用户名: 密码: 验证码:
河北省平山县石质山区主要造林树种耗水特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水分是河北省平山县石质山区植被恢复的限制性因子。因此,研究并掌握该区主要造林树种蒸腾耗水特性,具有极其重要的意义。本研究采用热扩散式液流探针(TDP)配合气象站的方法,对河北省平山县主要造林树种黄连木(Pistacia chinensis)、刺槐(Robinia pseudoacacia)、山杏(Prunus sibirica)、雪花梨(Pyrus bretschneideri Rehd.)、山桃(Prunus davidiana)、酸枣(Zizyphus jujuba)、荆条(Vitex negundo var. heterophylla)的树干液流进行了连续监测,从树干液流变化特征,及其与环境因子和土壤含水量的关系三个角度,分析比较它们的耗水特征,以期为该区造林树种的选择及配置提供科学依据。研究结果表明:
     (1)在的4个连续典型晴天条件下,黄连木树干液流日变化呈现“宽峰”型,于6:10~6:40启动,8:40~12:00达到峰值,21:20~次日1:10进入低谷;刺槐呈现“双峰”型,于6:10~6:50启动,15:40~16:00达到峰值,21:20~23:50进入低谷;山杏、雪花梨树干液流变化呈现“单峰”型,山杏于5:50~6:10启动,9:50~10:40或17:00~17:10达到峰值,次日1:40~2:20进入低谷;雪花梨于6:10~6:50启动,14:20:15:40达到峰峰值,次日3:30~4:40进入低谷;山桃呈现“双峰”型,山桃于6:40~7:10启动,9:50~13:00达到高峰,22:40~23:20进入低谷;灌木树种酸枣、荆条的树干液流变化呈现“单峰”型,且具有波动性,酸枣于6:20~7:20启动,15:00~16:20达到峰值,19:50~21:10进入低谷。荆条于6:00~6:40启动,11:00~13:50到达峰值,20:40~23:10进入低谷。各树种相比,树干液流峰值速度大小顺序为:雪花梨>山桃>山杏>黄连木>刺槐>酸枣>荆条,日平均液流速度大小顺序为:雪花梨>山桃>山杏>荆条>酸枣>黄连木>刺槐。各树种耗水量的日变化与各自液流速度日变化基本一致,各自耗水高峰期及所占比例分别为黄连木:8:00~17:00,75.11%;刺槐:8:00~19:00,84.43%;山桃:9:00~17:00,77.69%;雪花梨:10:00~17:00,63.20%;山杏:8:00~18:00,77.87%。酸枣:于8:00~18:00,89.98%;荆条:8:00~17:00,91.80%。各树种的日均耗水量依次为:黄连木:13.33L,刺槐:2.06L,山杏:12.20L,雪花梨22.60L,山桃11.88L,酸枣0.54L,荆条0.61L。大小顺序为:雪花梨>黄连木>山杏>山桃>刺槐>荆条>酸枣。
     (2)不同天气条件下,各树种树干液流日变化不同。晴天和阴天均呈现出明显的“几”字型,但阴天较晴天时具有“窄峰”雨天的树干液流变化随树种不同而不同。雨天时,黄连木的液流全天都很小,呈现直线状,刺槐略显“双峰”,灌木树种酸枣荆条则呈现呈现明显的“双峰”。而经济林乔木树种山杏、雪花梨、山桃呈现“单峰”。就液流日进程时间而言,各树种均表现出晴天比阴天液流启动早,进入低谷晚,而达到峰值时间没有明显规律,而雨天变化不规律。就液流峰值大小顺序而言,各树种均为晴天>阴天>雨天;就日均液流速度和耗水量大小顺序而言,乔木树种表现为晴天>阴天>雨天,且差异明显;酸枣和荆条表现为晴天>阴天>雨天,但其阴天和雨天相差不大。
     (3)黄连木5月份呈“单峰”型,6、7、8月份表现为“宽峰”型,而9、10月份则呈现“双峰”型;刺槐各月份均呈现“双峰”型;山杏除6月份呈现“双峰”外,其他月份都呈现“单峰”型;雪花梨和山桃各月呈现“单峰”型。酸枣5、10月份呈现“双峰”,波动性较大, 6~9月份呈现“单峰”,波动性较小;荆条5、9、10月份呈现“双峰”,波动性较大,6~8月份呈现“单峰”,波动性较小。就液流日进程时间而言,各树种液流启动均表现出“晚-早-晚”的趋势,其中6月份液流启动最早。
     各树种各月耗水量变化趋势有所差异,除黄连木与荆条表现为“高-低-高-低”趋势,其余树种均表现为“低-高-低”的趋势。黄连木耗水主要集中于5、7~9月份,占全年耗水量的73.09%;刺槐则集中于7~9月份,占55.24%。山杏集中于4~7月份,占77.41%;雪花梨集中于4~6月份,占51.48%;山桃集中于4~6月份,占60.52%。酸枣集中于5、7、8月份,占59.59%;荆条集中于7~9月份,占全年耗水量的60.56%。
     (4)相关分析结果表明,在晴天和阴天条件下,影响各树种树干液流的环境因子主要是太阳辐射、大气温度、空气湿度。而雨天时,影响各树种的各环境因子有所不同,对于黄连木、刺槐、酸枣、荆条,影响其树干液流的主要因子为大气温度、空气相对湿度、土壤温度和土壤含水量,而山杏、雪花梨、山桃为太阳辐射、大气温度、空气湿度和土壤温度。整个生长季中,影响各树种树干液流的环境因子主要是太阳辐射、大气温度、空气相对湿度,其他环境因子对树干液流的影响作用一般较小,但也有例外。
