和主成分分析的结果表明,在不同的氧化还原条件下,紫云英DOM氧化还原容量和氧化还原态的改变与其替代参数(生物化学物质、原子比、傅里叶红外光谱吸收比、重均/数均分子量、紫外光谱吸收比、还原度、特征性紫外可见光谱吸收等)的变化有关,因此可以用多种仪器分析手段(紫外-可见光谱分析、傅里叶红外光谱分析、凝胶渗透色谱分析、元素分析等)间接量化紫云英DOM的氧化还原性质。
     (3)研究了不同种类的紫云英DOM(包括新鲜的、淹水腐解7d和14d的及好气腐解7d和14d的紫云英DOM)对土冰界面PCP降解和Fe(Ⅱ)/Fe(Ⅲ)消长动力学的影响。结果表明,不同紫云英DOM处理均可促进淹水土壤中PCP的降解和Fe(Ⅱ)NaOAc或Fe(Ⅱ)NaOAc+HC1(连续提取)的累积,且PCP降解因不同种类紫云英DOM而表现出明显的时段性,而连续提取方法反映了Fe(Ⅲ)与F(Ⅲ)之间的相互转化程度因Fe(Ⅱ)NaOAc占Fe(Ⅱ)NaOAc+HC1的比例大小而异;同时,紫云英DOM性质的多个替代参数与Fe(Ⅱ)NaOAc的最大累积量具有明显的相关关系,但单个替代参数并不能说明多因素共同决定的紫云英DOM的氧化还原反应性。根据这一现象,采用生物化学和化学分析手段并结合相关分析、多元线性回归分析、冗余分析等数理统计方法进一步研究了微生物参数和环境变量的动态与Fe(Ⅱ)累积和PCP降解动态的关系。结果表明,Fe(Ⅱ)NaOAc+HC1是对PCP降解起决定性作用的环境变量;随着WSOC的消耗和pH值的升高,Fe(Ⅱ)NaOAc和Fe(Ⅱ)NaOAc+HC1浓度均有所增加,因而促进了PCP的降解;Fe(Ⅱ)NaOAc+HC1比Fe(Ⅱ)NaOAc更能反映PCP还原降解的生物化学机制。
     (4)研究了不同添加量(包括1%和3%)的紫云英和苕子对土冰界面PCP降解和Fe(Ⅱ)累积动力学的影响。结果表明,动力学参数因不同绿肥添加量和种类而异,主要表现为DOM的初始紫外-可见参数不同,将导致Fe(Ⅱ)NaOAc的最大累积速率明显不同。根据这一现象,采用化学和电化学分析手段并结合相关分析、多元线性回归分析等数理统计方法进一步研究了环境变量的动态与Fe(Ⅱ)累积和PCP降解动态的关系。结果表明,Fe(Ⅱ)NaOAc是对PCP降解起决定性作用的环境变量;pH值和WSOC含量的变化与绿肥种类关系不大,但因不同添加量而异,紫云英和苕子添加量较低时,pH值的升高和WSOC的消耗有利于Fe(Ⅱ)NaOAc含量的增加,后者明显促进了PCP的降解,pH值降低时PCP的降解速率也有所下降,这在紫云英和苕子添加量较高时表现的尤为明显;Fe(Ⅱ)/Fe(Ⅲ)电对是对Ep起决定作用的氧化还原电对,在不同量紫云英和苕子作用下,Ep值随时间变化表现出明显的差异,同时也导致Fe(Ⅱ)NaOAc累积和PCP降解的程度有所不同;Fe(Ⅱ)NaOAc较能反映PCP还原降解的生物化学机制。
The transformation and fate of pentachlorophenol (PCP, C6Cl5OH) in paddy soils have been extensively studied. It is known that the degradation rate of PCP in paddy soils is higher under anoxic/anaerobic conditions than under aerobic conditions. In flooded paddy soils, the biogeochemical processes at the soil-water interface are more complex than those in the bulk soil due to the presence of adjacent anaerobic and aerobic zones. Thus, study of the degradation process of PCP at the soil-water interface has gained increasing attention from researchers. The aims of this study were:1) to examine the relationship and influencing factors of PCP degradation and Fe(Ⅱ) accumulation in a flooded paddy soil;2) to elucidate the promoting effect and associated biochemical mechanisms of different organic carbon sources [low-molecular-weight dissolved organic carbon (LMW-DOC) compounds and Chinese milk vetch dissolved organic matter (CMV-DOM)] as electron donors, organic ligands or electron shuttles on the reductive degradation of PCP in the flooded paddy soil; and3) to evaluate the effect of green manures (Chinese milk vetch and bird vetch) as amendment on the transformation and fate of PCP in the flooded paddy soil. The primary findings are summarized as follows:
     (1) The effect of different LMW-DOC compounds (fourteen organic acids and eight neutral monosaccharides) on the kinetic parameters of Fe(Ⅱ) accumulation and PCP degradation at the soil-water interface. Logistic curve fitting and cluster analysis showed that the kinetic parameters of Fe(Ⅱ) accumulation and PCP degradation significantly varied with different organic ligands and/or electron donors as well as carbon sources for Fe(Ⅲ) reduction and PCP degradation. The large variations in the number of carbon atoms per molecule, dissociation constants, and degree of reduction of the LMW-DOC led to substantial differences in the maximum capacities for accumulation, accumulation rate constants, and maximum accumulation rates of NaOAc-extractable Fe(Ⅱ)[Fe(Ⅱ)NaoAc] and HCl-extractable Fe(Ⅱ)[Fe(Ⅱ)HCl]-Different degree of reduction of the LMW-DOC also caused significant changes in the maximum capacities for accumulation of PCP. Correlation analysis demonstrated that there was a significant relationship between the maximum capacities of Fe(Ⅱ) accumulation and PCP degradation. Based on the above results, the relationship of microbial parameter (phospholipid fatty acid, PLFAs) and selected environmental variables with the kinetic parameters of Fe(Ⅱ) accumulation and PCP degradation was examined using biochemical, chemical and electrochemical analysis tools in combination with correlation analysis, regression analysis and redundancy analysis. Results showed that Fe(Ⅱ)HCl was the key environmental variable that played a decisive role in PCP degradation. The pH value, which varied with different types of LMW-DOC, was a key factor that determined the structure and distribution of soil microbial communities. Overall, the increase in pH promoted to Fe(Ⅱ)NaOAc accumulation and further significantly enhanced PCP degradation. The pH decreases and Eh increases were associated with decreases in the degradation rate of PCP. Fe(Ⅱ)/Fe(Ⅲ) was the redox couple that determined the anodic peak potential (Ep). In the presence of different LMW-DOC, the changes in pH value and/or WSOC content led to significant differences in the Ep value over time as well as different degrees of Fe(Ⅱ)HCl accumulation and PCP degradation. As compared to Fe(Ⅱ)NaOAc and Eh, Fe(Ⅱ)HCl and Ep were more indicative of the biochemical mechanism of the reductive degradation of PCP.
