用户名: 密码: 验证码:
生态水遥感定量研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生态水(层)”是近年本课题组提出的新概念,它是大气降水转化后的一个层次,由植被、植被腐殖层、根系土壤层所储存,形成以植被为中心的“生态水层”。有如“地下水含水层”,它能对降水进行截流,并向地表河流、地下水储层补给输水,是水文循环研究的重点和难点。本文综合应用遥感等新技术新方法,选择岷江上游为实验区,根据生态学、植物学、水文地质学、森林水文学及地物遥感信息成因机理,研究“生态水(层)”的性质、功能、空间分布特征及变化规律,建立“生态水”信息指标体系并探索计算“生态水”资源量的模型与方法。利用遥感等高科技手段从多维空间研究“生态水”性质及其功能和动态转化过程,探索“生态水”资源遥感定量研究新技术新方法,在国内外还无先例。
     “生态水”信息指标体系主要包括生态水涵养模数生态水迳流模数、植被水分含量指数、土壤水饱和系数与土壤含水率等五项指标。建立完善的“生态水(层)”信息指标体系是一个复杂的系统工程,限于时间和经费,本文仅把土壤含水率、土壤水饱和系数以及植被含水率等三个指标的遥感信息提取、模型建立和定量测算作为重点研究内容。本论文主要成果和创新有以下方面:
     (1)针对不同季节对“生态水(层)”的影响因素不同,本文采用多时相多类型遥感图像数据对“生态水(层)”的相关指标系数进行了反演。结果表明,不同时相和不同类型的遥感数据对各“生态水”指标系数的反演结果均能真实反映实验区“生态水”的分布特征。
     (2)实验区属中山地貌,地形起伏对遥感反射波谱信息影响较大,主要表现在阴、阳坡对阳光反射不同,从而使传感器接收到的地物辐射值产生畸变。研究中在分析对比多种地面起伏校正算法后,结合实验区实际情况,选取余弦地面起伏校正算法对实验区数据进行了校正,较好地消除了地面起伏对遥感信息的影响。
     (3)通过分析对比各种土壤含水率遥感模型,结合“生态水(层)”研究的需要,采用地表温度/归一化植被指数斜率法对实验区遥感数据进行了土壤含水率测算,测算结果与实验区2000年生态环境本底遥感调查数据基本吻合。
     (4)土壤水饱和系数遥感反演是一直未得到解决的难题。作者通过分析地物与穗帽变换所得湿度和土壤亮度的关系,发现土壤水饱和系数与湿度及土壤亮度高度相关,从而建立了土壤水饱和系数遥感反演模型,并用该模型对实验区遥感数据进行土壤水饱和系数测算,测算结果与实验区2000年生态环境遥感本底调查数据基本吻合。
     (5)植被含水率遥感反演模型是本论文建立的另一个“生态水”信息指标遥
The concepts of Eco-water and Eco-water layer are brand new. Eco-water is defined as a transformation of precipitation, which was deposited by vegetation layer, humificated vegetation layer and soil layer. Composed of these layers and centered with vegetation layer, Eco-water layer is able to intercept precipitation and then feed river or groundwater reservoir. Modeling and characterizing Eco-water layer is a crucial issue and also a big challenge in the investigation of water-cycle.
    Due to the season-sensibility and territorial limit of vegetation, the method for quantitatively characterizating Eco-water is not available yet. According to ecology, botany, geo-hydrology, forest-hydrology and quantative Remote Sensing technology, the dissertation systematically analyzed the effects of Eco-water on precipitation distribution, buffer and adjustment of groundwater and surface water, and also investigated the possible environmental factors which could potentially change the Eco-water by taking Maoergai district in upper Minjian river as the study area. These results provided a better understanding for quantitative analysis of Eco-water.
    The primary characterization system proposed to quantify Eco-water includes five indices, which are Eco-water reservoir, Eco-water flowing, soil moisture, soil moisture saturation and vegetation moisture. For Eco-water studying by quantitative Remote Sensing is a new and large systematic engineering, only soil moisture, soil moisture saturation and vegetation moisture were selected to calculate in this dissertation to meet the time and the funds.