     (5)采用人工供水的方法,分别对雪花梨进行1.5倍(W_1)、1.0倍(W_2)、0.5倍(W_3)、0倍(W_4)降水量灌水处理和干旱(W_5)的处理,形成一定的土壤含水量梯度,研究土壤含水量对树干液流的影响作用。结果表明,0倍灌水处理与干旱处理后期,树干液流呈现“双峰”,除此之外各处理树干液流均呈现“单峰”,各处理液流速度大小顺序为W_1>W_2>W_3>W_4>W_5。经过相关分析,各处理树干液流与土壤含水量的相关系数分别为W_1:0.183;W_2:0.041;W_3:0.008;W_4:0.032;W_5:0.0324,除W_1外均达到显著水平,大小顺序为W_3>W_2>W_4>W_5>W_1。
     (6)通过对刺槐、酸枣、荆条边材解剖构造的观察,结合其液流速度,表明三者水分输导的有效性、安全性和抗旱性大小均为:刺槐>荆条>酸枣。相对输导效率与脆性指数比值大小为:荆条>酸枣>刺槐,而平均液流速度大小数序为荆条>酸枣>刺槐,二者变化趋势相同,说明树木的耗水速率取决于相对输导率与脆性指数的比值,取决于二者的综合表现。
     (7)本研究以环境因子作自变量,以各树种液流速度为因变量,经过逐步回归,建立了48个多元线性模型,回归方程均显著,调整R~2均达到0.8以上。经验证,除酸枣5、10月份和荆条的5、9月份外,各回归模型误差率均低于10%,均有实用价值。从入选变量来看,在模拟的48个模型中,大气温度全部入选;土壤含水量43次,空气相对湿度42次,太阳辐射40次,土壤温度39次;风速入选次数最小,仅有10次。各环境因子对各树种各月份树干液流的影响的普遍性大小为:大气温度>土壤含水量>空气相对湿度>太阳辐射>土壤温度>风速。
Water is alimiting factor for revegegation in gneiss rocky mountainous area of Pingshan county, Hebei. Therefore, it is very meaningful to study and master the water consumption by transpiration of the main planting tree species in the area. In this research, from three angles: the variation of sap flow, its correlation to environmental factors and to soil water content, to sdudy water-consumption Characteristics of the main planting tree species Pistacia chinensis, Robinia pseudoacacia, Prunus sibirica, Pyrus bretschneideri Rehd., Prunus davidiana., Zizyphus jujuba, Vitex negundo var. heterophylla, stem sap flow and the related environmental factors of them was continuously detected with the thermal dissipation probe (TDP) and automatic weather station in the rocky mountainous area of Pingshan county, Hebei. All of these conclusions will provide the scientific basic for the main planting tree species’selection and arrangement. The results showed that:
     (1)In four continuous typical sunny days,concerning Pistacia chinensis, the diurnal variation of sap flow veloeity showed as a broad-peaked curve; the stem sap flow started from 6:10 to 6:40, ascended to the peak from 8:40 to 12:00 and fell into the trough from 21:20 to 1:10 the next day. Concerning Robinia pseudoacacia, the diurnal variation of sap flow veloeity showed as a double-peaked curve; the stem sap flow started from 6:10 to 6:50, ascended to the peak from 15:40 to 16:00 and fell into the trough from 21:20 to 23:50. Concerning Prunus sibirica and Pyrus bretschneideri Rehd., the diurnal variations of sap flow veloeity showed as a single-peaked curve; the stem sap flow of Prunus sibirica started