用户名: 密码: 验证码:
晋西黄土区主要水土保持树种耗水特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对黄土高原干旱半干旱区植被重建过程中的植被耗水问题和水资源利用状况,为探讨黄土高原主要水土保持树种耗水特性及抗旱能力,本文采用TDP热扩散探针技术及计算大气蒸发力的半经验公式,分析了2009-2012年黄土高原大气蒸发力及主要水土保持树种刺槐(Robinia pseudoacacia)、油松(Pinus tabulaeformis)、山杨(Populus davidiana)和辽东栎(Quercus liaotungensis)树干液流速率的年、季、月及日变化规律,进一步分析了不同水土保持树种树干液流速率变化规律之间的异同及其分别与大气蒸发力变化规律的异同;分析了大气蒸发力和各水土保持树种树干液流速率的相关关系,得到不同树种不同季节树干液流速率和大气蒸发力的关系模型;计算了各水土保持林的年和季耗水量,并与林地的潜在蒸发力和降雨量对比分析,得出不同林地的差异及各季节缺水的严重程度。主要研究成果如下:
     1.在春末、夏季和初秋,落叶乔木树种刺槐、山杨、辽东栎树干液流速率日平均值动态变化规律及连日变化规律均与大气蒸发力相一致,常绿乔木树种油松连日变化规律均与大气蒸发力相一致,在春季、夏季和秋季,油松树干液流速率日平均值动态变化规律与大气蒸发力一致;各树种树干液流速率在不同季节表现出不同的大小关系,在初春和秋末,四个树种较为接近:春末、夏季和初秋,刺槐最大;冬季,油松最大。
     2.大气蒸发力及刺槐、山杨和辽东栎树干液流速率在春季、夏季和秋季的阴雨天呈明显下降趋势,在冬季,晴天和阴雨天差距不大;油松树干液流速率在四个季节均表现为晴天波动剧烈,日平均值较大,阴雨天气波动平缓,日平均值较小。
     3.在春末、夏季和初秋的典型晴天,刺槐、油松、山杨、辽东栎的树干液流速率均于7:00-10:00左右开始快速上升,于10:00-13:00左右到达峰值,在峰值持续较长时间(有时出现午休现象),于18:00-23:00左右降到谷底;在存在一定太阳辐射的阵雨天,刺槐、油松、山杨、辽东栎的树干液流速率目变化曲线开始上升时间和到达峰值时间均滞后于晴天1-2h左右,降到谷底的时间提前于晴天3-4h左右;在太阳辐射强度接近零的阴雨天气,四个树种树干液流速率连日变化不存在明显昼夜变化规律:在春末、夏季和初秋,四个树种夜间均存在一定的树干液流速率,在夜间树干液流持续稳定在显著低于白天的水平。在秋末、冬季和初春典型晴天,各树种树干液流速率日变化曲线表现为存在多个小波峰的不规则曲线,四个树种夜间均存在一定的树干液流速率,且树干液流稳定相对较高的水平。
     4.2009-2012年,四个树种树干液流速率月平均值年内分布基本一致,均于6月份到达峰值,在峰值处表现为:刺槐>山杨>油松>辽东栎,年内波动幅度顺序为刺槐>山杨>辽东栎>油松;大气蒸发力及四个树种树干液流速率季均值均表现为夏季最大冬季最小,春季和秋季均值较为接近。四个树种树干液流速率与大气蒸发力存在一定的相关关系,且两者在夏季表现为正相关,相关性最显著;在冬季表现为负相关,相关性最弱。
     5.2009-2012年,试验地四个季节的潜在蒸发量大小关系表现为:夏季>春季>秋季>冬季;四个季节降雨量大小关系表现为:夏季>春季>秋季>冬季;潜在蒸发量在四个季节均大于降雨量,夏季潜在蒸发量和降雨量差距最小,冬季次之,春季潜在蒸发量和降雨量差距最大,由此可知,春季是晋西黄土区缺水最为严重的季节。各水土保持树种的年蒸腾耗水最大小关系为:刺槐>汕松>辽东栎>山杨,其中刺槐和油松年耗水量较为接近,山杨和辽东栎年耗水量较为接近,刺槐和油松年耗水量明显大于山杨和辽东栎。
Amiming at water consumption of trees construction and the using of water resources, for the purpose of investigating the ability of drought tolerance and water use efficiency of the trees planted in the Loess Plateau to adapt to arid environments, daily and seasonal changes of potential atmospheric evaporation in Loess Plateau and the sap flow velocity of4kinds of trees species for soil protecting in Semi-arid Area were studied by using the method of Thermal Dissipation Probe and semi-empirical formula from2009to2012. The water consumption of four stand in all seasons were estimated, and the correlation analysis between the Potential Atmospheric Evaporation and the sap flow velocity of4kinds of trees species were researched respectively, and based on which, the prediction model of the potential atmospheric evaporation and Sap flow velocity were created. The main results are as follows:
     1. The dynamic changes in the daily average of the sap flow velocity of Robinia pseudoacacia, Populus davidiana and Quercus liaotungensis are all the same as the dynamic changes of Potential Atmospheric Evaporation, and the diurnal variations of the sap flow velocity of them are also the same as one of Potential Atmospheric Evaporation, and the dynamic change of the sap flow velocity of Finus tabulaeformis is the same as one of Potential Atmospheric Evaporation in last spring, summer and early fall. However, the changes are different