     (2) The dynamic changes in CMV-DOM production, consumption, and properties during decomposition under continuously-flooded (CF) and non-flooded (NF) conditions, and the differences in the redox capacity and redox state of CMV-DOM between fresh and CF-/NF-decomposed samples. Correlation analysis and principal component analysis showed that under different redox conditions, the changes in the redox capacity and redox state of CMV-DOM were related to large variations in the surrogate parameters (biochemical index, atomic ratio, Fourier transform infrared absorption ratio, weight-average/number-average molecular weight, ultraviolet absorbance ratio, degree of reduction, and ultraviolet spectral absorbance ratio). Thus, it is possible to indirectly predict the redox properties of CMV-DOM through a variety of instrument analyses (ultraviolet-visible spectroscopy, Fourier transform infrared spectroscopy, gel permeation chromatography, and elemental analysis).
     (3) The effect of different CMV-DOM (fresh, NF-decomposed for7d and14d, or CF-decomposed for7d and14d) on the kinetic parameters of PCP degradation and Fe(Ⅱ)/Fe(Ⅲ) accumulation and disappearance at the soil-water interface. Addition of fresh or CF-/NF-decomposed CMV-DOM significantly enhanced the degradation of PCP and the accumulation of Fe(Ⅱ)NaOAc or Fe(Ⅱ)NaOAc+Ha (sequential extraction) in the flooded paddy soil. Results of sequential extraction showed that the degree of transformation between Fe(Ⅲ) and Fe(Ⅱ) varied with the ratio of Fe(Ⅱ)NaOAc to Fe(Ⅱ)NaOAc+HCl·In addition, most surrogate parameters of CMV-DOM properties were significantly related to the maximum capacity for Fe(Ⅱ)NaOAc accumulation. However, a single surrogate parameter could not explain the variations in the redox reactivity of fresh and CF-/NF-decomposed CMV-DOM that were jointly determined by multiple factors. Based on the above results, the relationship between selected microbial parameters as well as environmental variables and the kinetic parameters of Fe(Ⅱ) accumulation and PCP degradation was examined using biochemical and chemical analysis tools in combination with correlation analysis, regression analysis, and redundancy analysis. Results showed that Fe(Ⅱ)NaOAc+Hcl was the environmental variable that played a decisive role in PCP degradation. The consumption of WSOC and the increases in pH led to increases in the Fe(Ⅱ)NaOAc and Fe(Ⅱ)NaOAc+HCl concentrations, thus contributing to PCP degradation. As compared to Fe(Ⅱ)NaoAcl Fe(Ⅱ)NaOAc+HCl is more indicative of the biochemical mechanisms involved in the reductive transformation of PCP.
     (4) The effect of different dosages (1%and3%) of Chinese milk vetch (Astragalus sinicus L.) and bird vetch (Vicia cracca L.) on the kinetic parameters of PCP degradation and Fe(Ⅱ) accumulation at the soil-floodwater interface. The kinetic parameters of PCP degradation and Fe(Ⅱ) accumulation significantly varied with the dosage and type of green manures. The variations in the initial ultraviolet-visible spectral parameters of DOM led to significant changes in the maximum rates of Fe(Ⅱ)NaOAc accumulation. Based on the above results, the relationship between selected environmental variables and the kinetic parameters of Fe(Ⅱ) accumulation and PCP degradation was examined using chemical and electrochemical analysis tools in combination with correlation analysis and regression analysis. Results showed that Fe(Ⅱ)NaOAc was the key environmental variable that played a decisive role in PCP degradation. The changes in pH value and WSOC content significantly varied with the dosage rather than the type of green manure added into the soil. At a low dosage of Chinese milk vetch or bird vetch, the pH increase and WSOC consumption greatly enhanced Fe(Ⅱ)NaOAc accumulation and thus contributed to PCP degradation. The degradation rate of PCP decreased with pH decreases, especially at a relatively high dosage of Chinese milk vetch or bird vetch. Fe(Ⅱ)/Fe(Ⅲ) was the redox couple that determined Ep. At different dosages of Chinese milk vetch or bird vetch, the Ep value significantly varied over time, leading to different degrees of Fe(II)NaOAc accumulation and PCP degradation. Fe(II)NaOAc could well explain the mechanisms involved in the reductive transformation of PCP.
引文
Abrahamsson K, Klick S. Degradation of halogenated phenols in anoxic natural marine sediments[J]. Marine Pollution Bulletin,1991,22(5)227-233.
    Achtnich C, Bak F, Conrad R. Competition for electron donors among nitrate reducers, ferric iron reducers, sulfate reducers, and methanogens in anoxic paddy soil[J]. Biology and Fertility of Soils,1995,19(1):65-72.
    Aislabie J, Hunter D, Ryburn J, et al. Atrazine mineralisation rates in New Zealand soils are affected by time since atrazine exposure[J]. Australian Journal of Soil Research, 2004,42(7):783-792.
    Ali T, Bylund D, Ess E N S A, et al. Liquid extraction of low molecular mass organic acids and hydroxamate siderophores from boreal forest soil[J]. Soil Biology & Biochemistry, 2011,43(12):2417-2422
    Alvarado J S, Rose C, LaFreniere L. Degradation of carbon tetrachloride in the presence of zero-valent iron[J]. Journal of Environmental Monitoring,2010,12(8):1524-1530.
    Alvarez P J J, Hlman W A. Geochemical attenuation mechanisms[M]//Alvarez P J J, Illman W A. Bioremediation and Natural Attenuation:Process Fundamentals and Mathematical Models. Hoboken, New Jersey:John Wiley & Sons, Inc.,2005:25-48.
    Amonette J E, Workman D J, Kennedy D W, et al. Dechlorination of carbon tetrachloride by Fe(II) associated with goethite[J]. Environmental Science & Technology,2000,34(21):4606-4613.
    Ba Y X, Hu Z Y, Bao P, et al. Ferrous ions accelerate sulfide-induced abiotic dechlorination of DDT in waterlogged paddy soil and in soil solution[J]. Journal of Soils and Sediments, 2011,11(7):1209-1220.
    Bauer M, Blodau C. Mobilization of arsenic by dissolved organic matter from iron oxides, soils and sediments[J]. Science of the Total Environment,2006,354(2-3):179-190.
    Blodau C, Bauer M, Regenspurg S, et al. Electron accepting capacity of dissolved organic matter as determined by reaction with metallic zinc[J]. Chemical Geology,2009,260(3-4):186-195.
    Bolan N S, Baskaran S, Thiagarajan S. An evaluation of the methods of measurement of dissolved organic carbon in soils, manures, sludges, and stream water[J]. Communications in Soil Science & Plant Analysis,1996,27(13-14)2723-2737.
    Bond D R, Lovley D R. Reduction of Fe(III) oxide by methanogens in the presence and absence of extracellular quinones[J]. Environmental Microbiology,2002,4(2):115-124.
    Bossio D A, Scow K M, Gunapala N, et al. Determinants of soil microbial communities:effects of agricultural management, season, and soil type on phospholipid fatty acid profiles[J]. Microbial Ecology,1998,36(1):1-12.