from 5:50 to 6:10, ascended to the peak from 9:50 to 10:40 or from 17:00 to 17:10 and fell into the trough from 1:40 the next day to 2:20 the next da; the stem sap flow of Pyrus bretschneideri Rehd. started from 6:10 to 6:50, ascended to the peak from 14:20 to 15:40 and fell into the trough from 3:30 the next day to 4:40 the next day. Concerning Prunus davidiana., the diurnal variation of sap flow veloeity showed as a double-peaked curve; the stem sap flow started from 6:40 to 7:10, ascended to the peak from 9:50 to 13:00 and fell into the trough from 22:40 to 23:20. Concerning Prunus sibirica and Pyrus bretschneideri Rehd., the diurnal variations of sap flow veloeity showed as a single-peaked curve with fluctuations.the stem sap flow of Zizyphus jujuba started from 6:20 to 7:20, ascended to the peak from 15:00 to 16:20 and fell into the trough from 19:50 to 21:10; the stem sap flow of Vitex negundo var. heterophylla started from 6:00 to 6:40, ascended to the peak from 11:00 to 13:50 and fell into the trough from 20:40 to 23:10. Comparing all of them, the order of the peak of sap flow velocity was: Pyrus bretschneideri Rehd.>Prunus davidiana.>Prunus sibirica>Pistacia chinensis>Robinia pseudoacacia>Zizyphus jujuba>Vitex negundo var. heterophylla; the order of the average of sap flow velocity was: Pyrus bretschneideri Rehd.>Prunus davidiana.>Prunus sibirica> >Vitex negundo var. heterophylla>Zizyphus jujuba. Pistacia chinensis>Robinia pseudoacaciaThe diurnal variations of water consumption of all tree species were similar to that of sap flow veloeity. The peak time of water consumption and percentage was respectively: Pistacia chinensis:8:00~17:00,75.11%;Robinia pseudoacacia:8:00~19:00,84.43%;Prunus davidiana.:9:00~17:00,77.69%;Pyrus bretschneideri Rehd.:10:00~17:00,63.20%;Prunus sibirica:8:00~18:00,77.87%。Zizyphus jujuba:8:00~18:00,89.98%;Vitex negundo var. heterophylla:8:00~17:00,91.80%. the average of daily water consumption was respectively: Pistacia chinensis:13.33L,Robinia pseudoacacia:2.06L,Prunus sibirica:12.20L,Pyrus bretschneideri Rehd.: 22.60L,Prunus davidiana.: 11.88L,Zizyphus jujuba: 0.54L,Vitex negundo var. heterophylla: 0.61L. The order was: Pyrus bretschneideri Rehd.>Pistacia chinensis>Prunus sibirica>Prunus davidiana.>Robinia pseudoacacia>Vitex negundo var. heterophylla>Zizyphus jujuba.