from the one of Potential Atmospheric Evaporation in other times. The dynamic change in the daily average of the sap flow velocity of Pinus tabulaeformis is all the same as the dynamic change of Potential Atmospheric Evaporation in spring, summer and fall, but winter. The sap flow velocity of Robinia pseudoacacia is the greatest among four trees in the last spring, summer and early fall, and the value, wave frequency and fluctuation range of the sap flow velocity of Pinus tabulaeformis are the greatest among four trees in winter.
     2. The values of the Potential Atmospheric Evaporation and the sap flow velocity of Robinia pseudoacacia, Populus davidiana and Quercus liaotungensis in sunny day are respectively higher than them in rainy day in spring, summer and fall, but winter. The value, the wave frequency and fluctuation range of the sap flow velocity of Pinus tabulaefonrmis in sunny day are the greater than them in rainy day in the whole year.
     3. In last spring, summer and early fall sunny days, the sap flow velocity of four trees increase rapidly from7:00to10:00, and reach a peak and stable on that value from10:00to13:00and sometimes midday depression phenomenon may be appeared, then it goes down, and stable on the bottom value from18:00to13:00. In last spring, summer and early fall shower days, the time when the sap flow velocity of four trees increase rapidly and reach peak all delay for1~2hours than sunny days. In last spring, summer and early fall days nearly without solar radiation, the diurnal variations of the sap flow velocity of four trees have no obvious day and night variations. There is a certain sap flow velocity in night and stable at a relatively low level for four trees in last spring, summer and early fall days. In last fall, winter and early spring sunny days, the diurnal variations of the sap flow velocity of four trees characterize by irregular curve and there is a certain sap (low velocity in night and stable at a relatively high level.
     4. The distribution of the monthly average value of the sap flow velocity of four trees during the year are basically the same from2009to2012, and all peak in June. The peak of the sap flow velocity of four trees from big to small was Robinia pseudoacacia, Populus davidiana, Pinus tahulaeformis and Ouercus liaotungensis, and fluctuating margin of the sap flow velocity of four trees from big to small was Robinia pseudoacacia, Populus davidiana,Quercus liaotungensis and Pinus tabulaeformis. The season average value of potential atmospheric evaporation and the sap flow velocity of four trees all show that:the mean value is the largest in summer, and least in winter, and the mean value in spring is more close to autumn, respectively. The most significant correlation between the sap flow velocity of four trees and the potential atmospheric evaporation have appeared in summer, and the worst in winter.and negative correlation between the sap flow velocity of four trees and the potential atmospheric evaporation have appeared in winter.