    Bouchard B, Beaudet R, Villemur R, et al. Isolation and characterization of Desulfitobacterium frappieri sp. nov., an anaerobic bacterium which reductive ly dechlorinates pentachlorophenol to 3-chlorophenol[J]. International Journal of Systematic Bacteriology, 1996,46(4):1010-1015.
    Bryant F O, Hale D D, Rogers J E. Regiospecific dechlorination of pentachlorophenol by dichlorophenol-adapted microorganisms in freshwater, anaerobic sediment slurries [J]. Applied and Environmental Microbiology,1991,57(8)2293-2301.
    Brzezinska M, Stepniewska Z, Stepniewski W. Soil oxygen status and dehydrogenase activity[J]. Soil Biology & Biochemistry,1998,30(13):1783-1790.
    Buerge I J, Hug S J. Influence of organic ligands on chromium(VI) reduction by iron(II)[J]. Environmental Science & Technology,1998,32(14)2092-2099.
    Bussan A L, Strathmann T J. Influence of organic ligands on the reduction of polyhalogenated alkanes by Iron(II)[J]. Environmental Science & Technology,2007,41(19):6740-6747.
    Butler E C, Hayes K F. Effects of solution composition and pH on the reductive dechlorination of hexachloroethane by iron sulfide[J]. Environmental Science & Technology, 1998,32(9):1276-1284.
    Cabrera M L, Beare M H. Alkaline Persulfate Oxidation for Determining Total Nitrogen in Microbial Biomass Extracts[J]. Soil Science Society of America Journal,1993,57:1007-1012.
    Ceccanti B, Ding C P. Anaerobic decomposition of green manures in flooded soils in the presence of Cr(VI) IL Charge and size characterization of decaying products and their metal complexes[J]. Agrochimica,1985,29(1):50-65.
    Chacon N, Silver W L, Dubinsky E A, et al. Iron reduction and soil phosphorus solubilization in humid tropical forests soils:The roles of labile carbon pools and an electron shuttle compound[J]. Biogeochemistry,2006,78(1):67-84.
    Chambon J C, Bjerg P L, Scheutz C, et aL. Review of reactive kinetic models describing reductive dechlorination of chlorinated ethenes in soil and groundwater[J]. Biotechnology and Bioengineering,2013,110(1):1-23.
    Chang B V, Yeh L N, Yuan S Y. Effect of a dichlorophenol-adapted consortium on the dechlorination of 2,4,6-trichlorophenol and pentachlorophenol in soil[J], Chemosphere, 1996a,33(2):303-311.
    Chang B V, Zheng J X, Yuan S Y. Effects of alternative electron donors, acceptors and inhibitors on pentachlorophenol dechlorination in soil[J]. Chemosphere,1996b,33(2):313-320.
    Chen M J, Shih K M, Hu M, et al. Biostimulation of indigenous microbial communities for anaerobic transformation of pentachlorophenol in paddy soils of Southern China[J]. Journal of Agricultural and Food Chemistry,2012,60(12):2967-2975.
    Chen Y X, Chen H L, Xu Y T, et al. Irreversible sorption of pentachlorophenol to sediments: Experimental observations [J]. Environment International,2004,30(1):31-37.
    Chen Y, Gat P, Frimmel F H, et al. Metal binding by humic substances and dissolved organic matter derived from compost[M]//Twardowska I, Allen H E, Haggblom M H. Soil and Water Pollution Monitoring, Protection and Remediation. Dordrecht, The Netherlands:Springer, 2006:275-297.
    Chidthaisong A, Rosenstock B, Conrad R. Measurement of monosaccharides and conversion of glucose to acetate in anoxic rice field soil[J]. Applied and Environmental Microbiology, 1999,65(6):2350-2355.
    Coleman M L, Hedrick D B, Lovley D R, et al. Reduction of Fe(III) in sediments by sulphate-reducing bacteria[J]. Nature,1993,361(6411):436-438.
    Cory R M, McKnight D M. Fluorescence spectroscopy reveals ubiquitous presence of oxidized and reduced quinones in dissolved organic matter[J]. Environmental Science & Technology, 2005,39(21):8142-8149.
    Crosby D G, Beynon K I, Greve P A, et aL Environmental chemistry of pentachlorophenol[J]. Pure and Applied Chemistry,1981,53(5):1051-1080.
    Crosby H A, Johnson C M, Roden E E, et al. Coupled Fe(II)-Fe(III) electron and atom exchange as a mechanism for Fe isotope fractionation during dissimilatory iron oxide reduction[J]. Environmental Science & Technology,2005,39(17):6698-6704.
    Crosby H A, Roden E E, Johnson C M, et al. The mechanisms of iron isotope fractionation produced during dissimilatory Fe(III) reduction by Shewanella putrefaciens and Geobacter sutfurreducens[J]. Geobiology,2007,5(2):169-189.
    D'Angelo E M, Reddy K R. Aerobic and anaerobic transformations of pentachlorophenol in wetland soils[J]. Soil Science Society of America Journal,2000,64(3):933-943.
    Elsgaard L, Jφrgensen B B. Anoxic transformations of radiolabeled hydrogen sulfide in marine and freshwater sediments[J]. Geochimica et Cosmochimica Acta,1992,56:2425-2436.
    EPA. Engineered approaches to in situ bioremediation of chlorinated solvents:Fundamentals and field applications[R]. Cincinnati, OH:US Environmental Protection Agency,2000.
    Ferreira J, Raghu K. Decontamination of hexachlorocyclohexane isomers in soil by green manure application[J]. Environmental Technology,1981,2(8)357-364.
    Fredrickson J K, Kota S, Kukkadapu R K, et al. Influence of electron donor/acceptor concentrations on hydrous ferric oxide (HFO) bioreduction[J]. Biodegradation, 2003,14(2):91-103.
    Fredrickson J K, Zachara J M, Kennedy D W, et al. Biogenic iron mineralization accompanying the dissimilatory reduction of hydrous ferric oxide by a groundwater bacterium[J]. Geochimica et Cosmochimica Acta,1998,62(19-20):3239-3257.
    Frostegard A, Baath E. The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil[J]. Biology and Fertility of Soils,1996,22(1-2):59-65.
    Gold B, Blowes D W, Dickhout R, et al. Low molecular weight carboxylic acids in oxidizing porphyry copper tailings[J]. Environmental Science & Technology,2005,39(8) 2515-2521.
    Gotoh S, Patrick W H. Transformation of iron in a waterlogged soil as influenced by redox potential and pH[J]. Soil Science Society of America Journal,1974,38(1):66-71.
    Grandy A S, Erich M S, Porter G A. Suitability of the anthrone-sulfuric acid reagent for determining water soluble carbohydrates in soil water extracts [J]. Soil Biology & Biochemistry,2000,32(5):725-727.
    Grimalt J O, van Drooge B L, Ribes A, et al. Persistent organochlorine compounds in soils and sediments of European high altitude mountain lakes[J]. Chemosphere, 2004,54(10):1549-1561.