     (2) In different weather types, the diurnal variations of sap flow veloeity of all tree species were different. In sunny days and cloudy days, they showed significantly as“n”.Howerer, In cloudy days they showed as narrower peak than that in sunny days. In rainy days, the sap flow veloeity of Pistacia chinensis was always low in the whole day, and showed as a line. The diurnal variations of the sap flow veloeity of Robinia pseudoacacia showed as a double-peaked curve. The diurnal variations of the sap flow veloeity of Zizyphus jujuba,Vitex negundo var. heterophylla showed significantly as a double-peaked curve. The diurnal variations of the sap flow veloeity of Prunus sibirica, Pyrus bretschneideri Rehd., Prunus davidiana.showed significantly as a single-peaked curve. As far as the time of diurnal variations of the sap flow veloeity was concerned, the sap flow of all all tree species started erlier and fell into the trough later in sunny days than in cloudy days. But in rainny days the variations were not regular. The orders of the peak of sap flow velocity were all: sunny days>cloudy days > rainy days. The orders of the average of sap flow velocity ang the average of daily water consumption of arbors were significantly: sunny days>cloudy days > rainy days. That of Zizyphus jujuba and Vitex negundo var. heterophyllawas was sunny days> rainy days >cloudy days; but the average of sap flow velocity and the average of daily water consumption in cloudy days were similar to that in rainy days.
     (3) The variation of sap flow veloeity of Pistacia chinensis as a single-peaked curve in May; as a broad-peaked curve in June, July and August, as a double-peaked curve in September and October. The variation of sap flow veloeity of Robinia pseudoacacia as a double-peaked curve in all months. The variation of sap flow veloeity of Prunus sibirica as a single-peaked curve in all months except June for a double-peaked curve. The variation of sap flow veloeity of Zizyphus jujuba as a double-peaked curve in May and October with low fluctuation, and as a single-peaked curve from June to September with high fluctuation. The variation of sap flow veloeity of Vitex negundo var. heterophylla as a double-peaked curve in May, September, October with low fluctuation, and as a single-peaked curve from June to August with high fluctuation. As far as the time of diurnal variations of the sap flow veloeity was concerned, the sap flow-Starting time of all tree species were“late-early-late”in all months, and that was earliest in June.
     The water consumptions of all tree species in each month were different. Those of all tree species showed as a“low-high-low”trend, except for Pistacia chinensis for a“hingh-low-high-low”trend. The water consumption of Pistacia chinensis was mainly in May, and from July to September, accounting for 73.09% of total water consumption in the year. The water consumption of Robinia pseudoacacia was mainly in from July to September, accounting for 55.24%. The water consumption of Prunus sibirica was mainly in from April to July, accounting for 77.41%. The water consumption of Pyrus bretschneideri Rehd. was mainly in from April to June, accounting for 51.48%. The water consumption of Prunus davidiana. was mainly in from April to June, accounting for 60.52%. The water consumption of Zizyphus jujuba was mainly in in May, July and August, accounting for 59.59%. The water consumption of Vitex negundo var. heterophylla was mainly in from July to September, accounting for 60.56%
     (4) Correlation analysis showed that,in sunny days and cloudy days, the main factors of affeeting the stem sap flow of trunks of all tree species were sun radiation, air temperature and air relative humidity. But in rainny days, the main factors of affeeting the stem sap flow of each tree species were different. For Pistacia chinensis, Robinia pseudoacacia, Zizyphus jujuba, Vitex negundo var. heterophylla,the main factors of affeeting the stem sap flow were air temperature, air relative humidity, soil moisture and soil temperature. ForPrunus sibirica, Pyrus bretschneideri Rehd., Prunus davidiana., those were sun radiation, air temperature, air relative humidity and soil temperature. During the growing season, the main factors of affeeting the stem sap flow of trunks of all tree species were sun radiation, air temperature and air relative humidity. The influence of left environmental factors on the sap flow is generally small, but there are exceptions.
     (5) Pyrus bretschneideri Rehd. were treated by supporting1.5, 1.0, 0.5,0 times of precipitation and being made drought , formed soill water steps, to study the the influence of soil moisture on the stem sap flow. The result was that:, the diurnal variation of sap flow veloeity of all treatments showed as a single-peaked curve, except for 0 times of precipitation and drought treatmen with a double-peaked curve in the late. The order of the average of sap flow velocity was: W_1>W_2>W_3>W_4>W_5. Correlation analysis showed that: the correlation coefficient between sap flow velocity and soil moisture under each treanment was respectively: W_1:0.183;W_2:0.041;W_3:0.008; W_4:0.032;W_5:0.0324, and all were significant except W_1. The order was: W_3>W_2>W_4>W_5>W_1.