     5. The potential evaporation capacity are greater than precipitation in the whole year in the testing, respectively, and concludes that water shortage phenomenon exist all over years in the Loess Plateau. The gap between the potential evaporation capacity and the precipitation all show that:the largest in spring, and least in summer. And we can conclude that spring is the season when water shortage is most severe in the Loess Plateau.The transpiration water consumption of four trees is less than the potential evaporation capacity and the precipitation in the whole year in the testing. The transpiration water consumption of four trees from big to small was Robinia pseudoacacia, Firms tabulaeformis, Quercus liaotungensis and Populus davidiana, and the transpiration water consumption of Robinia pseudoacacia and Pinus tabulaeformis is obviously more than Quercus liaotungensis and Populus davidiana.
引文
[1]曹云,黄志刚,欧阳志云,等.南方红壤区杜仲树干液流动态[J].生态学报,2006,26(9):2887-2892
    [2]邓东周,范志平,王红,等.林木蒸腾作用测定和估算方法[J].生态学杂志,2008,27(6):1051-1058
    [3]董楠,吕新,侯振安,等.基于彭曼公式的膜下滴灌棉田灌水量研究[J].新疆农业科,2012,49(4):617-624
    [4]董仁,隋福祥,张树辉.应用彭曼公式计算作物需水量[J].黑龙江水专学报,200,33(2):100-101
    [5]董学军.九中沙生灌木水分参数的实验测定及生态意义[J].植物学报,1998,40(7):657-664.
    [6]付晓刚,周亚红,毕攀,等.基于彭曼公式的作物灌溉需水量确定方法研究[J].人民黄河,2009,31(5):85-87
    [7]付学功,董晓丽.彭曼公式在河北平原的应用[J].河北水利科技,1995,16(2):8-12
    [8]高尚武主编.治沙造林学[M].北京:中国林业出版社,1984.
    [9]高岩,张汝民,刘静.应用热脉冲技术对小美旱杨树干液流的研究[J].西北植物学报,2001,21(4)644-649
    [10]谷忠厚,田有亮,郭连生.大青山油松人工林树干液流动态及其蒸腾耗水规律研究[J].林业资源管理,2006,(6):57-61.
    [11]关卓今.蒸腾作用可能还存在一个重要意义[J].阴山学刊,1999,15(1):29-32
    [12]胡莽.以资源合理利用为核心的干旱半干旱地区林业生态工程建设技术对策[J].林业资源管理,2002,(4):48-52
    [13]胡振华,王电龙,呼起跃.陕西省雁北地区沙地樟子松和油松生长及蒸腾特性对比研究[J].水土保持研究,2008,15(1):69-72
    [14]黄德卫,张德强,周国逸,等.鼎湖山针阔叶混交林优势种树干液流特征及其与环境因子的关系[J].应用生态学报,2012,23(5):1159-1166
    [15]简琪洁.树干液流与树干呼吸关系[J].绿色科技,2011,(8):104-106
    [16]蒋文伟,郭运雪,杨淑贞,等.天目山柳杉树干液流动态及其与环境因子的关系[J].江西农业大学学报2011,33(5):0899-0905
    [17]蒋文伟,杨广远,赵明水,等.天目山柳杉树干液流的昼夜及季节变化[J].南京林业大学学报(自然科学版),2012,36(5):77-80
    [18]康绍忠.干旱半干旱地区大气蒸发力的计算方法[J].干旱地区农业研究,1985,(2):41-48
    [19]李海涛,陈灵芝.应用热脉冲技术对棘皮桦和五角枫树干液流的研究[J].北京林业大学学报,1998,20(1):1-6
    [20]李吉跃.太行山区主要造林树种耐旱特性的研究[D].北京北京林业大学,1990
    [21]李炜,司建华,苗政.林分耗水的尺度扩展研究进展[J].生态学杂志,201231(3):714-723
    [22]李有为.红山水库水而蒸发量气候学计算[J].内蒙古水利,1994,(1):40-43
    [23]刘德良.油松树干边材液流空间变化规律[J].东北林业大学学报,2008,36(5):15-18
    [24]刘奉觉.杨树叶片离体前后蒸腾速率的变化[J].植物生理学通讯1990(1): 57-59.
    [25]刘奉觉,郑世锴,巨关升,等.树木蒸腾耗水测算技术的比较研究[J].林业科学,1997, 33(2):117-125.
    [26]刘光祖.沙荒区造林树种选择与造林技术试验总结[C].甘肃治沙研究所案刊,1987(2):23-28.