    The dissertation has the following achievement and innovation:
    (1) As potential factors on Eco-water and Eco-water layer are different from one season to another, multi-time and multi-type remotely sensed data of research area was selected to calculate the indices for Eco-water. The result can reflect the distribution of the Eco-water in research area.
    (2) Remotely sensed data over mountainous regions are contaminated with topographic shading and shadowing, which are not desirable for land surface characterizations. Cosine correction methods was selected and revised to correct the remotely sensed data over research area.
    (3) Based on the current model of soil moisture calculation through Remote Sensing measurement, a Ts/NDVI slope method was selected to calculate soil moisture on the remotely sensed data over research area. The calculation result was in agreement with the basic Eco-environment data by Remote Sensing investigation of
引文
[1] Jansen Andre J M, Mass Cess. Eco-hydrological processes in almost flat wetlands[A]. In: Kuo Chin Y. Engineering hydrology. [C]. New York: American Society of Civil Engineers, 1993.150-155
    [2] 阮仁良主编.水资源普查方法概论[M].北京:中国水利水电出版社,2002
    [3] 郑西来,王秉忱,余宗莲.土壤-地下水系统石油污染原理与应用研究[M].北京:地质出版社,2004
    [4] 殷秀琴.生物地理学[M].北京:高等教育出版社.2004
    [5] 马学尼,叶镇国编.水文学[M].北京:中国建筑工业出版社,1998
    [6] IGPB, WCRD & IHDP, Abstract Volume of Challenge of a Changing Earth[C], Global Change Opening Science Conference, 10-13, July, 2001, Amsterdam, Netherland.
    [7] 万新南,杨武年等.“生态水层与生态水”概念及研究意义[J].地球科学进展,2004,6(19):117-121
    [8] Ceccato, P., Flasse, S., & Gregoire, J. (2002b). Designing a spectral index to estimate vegetation water content from remote sensing data: Part 2. Validation and applications[J]. Remote Sensing of Environment, 82, 198-207.
    [9] Ceccato, P., Flasse, S., Tarantola, S., Jacquemond, S., & Gregoire, J. (2001). Detecting vegetation water content using reflectance in the optical domain[J]. Remote Sensing of Environment, 77, 22-33.
    [10] Ceccato, P., Gobron, N., Flasse, S., Pinty, B., & Tarantola, S. (2002a). Designing a spectral index to estimate vegetation water content from remote sensing data: Part 1. Theoretical approach[J]. Remote Sensing of Environment, 82, 188-197.
    [11] Gao, B. (1996). NDWI—a normalized difference water index for remote sensing of vegetation liquid water from space[J]. Remote Sensing of Environment, 58, 257-266.
    [12] Serrano, L., Ustin, S. L., Roberts, D. A., Gamon, J. A., & Penuelas, J. (2000). Deriving water content of chaparral vegetation from AVIRIS data[J]. Remote Sensing of Environment, 74, 570-681.
    [13] Sims, D. A., & Gamon, J. A. (2002). Estimation of vegetation water content and photosynthetic tissue area from spectral reflectance: A comparison of indices based on liquid water and chlorophyll absorption features[J]. Remote Sensing of Environment, 84, 526-537.
    [14] Tucker, C. J. (1980). Remote sensing of leaf water content in the near infrared[J]. Remote Sensing of Environment, 10, 23-32.
    [15] Zarco-rejada, P. J., Rueda, C. A., & Ustin, S. L. (2003). Water content estimation in vegetation with MODIS reflectance data and model inversion methods[J]. Remote Sensing of Environment, 85, 109-124.