    Grossman R B, Millet J L. Carbonate removal from soils by a modification of the acetate buffer method[J]. Soil Science Society of America Journal,1961,25(4):325-326.
    Gunawardana B, Singhal N, Swedlund P. Degradation of chlorinated phenols by zero valent iron and bimetals of iron:A review[J]. Environmental Engineering Research,2012,16(4):187-203.
    Guo M, Chorover J. Transport and fractionation of dissolved organic matter in soil columns[J]. Soil Science,2003,168(2):108-118.
    Guppy C N, Menzies N W, Moody P W, et al. Competitive sorption reactions between phosphorus and organic matter in soil:A review[J]. Australian Journal of Soil Research, 2005,43(2):189-202.
    Hakala J A, Chin Y P, Weber E J. Influence of dissolved organic matter and Fe(II) on the abiotic reduction of pentachloronitrobenzene[J]. Environmental Science & Technology, 2007,41(21):7337-7342.
    Hartley H O. The modified Gauss-Newton method for the fitting of non-linear regression functions by least squares[J]. Technometrics,1961,3(2):269-280.
    Hayat T, Ding N, Ma B, et aL Dissipation of pentachlorophenol in the aerobic-anaerobic interfaces established by the rhizosphere of rice (Oryza sativa L.) root[J]. Journal of Environmental Quality,2011,40(6):1722-1729.
    He J, Qu D. Dissimilatory Fe (III) reduction characteristics of paddy soil extract cultures treated with glucose or fatty acids[J]. Journal of Environmental Sciences-China, 2008,20(9):1103-1108.
    He Q, Huang X, Chen Z L. Influence of organic acids, complexing agents and heavy metals on the bioleaching of iron from kaolin using Fe(Ⅲ)-reducing bacteria[J]. Applied Clay Science, 2011,51(4):478-483.
    He X S, Xi B D, Jiang Y H, et al. Elemental and spectroscopic methods with chemometric analysis for characterizing composition and transformation of dissolved organic matter during chicken manure composting[J]. Environmental Technology,2012,33(17):2033-2039.
    He X S, Xi B D, Wei Z, et al. Spectroscopic characterization of water extractable organic matter during composting of municipal solid waste[J]. Chemosphere,2011,82(4):541-548.
    He Y, Xu J M, Wang H Z, et al. Detailed sorption isotherms of pentachlorophenol on soils and its correlation with soil properties[J]. Environmenta 1 Research,2006,101(3):362-372.
    Heiberg L, Koch C B, Kjaergaard C, et al. Vivianite precipitation and phosphate sorption following iron reduction in anoxic soils[J]. Journal of Environmental Quality, 2012,41(3):938-949.
    Hendriksen H V, Larsen S, Ahring B K. Influence of a supplemental carbon source on anaerobic dechlorination of pentachlorophenol in granular sludge [J]. Applied and Environmental Microbiology,1992,58(1) 365-370.
    Heron G, Crouzet C, Bourg A C M, et al. Speciation of Fe(II) and Fe(III) in contaminated aquifer sediments using chemical extraction techniques [J]. Environmental Science & Technology, 1994,28(9):1698-1705.
    Holliger C, Schraa G. Physiological meaning and potential for application of reductive dechlorination by anaerobic bacteria[J]. FEMS Microbiology Reviews, 1994,15(2-3):297-305.
    Holliger C, Wohlfarth G, Diekert G. Reductive dechlorination in the energy metabolism of anaerobic bacteria[J]. FEMS Microbiology Reviews,1999,22(5):383-398.
    Homann P S, Grigal D F. Molecular weight distribution of soluble organics from laboratory-manipulated surface soils[J]. Soil Science Society of America Journal, 1992,56(4):1305-1310.
    Hopkinson C S, Buffam I, Hobbie J, et al. Terrestrial inputs of organic matter to coastal ecosystems:An intercomparison of chemical characteristics and bioavailability[J]. Biochemistry,1998,43(3):211-234.
    Hsu J H, Lo S L. Chemical and spectroscopic analysis of organic matter transformations during composting of pig manure[J]. Environmental Pollution,1999,104(2):189-196.
    Huang D Y, Zhuang L, Cao W D, et al. Comparison of dissolved organic matter from sewage sludge and sludge compost as electron shuttles for enhancing Fe(III) bioreduction[J]. Journal of Soils and Sediments,2010,10(4):722-729.
    Hunt J F, Ohno T. Characterization of fresh and decomposed dissolved organic matter using excitation-emission matrix fluorescence spectroscopy and multiway analysis[J]. Journal of Agricultural and Food Chemistry,2007,55(6)2121-2128.
    Hyacinthe C, Bonneville S, van Cappellen P. Reactive iron (III) in sediments:Chemical versus microbial extractions [J]. Geochimica et Cosmochimica Acta,2006,70(16):4166-4180.
    Ide A, NIKI Y, SAKAMOTO F, et al. Decomposition of pentachlorophenol in paddy soil[J]. Agricultural and Biological Chemistry,1972,36(11):1937-1944.
    Jackson P E. Ion chromatography in environmental analysis[M]//Meyers R A. Encyclopedia of Analytical Chemistry. Chichester:John Wiley & Sons Ltd.,2006:2779-2801.
    Jaisi D P, Dong H, Liu C. Influence of biogenic Fe(II) on the extent of microbial reduction of Fe(III) in clay minerals nontronite, illite, and chlorite[J]. Geochimica et Cosmochimica Acta, 2007,71(5):1145-1158.
    Jeon B H, Dempsey B A, Burgos W D. Kinetics and mechanisms for reactions of Fe(II) with iron(III) oxides[J]. Environmental Science & Technology,2003,37(15):3309-3315.
    Jugsujinda A, Patrick W H J. Methane and water soluble iron production under controlled soil pH and redox conditions [J]. Communications in Soil Science & Plant Analysis, 1996,27(9-10):2221-2227.
    Kalbitz K, Popp P, Geyer W, et al. (3-HCH mobilization in polluted wetland soils as influenced by dissolved organic matter[J]. Science of the Total Environment,1997,204(1):37-48.
    Kalbitz K, Solinger S, Park J H, et al. Controls on the dynamics of dissolved organic matter in soils:A review[J]. Soil Science,2000,165(4):277-304.
    Kale S P, Raghu K. Fate of14C-nitrofen in soils[J]. Bulletin of Environmental Contamination and Toxicology,1994,53(2):298-302.
    Khodadoust A P, Suidan M T, Acheson C M, et al. Solvent extraction of pentachlorophenol from contaminated soils using water-ethanol mixtures[J]. Chemosphere,1999,38(11)2681-2693.
    Kim Y H, Carraway E R. Dechlorination of chlorinated phenols by zero valent zinc[J]. Environmental Technology,2003,24(12):1455-1463.
    Kim Y H, Carraway E R. Dechlorination of pentachlorophenol by zero valent iron and modified zero valent irons[J]. Environmental Science & Technology,2000,34(10):2014-2017.
    Klausen J, Trober S P, Haderlein S B, et al. Reduction of substituted nitrobenzenes by Fe(II) in aqueous mineral suspensions [J]. Environmental Science & Technology, 1995,29(9):2396-2404.