    [27]刘国文.杨树人工林蒸腾耗水特性及其与环境因子关系的研究[D].河北:河北农业大学,2007
    [28]刘敏,贺康宁,于洋.青海云杉树干液流研究[J]..水土保持应用技术,2009,(1):1-4
    [29]刘明国,唐敬超,王玉涛,等.辽西地区油松树干液流变化规律及影响因子研究[J].沈阳农业大学学报,2011,42(2):175-179
    [30]刘文国,刘玲2,张旭东,等.杨树人工林树干液流特性及其与影响因子关系的研究[J].水土保
    [31]刘锳心.沙坡头流动沙丘固沙植物引种栽培三十五奶奶[J].中国沙漠,1997,11(70:24-31.持学报,2010,24(2):96-101
    [32]鲁小珍.马尾松、栓皮栎生长盛期树干液流的研究[J].安徽农业大学学报,2001,28(4):401-404
    [33]马李一,孙鹏森,马履一.油松、刺槐单木与林分水平耗水量的尺度转换[J].比京林业大学报,2001,23(4):1-5.
    [34]马玲,赵平,饶兴权.乔木蒸腾作用的主要测定方法[J].生态学杂志,2005,24(1):88-96
    [26]满荣洲,董世仁,郭景唐.华北油松人工林蒸腾的研究[J].北京林业大学学报,1986,8(2):1-7.
    [35]莫顿.可能蒸发与地区蒸发间的互补关系[J].干旱区地理,1987,10(2):62-68
    [36]穆天民,邹纬.兴安落叶松森林蒸腾的初步研究[J].东北林学院报,1982,(2):21-30
    [37]聂立水,李吉跃.应用TDP技术研究油松树干液流流速[J].北京林业大学学报,2004,26(6):49-56
    [38]牛丽,岳广阳,赵哈林,等.利用液流法估算樟子松和小叶锦鸡儿人工林蒸腾耗水[J].北京林业大学学报,2008,30(6):1-8
    [39]司建华,冯起,张小山,等.植物蒸散耗水量测定方法研究进展[J].水科学进展, 2005, 16(3):450-459.
    [40]隋旭红.晋西黄土区主要树种蒸腾特性研究[D].北京北京林业大学,2010.
    [41]孙慧珍,周晓峰,赵惠勋.白桦树干液流的动态研究[J].生态学报,2002, 22(9): 1387-1391.
    [42]孙慧珍.东北东部山区主要树种树干液流动态及环境因子关系[D].哈尔滨:东比林业大学,2002
    [43]孙慧珍,周晓峰,康绍忠.应用热技术研究树干液流进展[J].应用生态学报,2004,15(6):1074-1078
    [44]孙慧珍,周晓峰,康绍忠.叶斑病对白桦树干液流的影响[J].西北植物学报,2004,24(5):837-842
    [45]孙静,阮木清,蒋任飞.宁夏引黄灌区参考作物蒸发蒸腾量及其气候影响因子的研究[J].灌溉排水学报,2006,25(1):54-61
    [46]孙龙.东北东部山区主要林型树木边材液流通量研究[D].哈尔滨:东北林业大学,2006
    [47]单鱼洋,张新民.陈丽娟.彭曼公式在参考作物需水量中的应用[J].安徽农业科学.2008.36(10):4196-4197
    [48]田凤霞,赵传燕,冯兆东.祁连山区青海云杉林蒸腾耗水估算[J].生态学报,2011,31(9):2383-2391.
    [49]田璐洋.大叶女贞茎直径变化与树干液流速率变化关系的研究[D].河北:河北农业大学,2011
    [50]王翠,王传宽,孙慧珍,等.移栽自不同纬度的兴安落叶松的树干液流特征[J].生态学报,2008,28(1):136-144
    [51]王华,欧阳志云,郑华,等.紫玉兰树干液流对北京市综合环境变量的响应[J].应用生态学报,2011,22(3):57]-576
    [52]王华田,邢黎峰,马履一,等.栓皮栎水源林林木耗水尺度扩展方法研究[J].林业科学,2004,40(6):170-175
    [53]王容.博斯腾湖水面蒸发量计算方法比较与验证[J].干旱区地理,1993,16(2):90-93
    [54]王瑞辉,马履一,李丽萍,等.元宝枫树干液流的时空变异性研究[J].北京林业大学学报,2006,28(2):12-18
    [55]王沙生,高荣孚,吴贯明.植物生理学.第2版.北京:中国林业出版社,1991:192.