     (6)Combined with the sap flow velocity of Robinia pseudoacacia, Zizyphus jujuba, Vitex negundo var. heterophylla, the observation of’s anatomical structure, indicated that the order of the efficacy, safety and drought resistance of their water system was: Robinia pseudoacacia > Vitex negundo var. heterophylla > Zizyphus jujuba. The order relative conductivity and vulnerability index was: Vitex negundo var. heterophylla > Zizyphus jujuba > Robinia pseudoacacia. While the order of the average of sap flow velocity was: Vitex negundo var. heterophylla > Zizyphus jujuba > Robinia pseudoacacia. Trends of them are similar. That indicated that water consumption rates of trees were determined by the ratio of relative conductivity and vulnerability index, namely their comprehensive presentation.
     (7)Taking environmental factors as independent variables and the sap flow velocity as dependent variable, forty eight amultiple linears equationwas were established by stepwise regression, and the regressions were all significant, the adjusted R~2 were all greater than 0.8. By inspection, the error rate of all amultiple linears was less than 10%, and had applieation value, except May, October of Zizyphus jujuba and May, September of Vitex negundo var. heterophylla. As far as selected independent variables were concerned, in forty eight amultiple linears equationwas, air temperature had been selected forty eight times, soil moisture forty three times, air relative humidity forty two times, sun radiation forty times, soil temperature thirty nine times, wind speed only ten times. The order of the universality for the influence of environmental factors on the sap flow was: air temperature> soil moisture> air relative humidity> sun radiation> soil temperature> wind speed.
引文
[1]潘瑞炽.植物生理学(第四版)[M].北京:高等教育出版社, 2001,8-22.
    [2] Kozlowski TT, Pallardy SG. Physiology of woody plants [M].US: Academic Press.1996, 270-286.
    [3]王孟本,李洪建,柴宝峰,等.树种蒸腾作用、光合作用和蒸腾效率的比较研究[J].植物生态学报, 1999,23(5):401-410.
    [4]马玲,赵平,饶兴权,等.乔木蒸腾作用的主要测定方法[J].生态学杂志, 2005,24(1):88-96.
    [5]刘奉觉,郑世锴,巨关升.树木蒸腾耗水测算技术的比较研究[J].林业科学, 1997,33(2):117-1261;
    [6]魏天兴,朱金兆,张学培.林分蒸散耗水量测定方法述评[J].北京林业大学学报, 1999,21(3):87-91.
    [7]王华田,马履一.利用热扩式边材液流探针(TDP)测定树木整株蒸腾耗水量的研究[J].植物生态学报, 2002,26(6):661-667.
    [8]李海涛,陈灵芝.应用热脉冲技术对棘皮桦和五角枫树干液流的研究[J].北京林业大学学报, 1998,20(1):1-6.
    [9] Cermak J, Deml M, Perka M.A new method of sap flow rate determination in trees.Biologia Plantrum.1973,15:171-178.
    [10] Granier A.Evaluation of transpiration in a Douglas fir stand by means of sap flow measurements.Tree Physiology.1987, 7:309-320.
    [11] Granier A,Huc R,Barigah S T.Transpiration of natural rain forest and its dependence on climatic factors.Agricultural and Forest Meteorology. 1996,78:19-29.
    [12] WilliamL B, Thomas H W, Clifford R P. A laser2diode2based system for measuring sap flow by the heat2pulse method.Agricultural and Forest Meteorology.2002, 110:275-284.
    [13]尹光彩,周国逸,王旭,等.应用热脉冲系统对桉树人工林树液流通量的研究[J].生态学报, 2003,23(10):1984-1990.
    [14]张小由,龚家栋,周茂先,等.应用热脉冲技术对胡杨和柽柳树干液流的研究[J].冰川冻土, 2003,25(5):585-590.
    [15]孙鹏森.京北水源保护林格局及不同尺度树种蒸腾耗水特性研究[D].北京林业大学博士学位论文,2000.
    [16]熊伟.六盘山北侧主要造林树种耗水特性研究.[D].中国林业科学研究院森林生态环境与保护研究所博士学位论文,2003.
    [17]王华田,赵文飞,马履一.侧柏树干边材液流的空间变化规律及其相关因子[J].林业科学,2006, 42(7): 21-27.
    [18]张小由,龚家栋,周茅先,等.胡杨树干液流的时空变异性研究[J].中国沙漠.,2004, 24(4): 498-492.