    [16] Paul Treitz & Philip Howarth, High Spatial Resolution Remote Sensing Data for Forest Ecosystem Classification-An Examination of Spatial Scale[J], Remote Sensing of Environ., 2000, 72(3):26-289
    [17] Weimann A.,et al., soil moisture with ERS-1 SAR data in the East-German loess??soil area[J], Int. J., Remote Sens., 1998,19(2):237-243
    [18] Thomas J. Jacksona, Daoyi Chenb, Michael Cosha, et.al., Vegetation water content mapping using Landsat data derived normalized difference water index for corn and soybeans[J], Remote Sensing of Environment 92 (2004) 475-482
    [19] 王根绪,钱鞠,程国栋.生态水文科学研究的现状与展望[J].地球科学进展,2001,3:314-323
    [20] 夏军,丰华丽,谈戈 等.生态水文学概念、框架和体系[J].灌溉排水学报,2003,1:4-10
    [21] 丰华丽, 夏军, 占车生.生态环境需水研究现状和展望[J].地理科学进展,2003,22(6):591-598
    [22] 武强,董东林.试论生态水文学主要问题及研究方法[J].水文地质工程地质,2001,2:69-72。
    [23] 姜德娟,王会肖,李丽娟.生态环境需水量分类及计算方法综述[J].地理科学进展,2003,22(4):369-378.
    [24] 王炳章.生态水与林园无灌溉栽培[J].国土与自然资源研究, 2001,1: 50-51
    [25] 董哲仁.生态水工学的理论框架[J].水利学报,2003,1:1-6.
    [26] 黄奕龙, 傅伯杰, 陈利顶.生态水文过程研究进展[J]. 生态学报.2003,3:580-587.
    [27] 彭先或,杨红,金日光.高吸水性树脂吸附的生态水对沙土中油菜生物量的影响[J].四川大学学报(自然科学版), 2003,4:759-762.
    [28] 王芳等.中国西北地区生态需水研究(2)—基于遥感和地理信息系统技术的区域生态需水计算机分析[J].自然资源学报,2002,17(2):129-137.
    [29] 杨武年,袁佩新,万新南等. 《四川省岷江中上游生态环境遥感综合调查与评价》研究报告(863-308-21(6))[R].成都理工大学档案馆,2001
    [30] 濮国梁,杨武年,袁配新,秦举礼,游丽君.岷江中上游流域生态环境的遥感动态监测分析[J].遥感信息.2003,1:19-21
    [31] 王艳,杨武年.岷江上游汶川幅退耕还林(草)3“S”技术的应用[J].地球信息科学,2001,3(4):37-41
    [32] Hillel D. Soil and Water Physical Principles and Processes[M]. Academic Press.New York,1971(华孟,叶和才译.北京:农业出版社,1981).
    [33] 郭生练,刘春蓁.大尺度水文模型及其与气候模型的联结耦合研究[J].水利学报,1997,7:3~4
    [34] 夏军.水文尺度问题[J].水利学报,1993,5:32~37
    [35] 赵英时等.遥感应用分析原理与方法.[M]北京:科学出版社,2003
    [36] 厳網林,自然资本運用環境保全社会発展構築高原事例,慶應義塾大学,2004
    [37] Nielsen, D R Jackson. Soil Water[M]. American Society of Agronomy and Soil Science Society of America, 1972
    [38] Hillel D. Application of Soil Physics[M]. Academic Press, New York, 1980
    [39] Hillel D. Computer Simulation of Soil Water Dynamics[M] Academic Press, New York, 1977