    [56]王文栋,张毓涛,芦建江,等.新疆乌拉泊库区3种灌木树干液流对比研究[J].2012,49(11):2035-2041
    [57]王颖.林木蒸腾耗水研究综述[J].河北林果研究,2007,22(1):39-43
    [58]王颖,余瑞卿,李湛东,等.城市片林中常见树种的蒸腾耗水特性研究综述[J].内蒙古农业大学学报,2005,26(2):115-119
    [59]王宇.北京生态涵养带主要树种基于树干液流的耗水规律研究[D].北京北京林业大学,2010
    [60]魏天兴,朱金兆,张学培.林分蒸散耗水量测定方法述评[J].北京林业大学学报,1999,(3):85-91.
    [61]吴国辉,刘福娟.植物的蒸腾作用分析[J].农机化研究,2004,(5):287
    [62]吴永波,薛建军.岷江流域冷杉树树干液流的动态变化规律[J].南京林业大学学报(自然科学版),2005,29(6):61-64
    [63]夏桂敏,康绍忠,李王成,等.甘肃石羊河流域干旱荒漠区柠条树干液流的日季变化[J].生态学报,2006,26(4):1186-1193
    [64]肖以华,陈步峰,陈嘉杰,等.马占相思树干液流的研究[J].林业科学研究,2005,,18(3):331-335
    [65]熊伟,王彦辉,于澎涛,等.六盘山辽东栎、少脉椴天然次生林夏季蒸散研究[J].应用生态学报,2005,]6(9):1628-1632
    [66]徐飞,杨风亭,王辉民,等.树干液流径向分布格局研究进展[J].植物生态学报,2012,36(9):1004-1014
    [67]徐佳佳.晋西黄土区主要水土保持树种光合和蒸腾特性研究[D].北京北京林业大学,2012.
    [68]严荣昌,Alec Downey,韩兴国,等.北京山区落叶阔叶林中核桃楸在生长中期的树干液流研究[J].生态学报,1999,19(6):794-797
    [69]杨瑞,肖卫平,喻理飞.喀斯特区不透光生境中云南鼠刺树干液流研究[J].中国水土保持科学,2011,9(4):94-97
    [70]杨维西.讨论我国北方地区人工植被的土壤干化问题[J].林业科学,1996,32(1):78-85
    [71]杨新兵.华北土石山区典型人工林优势树种及群落耗水规律研究[D].北京北京林业大学,2007
    [72]殷秀辉.油松树干液流动态研究[D].陕西:西北农林科技大学2010
    [73]于贵瑞,王秋风,等.植物光合、蒸腾、与水分利用的生理生态学[M].北京:科学出版社,2009.
    [74]于文颖,迟道才,何奇瑾,等.芦苇群落日蒸发量变化规律及计算方法[J].中国农村水利水电,2007,(7):17-21
    [75]于占辉,陈云明,杜盛.黄土高原半干早区人工林刺槐展叶期树干液流动态分析[J].林业科学,2009,,45(4):53-59
    [76]臧春鑫,杨劼,袁劼,等.黄土丘陵沟壑区中间锦鸡儿整株丛树干液流特征与环境因子的关系{J].生态学杂志,2010,29(3):420-426
    [77]邹丽伟.翅英木蒸腾耗水特性研究[D].长沙:中南林业科技大学,2009
    [78]张金池,黄夏银,鲁小珍.徐淮平原农川防护林杨树树干液流研究[J].中国水土保持科学,2004,2(4):21-36
    [79)张俊,李建贵,杜研,等.幼龄枣树树干液流的动态研究[J].应用研究,2012,26(2):63-67
    [80]张雷,孙鹏森,刘世荣.树干液流对环境变化响应研究进展[J].生态学报,2009,29(10):5601-5609
    [81]张永利,郭浩.丝栗栲树干液流变化规律与环境因子影响[J].气象与减灾研究,2007,30(4):25-28
    [82]张毓涛,李吉玫,李翔,等.新疆乌拉泊库区主要乔木树种树干液流对比研究[J].福建林学院学报,2010,30(3):246一251
    [83]张中峰,黄玉清,李先琨,等.岩溶区青冈栎树干液流特征及其与环境因子关系[J].中国岩溶,2008,27(3):228-234
    [84]郑怀舟,朱锦懋,魏霞,等.5种热动力学方法在树干液流研究中的应用评述[J].福建师范大学学报(自然科学版),2007,23(4):119-123
    [85]周金龙,董新光.内陆干旱区潜在蒸发量的计算[J].灌溉排水,2002,21(2):21-24
    [86]朱光旭,林瑞余.环境变化对树干液流的影响[J].亚热农业研究,2007,3(3):205-208
    [87]Braun P,Schmid J. Sap flow measurements in grapevines (Vitis vinifera L.) 1. Stem morphology and use of the heat balance method[J]. Plant and Soil,1999,215:39- 45.