    [19]申李华,张志强,刘晨峰,等.沙地杨树人工林树干液流特征[J].中国水土保持科学,2007,5(1): 88-92.
    [20]马玲,赵平,饶兴权,等.马占相思树干液流特征及其与环境因子的关系[J].生态学报, 2005, 25(9): 2145-2151.
    [21]王华田,马履一,孙鹏森.油松、侧柏深秋边材木质部液流变化规律的研究[J].林业科学,2002,38(5): 31-37.
    [22]马履一,王华田.油松边材液流时空变化及其影响因子研究[J].北京林业大学学报.2002,24(3): 23-27.
    [23] EdwardsW R N, R E Booker. Radialvariation in the ax-ial conductivity of Populus and its significance in heatpulse velocity measurement [J]. Journal ofExperimental Botany.1984,33,153: 551-561.
    [24]刘奉觉, EdwardsW R N.杨树树干液流时空动态研究[J].林业科学研究,1993,6(4): 368-372.
    [25]熊伟,王彦辉,徐德应.宁南山区华北落叶松人工林蒸腾耗水规律及其对环境因子的响应[J].林业科学,2003, 39(2): 1-7.
    [26]孙慧珍,李夷平,王翠,等.不同木材结构树干液流对比研究[J].生态学杂志, 2005,24(12):1434-1439.
    [27] WullschlegerSD, MeinzerF C, VertessyR A. A review of whole- plant water use studies in trees [J]. Tree Physiology. 1998, 18(8/9): 499-512.
    [28] Hinckley TM. Broks JR, Cerm ak J, et a1.Water flux in a hybrid poplar stand [J]. Tree Physiology. 1994, 14:1005-1018.
    [29]孙慧珍,周晓峰,康绍忠.应用热技术研究树干液流进展[J].应用生态学报,2004,15(6): 1074-1078.
    [30] SakurataniT, BrentEC, Steven RG. Measurement of sap flow in the roots, trunk and shoots of an apple tree using heatpulse and heat balance methods [J]. JAgricMeteo-ro.1997, 53(2): 141-145.
    [31] Zimmermann M H. Xylem structure and the Ascent of Sap [D]. Springer-Verlg, Berlin.1983.
    [32]孙慧珍,周晓峰,赵惠勋.白桦树干液流的动态研究[J].生态学报,2002, 22(9): 1387-1391.
    [33]焦树仁.章古台固沙林生态系统的结构与功能[M].沈阳:辽宁科学技术出版社, 1989.
    [34]王孟本,李洪建.黄土高原人工林水分生态研究[M].北京:中国林业出版社, 2001. 1.
    [35] Martin T A. Winter season tree sap flow and stand transpiration in an intensively managed loblolly and slash pine plantation [J].J Sustainable For.2000, 10:155-163.
    [36]谢华,沈荣开.用茎流计研究冬小麦茎蒸腾规律[J].灌溉排水学报, 2001,20(1):5-9.
    [37]虞沐奎,姜志林,鲁小珍,等.火炬松树干液流的研究[J].南京林业大学学报:自然科学版, 2003,27(3):7-10.
    [38]曹文强,韩海荣,马钦彦,等.山西太岳山辽东栎夏季树干液流通量研究[J].林业科学, 2004,40(2):174-177.
    [39]孙鹏森,马履一,王小平,等.油松树干液流的时空变异性研究[J].北京林业大学学报, 2000,22(5):1-6.
    [40]孙慧珍,孙龙,王传宽,等.东北东部山区主要树种树干液流研究[J].林业科学,2005,41(3):36-42.
    [41] Dugas W A. Sap flow measurements of transpiration from cotton grown under ambient and enriched CO2 concentrations.Agricultural and ForestMeteorology.1994, 70: 231-245.
    [42]马履一,王华田,林平.北京地区几个造林树种耗水性比较研究[J].北京林业大学学报, 2003,25(2):2-7.
    [43]郭小平.晋西黄土区集雨补灌果园耗水特征及补灌效应研究(D).北京:北京林业大学,2006.
    [44]叶冰.北京延庆小叶杨与刺槐林的蒸腾耗水特性与水量平衡研究[D].北京:中国林业科学研究院,2007.