    [40] Kutilek M, D R Nietsen. Soil Hydrology Geo-ecology Textbook[M], Catena Verlag Germany. 1994
    [41] 庄季屏.四十年来的中国土壤水分研究[J].土壤学报,1989,26(3):241~247[42] 雷志栋,杨诗秀等.土壤水动力学[M].北京:清华大学出版社,1988
    [43] 张蔚榛等.地下水与土壤水动力学[M].北京:中国水利水电出版社,1996
    [44] 康绍忠,刘晓明等.土壤-植物-大气连续体水分传输理论及其应用[M].北京:水利电力出版社,1994
    [45] 李韵珠,淳保国.土壤溶质运移[M].北京:科学出版社,1998
    [46] 杨邦杰,隋红建.土壤水热运动模型及其应用[M].北京:中国科学技术出版社,1997
    [47] 荆恩春等.土壤水分通量法实验研究[M].北京:地震出版社,1994
    [48] 李韵珠等.土壤水和养分的有效利用[M].北京:北京农业大学出版社,1994
    [49] 刘吕明,窦清晨.土壤-植物-大气连续体模型中的蒸散发计算[J].水科学进展,1992,8(4):255~263
    [50] 康绍忠,刘晓明等.土壤-植物-大气连续体水分传输的计算机模拟[J].水利学报,1992,3:1~12
    [51] 杨诗秀,雷志栋等.农田尺度土壤水分监测[J].水科学进展,1996,7(1):14~19
    [52] 陆家驹,张和平.应用遥感技术连续监测地表土壤含水量[J].水科学进展,1997,8(3):281~287
    [53] 吴擎龙,雷志栋等.求解SPAC系统水热输移的耦合迭代计算方法[J].水利学报,1996,2:1~10
    [54] 康绍忠.土壤水分动态的随机模拟研究[J].土壤学报,1990,27(1):17~24
    [55] 邵明安.植物根系吸引土壤水分的数学模型[J].土壤学报,1987,24(4):295~305
    [56] 康绍忠,刘晓明.作物覆盖条件下田间水热运移的模拟研究[J].水利学报,1993,3:11~17
    [57] BAHC NEWS Biospheric Aspects of the Hydrological Cycle, a core project of the International Geosphere-Biosphere Programme(IGBP)[C]. 1998, 6:2~3
    [58] 刘昌明,窦清晨.土壤-植物-大气连续体模型中的蒸散发计算[J].水科学进展,1992,3(4):255~263
    [59] 刘昌明,于沪宁等.土壤-作物-大气系统水分运动实验研究[M].北京气象出版社,1997
    [60] 姚德良,沈卫明,李家春.塔里术盆地陆气水热交换数值模拟[J].水利学报,1994,5:31~37
    [61] 刘树华,黄子琛,刘立超.土壤-植被-大气连续体中蒸散过程的数值模拟[J].地理学报,1996,51(2):8~126
    [62] 孙淑芬,牛国跃,洪钟祥.干旱及半干旱区土壤水热传输模式研究[J].大气科学,1998,21(1):1~10
    [63] 牛国跃,孙淑芬,洪钟祥.沙漠土壤和大气边界层中水热交换和传输的数值模拟研究[J].气象学报,1997,55(4):398~407
    [64] 刘树华,黄子琛,刘立超等.植被对近地面层水热交换影响的参数化模型[J].应用生态学报,1995,6(2):149~154
    [65] 莫兴国,土壤-植被-大气系统水分能量传输模拟和验证[J].气象学报,1998,56(3):323~332
    [66] 张晶,丁一汇.一个改进的陆面过程模式及其模拟试验研究第一部分:陆面过程模式及其“独立(off-line)”模拟试验和模式性能分析[J].气象学报,1998,56(1):1~19
    [67] 丁一汇,张晶,赵宗慈.一个改进的陆面过程模式及其模拟试验研究第二部分:陆面过程模式与区域气候模式的耦合模拟试验[J].气象学报,1998,56(4):385~399
    [68] 李小文,王锦地,朱重光.遥感模型的定量反演研究[D].遥感科学新进展,北京:科??学出版社,1995
    [69] 张继贤.论土地利用与覆盖变化信息提取技术框架[J].中国土地科学,2003,4:31-36
    [70] 乔平林,张继贤,燕琴.石羊河流域水资源遥感定量测算方法研究[J].遥感技术与应用,2003,4:217-220
    [71] 刘昌明,孙睿.水循环的生态学方面:土壤—植被—大气系统水分能量平衡研究进展[J].水科学进展,1999,9(3):251~258