    [88]Cermak J, Kuccra J. Transpriation of mature stand of spruce (Piceaabics (L.) Karst.) asestimated by tree-trunk heat balance method[J].Forest Hydrology and Watershed Matnagement ,1987,167(3):311-3 17.
    [89]Clarke JM. Effect o f drought stress on residual transpiration and its relationship with water use of wheat.Canadian Journal of Plant Science,2000,(1): 695-702.
    [90]Edwards W R N, Becker P,ermk J.A unified nomenclature for sap flow measurements[J].Tree Physiology,1996,17(1),65-67
    [91]Granier A,Hue R,Barigah S T.Transpiration of natural rain forest and it's dependence on climatic factors[J].Agricultural and Porest Meteorology,1996,78:19-29
    [92]Hatton T J.Vertessy R A.Transpiration of plantation Pinusradiata estimated by the heat pulse method and the Bowen ratio[J].Hydro Proc,1990,4(3):289-298
    [93]Haydon S R, Benyon R G, Lewis R. Variation in sapwood area and through fall with forest age in mountain ash (Eucalyptus regnans F.Muell.)[J]-Hydrol,1996,187(3):351-366.
    [94]Kramer PJ, Boyer JS. Water Relations of Plants andSoils. London:Academic Press Inc,1995.
    [95]Lu P. Evaluation of Granierps sap flux sensor in young mango trees [J]. Agronomie,1998,18:461-471.
    [96]Lu P, Urban L, Zhao P. Granierps thermal dissipation Probe (TDP) method for measuring sap flow in trees:Theory and Practice [J]. Acta Botanica Sinica,2004,46 (6):631-646.
    [97]Nadezhdina N, Cerm k J. Ceulemans R Radial patterns of sap flow in woody stems of dominant and under story species:scaling errors associated with positioning of sensors[J].Tree Physiology,2002,22: 907-918.
    [98]Parker J. The cut-leaf method and estimations of diurnal trends in transpiration from different heights and sides of an oak and a pine[J]. Bot Gaz,1957,119(2):93-101.
    [99]Rutter A J. Studies in the water relations of Pinus sylvestris in plantation conditions.4. Direct observations on the rates of transpiration, evaporation of intercepted water, and evaporation from the soil surface[J]. J Ecol,1966, (3):393-405.
    [100]Saugier B, Granier A, Pontailler J Y, et al. Transpiration of a boreal pine forest measured by branch bag, sap flow and micrometeorological methods[J].Tree Physiology,1997,17(4),511-519
    [101]Thomas J Hatton, Stepen J Moore, Peter H. Reece Estimating stand transpiration in a Eucalyptus populnea woodland with the heat pulse method:measurement errors and sampling strategies[J].Tree Physiology,1995,15(2):219-227
    [102]Vertessy R A,Hatton T J,Reece P,et al. Estimating stand water use of large mountain nash trees and validationof the sap flow measurement technique[J].Tree Physiol,1997,17(12):747-756
    [103]Wullschleger S,Meinzer F C,Vertessy R A.A review of whole plant water use studies in trees[J].Tree Physiol,1998,18:499-512

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700