    Kraemer S M. Iron oxide dissolution and solubility in the presence of siderophores[J]. Aquatic Sciences,2004,66(1):3-18.
    Kumke M U, Specht C H, Brinkmann T, et al. Alkaline hydrolysis of humic substances: Spectroscopic and chromatographic investigations[J]. Chemosphere, 2001,45(6-7):1023-1031.
    Kuwatsuka S, Igarashi M. Degradation of PCP in soils. II. The relationship between the degradation of PCP and the properties of soils, and the identification of the degradation products of PCP[J]. Soil Science and Plant Nutrition,1975,21(4):405-414.
    Larsen S, Hendriksen H V, Ahring B K. Potential for thermophilic (50 degrees C) anaerobic dechlorination of pentachlorophenol in different ecosystems [J]. Applied and Environmental Microbiology,1991,57(7)2085-2090.
    Lawson C, Keats J B, Montgomery D C. Comparison of robust and least-squares regression in computer-generated probability plots[J]. IEEE Transactions on Reliability, 1997,46(1):108-115.
    Lee W, Batchelor B. Abiotic reductive dechlorination of chlorinated ethylenes by iron-bearing soil minerals.1. Pyrite and magnetite [J]. Environmental Science & Technology, 2002,36(23):5147-5154.
    Lee W, Batchelor B. Abiotic reductive dechlorination of chlorinated ethylenes by soil[J]. Chemosphere,2004,55(5):705-713.
    Lehours A C, Rabiet M, Morel-Desrosiers N, et al. Ferric iron reduction by fermentative strain BS2 isolated from an iron-rich anoxic environment (Lake Pavin, France)[J]. Geomicrobiology Journal,2010,27(8):714-722.
    Lguirati A, Baddi G A, El Mousadik A, et al. Analysis of humic acids from aerated and non-aerated urban landfill composts[J]. International Biodeterioration & Biodegradation, 2005,56(1):8-16.
    Li C, Hoffinan M Z. One-electron redox potentials of phenols in aqueous solution[J]. The Journal of Physical Chemistry B,1999,103(32):6653-6656.
    Li F B, Li X M, Zhou S G, et al. Enhanced reductive dechlorination of DDT in an anaerobic system of dissimilatory iron-reducing bacteria and iron oxide[J]. Environmental Pollution, 2010a,158(5):1733-1740.
    Li F B, Wang X G, Li Y T, et al. Enhancement of the reductive transformation of pentachlorophenol by polycarboxylic acids at the iron oxide-water interface[J]. Journal of Colloid and Interface Science,2008a321(2):332-341.
    Li F B, Wang X G, Liu C S, et al. Reductive transformation of pentachlorophenol on the interface of subtropical soil colloids and water[J]. Geoderma,2008b,148(1):70-78.
    Li F B, Zhou S G, Zhuang L, et al. Biogeochemical interactions between Fe(II)/(III) species cycles and transformation of reducible substrates in subtropical soils[M]//Gilkes R J, Prakongkep N. Proceedings of the 19th World Congress of Soil Science, Soil Solutions for a Changing World. Brisbane, Australia:2010b:23-26.
    Li H, Peng J, Weber K A, et al. Phylogenetic diversity of Fe(Ⅲ)-reducing microorganisms in rice paddy soil:Enrichment cultures with different short-chain fatty acids as electron donors[J]. Journal of Soils and Sediments,2011,11(7):1234-1242.
    Li X M, Li Y T, Li F B, et al. Interactively interfacial reaction of iron-reducing bacterium and goethite for reductive dechlorination of chlorinated organic compounds [J]. Chinese Science Bulletin,2009a,54(16):2800-2804.
    Li X M, Zhou S G, Li F B, et al. Fe(III) oxide reduction and carbon tetrachloride dechlorination by a newly isolated Klebsiella pneumoniae strain L17[J]. Journal of Applied Microbiology, 2009b,106(1):130-139.
    Li Z L, Inoue Y, Yang S Y, et al. Mass balance and kinetic analysis of anaerobic microbial dechlorination of pentachlorophenol in a continuous flow column[J]. Journal of Bioscience and Bioengineering,2010c,110(3):326-332.
    Li Z L, Yang S Y, Inoue Y, et al. Complete anaerobic mineralization of pentachlorophenol (PCP) under continuous flow conditions by sequential combination of PCP-dechlorinating and phenol-degrading consortia[J]. Biotechnology and Bioengineering,2010d,107(5):775-785.
    Lin J J, He Y, Xu J M. Changing redox potential by controlling soil moisture and addition of inorganic oxidants to dissipate pentachlorophenol in different soils [J]. Environmental Pollution,2012,170:260-267.
    Lovley D R, Holmes D E, Nevin K P. Dissimilatory Fe(III) and Mn(IV) reduction[J]. Advances in Microbial Physiology,2004,49:219-286.
    Lovley D R, Phillips E J P. Novel mode of microbial energy metabolism organic carbon oxidation coupled to dissimilatory reduction of iron or manganese [J]. Applied and Environmental Microbiology,1988,54(6):1472-1480.
    Lovley D R, Phillips E J P. Organic matter mineralization with reduction of ferric iron in anaerobic sediments[J]. Applied and Environmental Microbiology,1986,51 (4):683-689.
    Lovley D R, Phillips E J P. Rapid assay for microbially reducible ferric iron in aquatic sediments[J]. Applied and Environmental Microbiology,1987,53(7):1536-1540.
    Lovley D R. Microbial reduction of iron, manganese, and other metals[J]. Advances in Agronomy, 1995,54:175-231.
    Lu W, Wang H, Huang C, et al. Communities of iron (III)-reducing bacteria in irrigated tropical rice fields[J]. Microbes and Environments,2002,17(4):170-178.
    Ma H, Allen H E, Yin Y. Characterization of isolated fractions of dissolved organic matter from natural waters and a wastewater effluent[J]. Water Research,2001,35(4):985-996.
    Macalady D L, Walton-Day K. Redox chemistry and natural organic matter (NOM):Geochemists' dream, analytical chemists'nightmare [M]//Tratnyek P G, Grundl T G, Haderlein S B. Aquatic Redox Chemistry. Washington, DC, USA:American Chemical Society, 2011:85-111.
    Madari B E, Reeves III J B, Machado P L O A, et al. Mid-and near-infrared spectroscopic assessment of soil compositional parameters and structural indices in two Ferralsols[J]. Geoderma,2006,136(1-2):245-259.
    Magar V S, Stensel H D, Puhakka J A, et al. Sequential anaerobic dechlorination of pentachlorophenol:Competitive inhibition effects and a kinetic model[J]. Environmental Science & Technology,1999,33(10):1604-1611.
    Matheson L J, Tratnyek P G. Reductive dehalogenation of chlorinated methanes by iron metal[J]. Environmental Science & Technology,1994,28(12):2045-2053.
    Mazur C S, Jones W J, Tebes-Stevens C. H2 consumption during the microbial reductive dehalogenation of chlorinated phenols and tetrachloroethene[J]. Biodegradation, 2003,14(4):285-295.