    [72] 田国良,郑柯等.用NOAA AVHRR数字图像和地面气象站资料估算作物燕敬和土壤水[D].黄河流域典型地区遥感动态研究,北京:科学出版社,1990:161~176
    [73] 陈鸣,潘之棣.用卫星遥感热红外数据估算大面积蒸散量[J].水科学进展, 1994,5(2)126~133
    [74] 马耀民,王介民.非均匀陆面上区域蒸发(散)研究概况[J].高原气象,1997,16(4):446~452
    [75] 陆家驹,张和平.应用遥感技术连续监测地表土壤含水量[J].水科学进展,1997,8(3):281~286
    [76] 余涛,田国良.热惯量法在监测土壤表层水分变化中的研究[J].遥感学报,1997,1(1):24~31
    [77] 隋洪智,田国良,李付琴.农田蒸散双层模型及其在干旱遥感监测中的应用[J].遥感学报,1997,1(3):220~224
    [78] 阮本清等.流域水资源.北京:科学出版社,2001
    [79] 乔平林,张继贤,李海涛.基于遥感的水库水资源的定量测算方法研究[J].测绘科学,2003,3:
    [80] P.H.斯韦恩,S.M.戴维.遥感定量方法[M].北京:科学出版社,1984
    [81] 陈述彭,赵英时.遥感地学分析[M],北京:测绘出版社,1999
    [82] 陈述鹏,童庆禧,郭华东.遥感信息机理研究[M].北京:科学出版社,1998
    [83] 徐希孺:遥感物理[M].北京大学出版社, 2005年2月第一版
    [84] 马建文,赵忠明,布和敖斯尔.遥感数据模型与处理方法[M].北京:中国科学技术出版社,2001
    [85] Shunlin Liang.Quantitative Remote Sensing of Land Surfaces[M]. John wiley & Sons,2004
    [86] 童庆喜等.中国典型地物波谱及特征分析[M].北京:科学出版社,1990
    [87] 卜兆宏,孙金庄.水土流失定量遥感方法及应用研究[J].土壤学报,1997.34(3):235-245
    [88] 李小文,王锦地.植被光学遥感模型与植被结构参数化[M].北京:科学出版社,1995
    [89] 李小文,汪骏发,王锦地,柳钦火.多角度遥感与热红外遥感[M].北京:科学出版社,2001
    [90] 王桥,杨一鹏,黄家柱等.环境遥感[M].北京:科学出版社,2005
    [91] 梅安新,彭望禄,秦其明.遥感导论[M].北京:高等教育出版社,2001
    [92] 郑威,陈述彭.资源遥感纲要[M].北京:中国科学技术出版社,1995
    [93] 舒宁.微波遥感原理[M].武汉:武汉大学出版社,2003
    [94] 朱黎江,秦其明,陈思锦.ASTER遥感数据解读与应用[J].国土资源遥感,2003,6(2).59~63
    [95] ASTER User Handbook[EB/OL], http://asterweb. jpl. nasa. gov/documents. asp
    [96] 辛晓洲.用定量遥感方法计算地表蒸散[D].中国科学院研究生院,2003.6
    [97] 唐世浩.地表参量遥感反演理论与方法研究[D].北京师范大学,2001.9[98] 姚春生.使用MODIS数据反演土壤水分研究[D].中国科学院研究生院,2003.6
    [99] 戴昌达,姜小光,唐伶俐.遥感图像应用处理与分析[M].北京:清华大学出版社,2004
    [100] 陈腾云.基于ASTER数据的地表组分温度反演方法研究[D].南京师范大学,2005.9
    [101] 王娅娟.基于ASTER的穗帽变换与区域蒸散模型研究[D].中国农业大学,2005.6
    [102] 乔林平.区域水资源动态变化遥感定量测算方法研究[D].山东科技大学,2004.5
    [103] Entekhabi, D. Nakamurai, H. Njoku, E.G. Solving the inverse problem for soil moisture and temperature profiles by sequential assimilation of multi-frequency remotely sensed observations[J]. IEEE Transactions on Geoscience and Remote Sensing, 1994,3(32):438~448

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700