    [45]马玲,赵平,饶兴权,等.马占相思树干液流特征及其与环境因子的关系[J].生态学报,2005,25(9) :2145- 2151.
    [46]高照全,李天红,张显川.苹果冠层蒸腾作用动态模拟[J].果树学报,2009(6):19-24.
    [47]陈慧新.北京山区主要树种光合蒸腾与耗水特征研究[D].北京:北京林业大学,2008.
    [48]樊敏.北京常用3种观赏乔木耗水特性研究[D].北京:北京林业大学,2007.
    [49]冯永建.六盘山北侧叠叠沟流域华北落叶松人工林蒸腾特性研究[D].河北保定:河北农业大学,2010.
    [50]张文娟,张志强,李湛东,等.城市森林建设四种乔木树种蒸腾耗水特征[J].生态学报,2009,29(11):5942~5952.
    [51]陈立欣,张志强,李湛东,等.大连4种城市绿化乔木树种夜间液流活动特征[J].植物生态学报,2010,34(5):535–546.
    [52] Kramer P J. W ater Relationsof Plants[M] . Acade m ic Press, Inc. 1983. 2.
    [53]王宇.北京生态涵养带主要树种基于树干液流的耗水规律研究[D].北京:北京林业大学,2010.
    [54]于红博,杨劼,臧春鑫,等.皇甫川流域中国沙棘树干液流日变化及其相关因子[J].生态学杂志,2008, 27(7):1071-1076.
    [55]夏桂敏,康绍忠,李王成,等.甘肃石羊河流域干旱荒漠区柠条树干液流的日季变化[J].生态学报,2006,26(4):1186-1193.
    [56]奚如春.油松侧柏元宝枫蒸腾耗水的空穴栓塞和水容调节机制[D].北京:北京林业大学,2006.
    [57]王瑞辉.北京主要园林树种耗水性及节水灌溉制度研究[D].北京:北京林业大学,2006.
    [58]王鹤松,张劲松,孟平,等.华北石质山区杜仲人工林蒸腾特征及水分供求关系[J].林业科学研究,2008, 21(4): 475-480.
    [59]王玉涛,李吉跃,胡东燕,等.4常见绿化树种绦柳(Salixmatsudanacv.‘Pendula’)耗水特性[J].生态学杂志,2008,27(12):2087-2093.
    [60]徐军亮,章异平.春季侧柏树干边材液流的滞后效应分析[J].水土保持研究,2009,16(4):109~112.
    [61]樊敏,马履一,王瑞辉.刺槐春夏季树干液流变化规律[J].林业科学,2008,44(1):41~45.
    [62]王瑞辉.北京主要园林树种耗水性及节水灌溉制度研究[D].北京:北京林业大学,2006.
    [63]王瑞辉,马履一,奚如春,等.北京7种园林植物及典型配置绿地用水量测算[J].林业科学,2008,44(10):63~68.
    [64]高照全,邹养军,王小伟,等.植物水分运转影响因子的研究进展[J].干旱地区农业研究,2004,22(2):200-204.
    [65]吉春容,邹陈,李新建,等.核桃树干液流特征及其与气象因子的关系[J].干旱区研究,2010,27(4):616-620.
    [66]史梅娟,郑怀舟,王健,等.3种优势树种深秋树干液流特征与环境因子的关系[J].福建师范大学学报(自然科学版),2010,26(3):57~61.
    [67]王华,欧阳志云,郑华,等.北京城区常见树种生长季树干液流的时滞特征[J].应用生态学报,2009,20(9): 2111-2117.
    [68] Kume T, Komatsu H, Kuraji K,et al. Less than 20-min time lags between transpiration and stem sapflow inemergent trees in a Bornean tropical rainforest.Agricul-tural andForestMeteorology, 2008,148: 1181-1189.
    [69]徐军亮,章异平.春季侧柏树干边材液流的滞后效应分析[J].水土保持研究,2009,16(4):109~112.
    [70]王宇.北京生态涵养带主要树种基于树干液流的耗水规律研究[D].北京:北京林业大学,2010.
    [71]刘春鹏,翟明普,马长明,等.华北石质山区4种乡土树种耗水特征[J].东北林业大学学报,2010.38(7):29-32,63.