    McAllister K A, Lee H, Trevors J T. Microbial degradation of pentachlorophenol[J]. Biodegradation,1996,7(1):1-40.
    Meade T, D'Angelo E M. [14C]Pentachlorophenol mineralization in the rice rhizosphere with established oxidized and reduced soil layers[J]. Chemosphere,2005,61(1):48-55.
    Mikesell M D, Boyd S A. Complete reductive dechlorination and mineralization of pentachlorophenol by anaerobic microorganisms [J]. Applied and Environmental Microbiology,1986,52(4):861-865.
    Mikesell M D, Boyd S A. Enhancement of pentachlorophenol degradation in soil through induced anaerobiosis and bioaugmentation with anaerobic sewage sludge[J]. Environmental Science & Technology,1988,22(12):1411-1414.
    Minkevic I G, Eroshin V K. Productivity and heat generation of fermentation under oxygen limitation[J]. Folia Microbiologica,1973,18(5)376-385.
    Mitra J, Raghu K. Influence of green manuring on the persistence of DDT in soil[J]. Environmental Technology,1988,9(8):847-852.
    Mohn W W, Kennedy K J. Reductive dehalogenation of chlorophenols by Desulfomonile tiedjei DCB-1[J]. Applied and Environmental Microbiology,1992,58(4):1367-1370.
    Montgomery H A C, Dymock J F, Thom N S. The rapid colorimetric determination of organic acids and their salts in sewage-sludge liquor[J]. Analyst,1962,87(1041):949-955.
    Motulsky H J, Brown R E. Detecting outliers when fitting data with nonlinear regression-a new method based on robust nonlinear regression and the false discovery rate[J]. BMC Bioinformatics,2006,7(123).
    Nicholson D K, Woods S L, Istok J D, et al. Reductive dechlorination of chlorophenols by a pentachlorophenol-acclimated methanogenic consortium[J]. Applied and Environmental Microbiology,1992,58(7) 2280-2286.
    Ohno T, Crannell B S. Green and animal manure-derived dissolved organic matter effects on phosphorus sorption[J]. Journal of Environmental Quality,1996,25(5):1137-1143.
    Patel U, Suresh S. Dechlorination of chlorophenols by magnesium-silver bimetallic system[J]. Journal of Colloid and Interface Science,2006,299(1):249-259.
    Peuravuori J, Pihlaja K. Characterization of freshwater humic matter[M]//Nollet L M L. Handbook of Water Analysis.2nd ed. Boca Raton, USA:CRC Press,2007:435-448.
    Porsch K, Kappler A. Fe11 oxidation by molecular O2 during HC1 extraction[J]. Environmental Chemistry,2011,8(2):190-197.
    Roden E E, Lovley D R. Evaluation of 55Fe as a tracer of Fe(III) reduction in aquatic sediments[J]. Geomicrobiology Journal,1993,11(1):49-56.
    Roden E E, Urrutia M M. Ferrous iron removal promotes microbial reduction of crystalline iron(III) oxides[J]. Environmental Science & Technology,1999,33(11):1847-1853.
    Roden E E, Urrutia M M. Influence of biogenic Fe(II) on bacterial crystalline Fe(Ⅲ) oxide reduction[J]. Geomicrobiology Journal,2002,19(2)209-251.
    Roden E E, Wetzel R G. Kinetics of microbial Fe(Ⅲ) oxide reduction in freshwater wetland sediments[J]. Limnology and Oceanography,2002,47(1):198-211.
    Roden E E, Zachara J M. Microbial reduction of crystalline iron(Ⅲ) oxides:Influence of oxide surface area and potential for cell growth[J]. Environmental Science & Technology, 1996,30(5):1618-1628.
    Roden E E. Geochemical and microbiological controls on dissimilatory iron reduction[J]. Comptes Rendus Geoscience,2006,338(6-7):456-467.
    Rousk J, Brookes P C, Glanville H C, et al. Lack of correlation between turnover of low-molecular-weight dissolved organic carbon and differences in microbial community composition or growth across a soil pH gradient[J]. Applied and Environmental Microbiology,2011,77(8)2791-2795.
    Royer R A, Burgos W D, Fisher A S, et al. Enhancement of biological reduction of hematite by electron shuttling and Fe(II) complexation[J]. Environmental Science & Technology, 2002,36(9):1939-1946.
    Said-Pullicino D, Gigliotti G. Oxidative biodegradation of dissolved organic matter during composting[J]. Chemosphere,2007,68(6):1030-1040.
    Schmidt S K, Simkins S, Alexander M. Models for the kinetics of biodegradation of organic compounds not supporting growth[J]. Applied and Environmental Microbiology, 1985,50(2):323-331.
    Scott D T, McKnight D M, Blunt-Harris E L, et al. Quinone moieties act as electron acceptors in the reduction of humic substances by humics-reducing microorganisms [J]. Environmental Science & Technology,1998,32(19)2984-2989.
    Seech A G, Trevors J T, Bulman T L. Biodegradation of pentachlorophenol in soil:The response to physical, chemical, and biological treatments[J]. Canadian Journal of Microbiology, 1991,37(6):440-444.
    Shannon R D, White J R. The selectivity of a sequential extraction procedure for the determination of iron oxyhydroxides andiron sulfides in lake sediments[J]. Biogeochemistry, 1991,14(3):193-208.
    Shao H B, Butler E C. The relative importance of abiotic and biotic transformation of carbon tetrachloride in anaerobic soils and sediments[J]. Soil & Sediment Contamination, 2009,18(4):455-469.
    Shao Z H, He P J, Zhang D Q, et al. Characterization of water-extractable organic matter during the biostabilization of municipal solid waste[J]. Journal of Hazardous Materials, 2009,164(2-3):1191-1197.
    Simkins S, Alexander M. Models for mineralization kinetics with the variables of substrate concentration and population density[J]. Applied and Environmental Microbiology, 1984,47(6):1299-1306.
    Smidt E, Eckhardt K U, Lechner P, et al. Characterization of different decomposition stages of biowaste using FT-IR spectroscopy and pyrolysis-field ionization mass spectrometry[J]. Biodegradation,2005,16(1):67-79.
    Speight J G. Lange's Handbook of Chemistry[M]. Sixteenth ed. New York:McGraw-Hill,2005.
    Stone A T. Microbial metabolites and the reductive dissolution of manganese oxides:Oxalate and pyruvate[J]. Geochimica et Cosmochimica Acta,1987,51(4):919-925.
    Strathmann T J, Stone A T. Reduction of oxamyl and related pesticides by Fe11:Influence of organic ligands and natural organic matter[J]. Environmental Science & Technology, 2002,36(23):5172-5183.
    Strathmann T J. Redox reactivity of organically complexed iron(II) species with aquatic contaminants[M]//Tratnyek P G, Grundl T G, Haderlein S B. Aquatic Redox Chemistry. Washington, DC, USA:American Chemical Society,2011283-313.
    Stumm W, Sulzberger B. The cycling of iron in natural environments:Considerations based on laboratory studies of heterogeneous redox processes[J]. Geochimica et Cosmochimica Acta, 1992,56(8):3233-3257.
    Stumm W. The inner-sphere surface complex:A key to understanding surface reactivity[M]//Huang C P, O'Melia C R, Morgan J J. Aquatic Chemistry.1995:1-32.
    Susarla S, Yonezawa Y, Masunaga S. Transformation kinetics and pathways of chlorophenols and hexachlorobenzene in fresh water lake sediment under anaerobic conditions [J]. Environmenta 1 Technology,1997,18(9):903-911.
    Suter D, Banwart S, Stumm W. Dissolution of hydrous iron(Ⅲ) oxides by reductive mechanisms [J]. Langmuir,1991,7(4):809-813.
    Swarup A. Effect of presubmergence and green manuring (Sesbania aculeata) on nutrition and yield of wetland rice (Oryza sativa L.) on a sodic soil[J]. Biology and Fertility of Soils, 1987,5(3) 203-208.
    Takai Y, Kamura T. The mechanism of reduction in waterlogged paddy soil[J]. Folia Microbiologica,1966,11(4)304-313.
    Tas D O, Pavlostathis S G. The influence of iron reduction on the reductive biotransformation of pentachloronitrobenzene[J]. European Journal of Soil Biology,2007,43(5-6)264-275.
    Tobiszewski M, Namiesnik J. Abiotic degradation of chlorinated ethanes and ethenes in water[J]. Environmental Science and Pollution Research,2012,19(6):1994-2006.
    Torres-Alvarado R, Ramirez-Vives F, Fernandez F J, et al. Methanogenesis and methane oxidation in wetlands. Implications in the global carbon cycle[J]. Hidrobioldgica, 2005,15(3):327-349.
    Tsoularis A, Wallace J. Analysis of logistic growth models[J]. Mathematical Biosciences, 2002,179(1)21-55.
    Urrutia M M, Roden E E, Fredrickson J K, et al. Microbial and surface chemistry controls on reduction of synthetic Fe(III) oxide minerals by the dissimilatory iron-reducing bacterium Shewanella alga[J]. Geomicrobiology Journal,1998,15(4)269-291.
    Urrutia M M, Roden E E, Zachara J M. Influence of aqueous and solid-phase Fe(II) complexants on microbial reduction of crystalline iron(III) oxides[J]. Environmental Science & Technology,1999,33(22):4022-4028.
    USDA-NRCS. Soil texture calculator [EB/OL]. http://www.soils.usda.gov/technical/aids/ investigations/texture/index.html.
    Uyguner-Demirel C S, Bekbolet M. Significance of analytical parameters for the understanding of natural organic matter in relation to photocatalytic oxidation[J]. Chemosphere, 2011,84(8):1009-1031.
    Vallino J J, Hopkinson C S, Hobbie J E. Modeling bacterial utilization of dissolved organic matter: Optimization replaces Monod growth kinetics [J]. Limnology and Oceanography, 1996,41(8):1591-1609.
    van Beelen P, Fleuren-Kemila A K. Influence of pH on the toxic effects of zinc, cadmium, and pentachlorophenol on pure cultures of soil microorganisms[J]. Environmental Toxicology and Chemistry,1997,16(2):146-153.
    van Bodegom P M, van Reeven J, Denier H A C, et al. Prediction of reducible soil iron content from iron extraction data[J]. Biogeochemistry,2003,64(2):231-245.
    van Hees P A W, Jones D L, Finlay R, et al. The carbon we do not see—the impact of low molecular weight compounds on carbon dynamics and respiration in forest soils:A review[J]. Soil Biology & Biochemistry,2005,37(1):1-13.
    Vogel T M, Criddle C S, McCarty P L. Transformations of halogenated aliphatic compounds [J]. Environmental Science & Technology,1987,21(8):722-736.
    Wallmann K, Hennies K, Konig I, et al. New procedure for determining reactive Fe(III) and Fe(Ⅱ) minerals in sediments[J]. Limnology and Oceanography,1993,38(8):1803-1812.
    Wang X, Li Y, Dong D. Sorption of pentachlorophenol on surficial sediments:The roles of metal oxides and organic materials with co-existed copper present[J]. Chemosphere, 2008,73(1):1-6.
    Wang Z S, Liu D S, Zhang S M. A unified model for the degradation kinetics of pesticides applied continually to soils[J]. Pedosphere,1997,7(1):9-14.
    Weiss J V, Emerson D, Megonigal J P. Geochemical control of microbial Fe(III) reduction potential in wetlands:comparison of the rhizosphere to non-rhizosphere soil[J]. FEMS Microbiology Ecology,2004,48(1):89-100.
    Weiss U M, Scheunert I, Klein W, et al. Fate of pentachlorophenol-14C in soil under controlled conditions[J]. Journal of Agricultural and Food Chemistry,1982,30(6):1191-1194.
    Wen Q X, Yu T R. Effect of green manure on physicochemical properties of irrigated rice soils[M]//Sustainable Agriculture:Green Manure in Rice Farming. Los Banos, Philippines: International Rice Research Institute,1988:275-287.
    Wershaw R L. Evaluation of conceptual models of natural organic matter (humus) from a consideration of the chemical and biochemical processes of humification[EB/OL]. http://pubs.usgs.gov/sir/2004/5121/pdf/sir2004-5121.pdf.
    Westcott M P, Mikkelsen D S. Effect of green manure on rice soil fertility in the United States[M]//Sustainable Agriculture:Green Manure in Rice Fanning. Los Banos, Philippines: International Rice Research Institute,1988:257-274.
    Willett I R, Higgins M L. Phosphate sorption by reduced and reoxidized rice soils [J]. Australian Journal of Soil Research,1978,16(3) 319-326.
    Williams A G B, Scherer M M. Spectroscopic evidence for Fe(Ⅱ)-Fe(Ⅲ) electron transfer at the iron oxide-water interface[J]. Environmental Science & Technology,2004,38(18):4782-4790.
    Williams A G. Organic-acids, biochemical oxygen-demand and chemical oxygen-demand in the soluble fraction of piggery slurry[J]. Journal of the Science of Food and Agriculture, 1983,34(3):212-220.
    Wu C Y, Zhuang L, Zhou S G, et al. Fe(Ⅲ)-enhanced anaerobic transformation of 2,4-dichlorophenoxyacetic acid by an iron-reducing bacterium Comamonas koreensis CY01[J]. FEMS Microbiology Ecology,2010,71(1):106-113.
    Wu Y P, Ding N, Wang G, et al. Effects of different soil weights, storage times and extraction methods on soil phospholipid fatty acid analyses [J]. Geoderma,2009,150(1):171-178.
    Xie S C, Yang H, Luo G M, et al. Geomicrobial functional groups:A window on the interaction between life and environments[J]. Chinese Science Bulletin,2012,57(1):2-19.
    Xing M Y, Li X W, Yang J, et al. Changes in the chemical characteristics of water-extracted organic matter from vermicomposting of sewage sludge and cow dung[J]. Journal of Hazardous Materials,2012,205:24-31.