    [72]赵仲辉,康文星,田大伦,等.湖南会同杉木液流变化及其与环境因子的关系,林业科学,2009,45(7):127-132.
    [73] Walter H, Box EO. The desert of centralAsia//West NE, ed. Ecosystems of theWorld, Volume 5: Temperate Deserts and Semi-deserts. Amsterdam: Elsevier, 1983.
    [74]龚道枝,王金平,康绍忠,等.不同水分状况下桃树根茎液流变化规律研究[J].农业工程学报,2001,17(4):34-38.
    [75]解婷婷,张希明,梁少民,等.不同灌溉量对塔克拉玛干沙漠腹地梭梭水分生理特性的影响[J].应用生态学报,2008,19(4):711-716.
    [76]张志亮,张富仓,郑彩霞,等.不同水氮条件下桃树幼苗茎干液流变化规律研究[J].节水灌溉,2009,2:1-4.
    [77]刘硕,贺康宁.不同土壤水分条件下山杏的蒸腾特性与影响因子[J].中国水土保持科学,2006.4(6):66-70.
    [78] Zimmermann MH, 1983. Xylem Structure and Ascent of Sap [M].Berlin: Springer-Verlag, 39—62, 1983; Carlquist S, 1988. Comparative Wood Anatomy [M]. Berlin: Springer-Verlag, 41-81.
    [79] FahnA, Werker E, Baas P, 1986. Wood Anatomy and Identification of Trees and Shrubs from Israel and Adjacent Regions [M]. Jerus alem: Israeli Academy of Science.
    [80] Carlquist S, 1988. Comparative Wood Anatomy [M]. Berlin: Springer-Verlag, 41-81.
    [81]王连春,翟明普,刘道平,等.酸枣树干液流速率与环境因子的关系[J].北京林业大学学报,2009,31(6):134-138.
    [82]刘敏.青海黄土高寒区主要生态树种耗水特性研究[D].北京:北京林业大学, 2009.
    [83]孙慧珍,赵雨森.水曲柳和樟子松树干液流对不同天气的响应[J].东北林业大学学报,2008,36(1):1-3
    [84]徐先英,孙保平,丁国栋,等.干旱荒漠区典型固沙灌木液流动态变化及其对环境因子的响应[J].生态学报,2008,28(3):895-905.
    [85]金红喜,徐先英,唐进年,等.花棒液流变化规律及其对环境因子的响应[J].西北植物学报,2006,26(2):0354-0361.
    [86]陈仁升,康尔泗,赵文智,等.中国西北干旱区树木蒸腾对气象因子的响应.生态学报, 2004, 24(3): 477-486.
    [87]冯永建,,马长明,,王彦辉,等.华北落叶松人工林蒸腾特征及其与土壤水势的关系[J].中国水土保持科学,2010,8(1): 93-98.
    [88]王丹,骆建霞,史燕山,等.两种地被植物解剖结构与抗旱性关系的研究[J].天津农学院学报,12(2):15-17,15.
    [89]房凯.植物导管输送水的实验室检测方法研究[J].绵阳师范学院学报,2003,22(2):56-60.
    [90] SALLEO S, ROSSO R, LoGULLOM A. Hydraulic architecture of Vitis vinifera L. and Populus deltoidsBartr. 1-year old twigs. II. The nodal regions as“constriction zones”of the xylem system[J].Ibid, 1982, 116: 29-40
    [91]李吉跃,翟红波.木本植物水力结构与抗旱性[J].应用生态学报,2000,11(2):301-305.
    [92]刘晓燕,李吉跃,翟洪波,朱国彬.从树木水力结构特征探讨植物耐旱性[J].北京林业大学学报,2003,25(3):48-54.
    [93]郑国琦,赵猛,,张磊,等.灌水量对枸杞根茎次生木质部结构和组成的影响[J].西北植物学报,2010,30(11):2170-2176.
    [94] BASS P.New perspectives in wood anatomy[M].Nijhoff,Junk.The Hague,1982:252-263.
    [95]林金星,林金安.导管及其在植物水分运输中的作用[A].见:林金安主编.植物科学综论[M].哈尔滨:东北林业大学出版社,1993:125-137.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700