    Yao H, Conrad R, Wassmann R, et al. Effect of soil characteristics on sequential reduction and methane production in sixteen rice paddy soils from China, the Philippines, and Italy[J]. Biogeochemistry,1999,47(3):269-295.
    Yoshida N, Yoshida Y, Handa Y, et al. Polyphasic characterization of a PCP-to-phenol dechlorinating microbial community enriched from paddy soil[J]. Science of the Total Environment,2007,381(1-3):233-242.
    Yu T R. Use of organic matter/manure on upland acid soils in China [M]//Craswell E T, Pushparajah E. Management of Acid Soils in the Humid Tropics of Asia. Silverwater, Australia:Rodenprint Pty Ltd,1989:44-51.
    Yuan Y, Zhou S, Yuan T, et al. Molecular weight-dependent electron transfer capacities of dissolved organic matter derived from sewage sludge compost[J]. Journal of Soils and Sediments,2013,13(1):56-63.
    Zhang C F, Katayama A. Humin as an electron mediator for microbial reductive dehalogenation[J]. Environmental Science & Technology,2012,46(12):6575-6583.
    Zhang C L L, Li Y L, Ye Q, et al. Carbon isotope signatures of fatty acids in Geobacter metallireducens and Shewanella algae[J]. Chemical Geology,2003,195(1-4):17-28.
    Zheng W, Yu H, Wang X, et al. Systematic review of pentachlorophenol occurrence in the environment and in humans in China:Not a negligible health risk due to the re-emergence of schistosomiasis[J]. Environment International,2012,42:105-116.
    曹卫东.恢复发展绿肥生产光大传统农业精华[N].农民日报,2010-04-05(07).
    曹卫东.绿肥在现代农业发展中的探索与实践[M].北京:中国农业科学技术出版社,2011.
    陈宜菲,陈少瑾,吴双桃,等.零价金属对土壤中五氯苯酚的脱氯研究[J].山东化工,2006,35(4):5-7.
    刁桂仪,吴大清,袁鹏.华南土壤对五氯苯酚吸附的行为及其控制因素研究[J].生态环境,2005,14(5):640-644.
    丁昌璞.低分子量有机还原性物质与土壤的相互作用Ⅰ.低分子量有机还原性物质的化学性质[J].土壤学报,2010,47(3):451-457.
    丁昌璞.低分子量有机还原性物质与土壤的相互作用Ⅱ.低分子量有机还原性物质与土壤作用的化学反应[J].土壤学报,2011,48(5):957-963.
    丁昌璞.伏安法的测定条件和应用[J].土壤,1992(5):270-274.
    黄昌勇,徐建明.土壤学[M].第三版.北京:中国农业出版社,2010.
    兰善红,武秀文,蓝惠霞.pH冲击对降解五氯酚(PCP)微氧颗粒污泥产气及代谢能力的影响[J].环境科学学报,2012,32(3):595-599.
    李俊,谢丽,盛杰,等.Fe(Ⅱ)/铁氧化物表面结合铁系统还原有机污染物的研究进展[J].地球科学进展,2009,24(1):25-32.
    林静,杨万勤,张健,等.四川丘陵平原区代表性植物的农药残留特征[J].中国农业科学,2008,41(12):4100-4108.
    刘爱国,花日茂.农药降解的非线性动力学模型研究[J].安徽农业大学学报,2002,29(3):311-315.
    刘翠英,余贵芬,蒋新,等.土壤和沉积物中多氯代有机化合物厌氧降解研究进展[J].生态学报,2007,27(8):3482-3488.
    鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000.
    马瑾,周永章,张天彬,等.珠三角典型区域土壤有机氯农药(OCPs)多元统计分析——以佛山市顺德区为例[J].土壤,2008,40(6):954-959.
    马骁轩,冉勇,珠江三角洲土壤中的有机氯农药的分布特征[J].生态环境学报,2009,18(1):134-137.
    沈东升,徐向阳,冯孝善.微生物共代谢在氯代有机物生物降解中的作用[J].环境科学,1994,15(4):84-87,96.
    孙儒泳,李庆芬,牛翠娟,等.基础生态学[M].北京:高等教育出版社,2002.
    孙文杰,刘勇弟.生物共代谢动力学模型[J].郑州大学学报(工学版),2003,24(2):108-112.
    陶亮,周顺桂,李芳柏.土壤有机氯脱氯转化的界面交互反应[J].化学进展,2009,21(4):791-800.
    万忠梅,宋长春,杨桂生,等.三江平原湿地土壤活性有机碳组分特征及其与土壤酶活性的关系[J].环境科学学报,2009,29(2):406-412.
    王诗生,王芳,蒋新.五氯酚在土壤生态系统中的环境行为研究进展[J].生态学报,2010,30(7):1894-1902.
    王小明,杨凯光,孙世发,等.水铁矿的结构、组成及环境地球化学行为[J].地学前缘,2011,18(2):339-347.
    王旭刚,李芳柏,刘承帅,等.土壤有机氯农药还原转化过程与机制[M]//钟继洪,李芳柏,李淑仪,等.珠江三角洲土壤质量演变及其调控.广州:广东科技出版社,2012:186-229.
    王旭刚,孙丽蓉.五氯酚的污染现状及其转化研究进展[J].环境科学与技术,2009,32(8):93-100.
    王增辉,王蕴波,窦森,等.农药降解方程y=ae-kt参数估计的一种方法[J].环境科学学报,1998,18(4):101-103.
    徐向阳,冯孝善.五氯酚(PCP)污染土壤厌氧生物修复技术的初步研究[J].应用生态学报,2001,12(3):439-442.
    徐向阳,祁华宝,王其于.厌氧颗粒污泥还原脱氯与降解五氯酚(PCP)的研究[J].浙江大学学报(农业与生命科学版),2001,27(2):29-34.
    许伟,胡佩,李艳红,等.微生物铁呼吸机制研究进展[J].生态学杂志,2008,27(6):1037-1042.
    许伟,胡佩,周顺桂,等.水溶性有机物的电子穿梭功能研究[J].环境科学,2009,30(8):2297-2301.
    薛毅,杨中华.求解非线性最小二乘问题的实用型方法[J].数值计算与计算机应用,2000(3):208-215.
    杨柳燕,马文漪.环境微生物工程[M].南京:南京大学出版社,1998.
    臧荣春,夏凤毅.微生物动力学模型[M].北京:化学工业出版社,2004.
    张黎,谭贵良,堵国成,等.五氯苯酚厌氧生物降解及降解体系中细菌种群结构分析[J].微生物学通报,2008,35(8):1203-1208.
    张庆国,徐丽.关于农药消解模型参数拟合优化算法的研究[J].生物数学学报,1998,13(1):84-87.
    章海波,骆永明,滕应,等.珠江三角洲地区典型类型土壤中DDT残留及其潜在风险[J].土壤,2006,38(5):547-551.
    中国科学院南京土壤研究所微生物室.土壤微生物研究法[M].北京:科学出版社,1985.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700