用户名: 密码: 验证码:
非线性生物系统中的时空噪声动力学
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本学位论文以非线性动力学和统计物理的随机过程理论为基本理论,研究了肿瘤体系、被捕食者与捕食者生态体系、互利共生生态体系等生物系统中的时空噪声动力学行为。本论文的研究对深入认识肿瘤生长扩散规律以及在传统化疗和放疗基础上探讨新的免疫疗法具有前瞻性,对临床治疗有一定指导意义;同时对保持涨落环境下的生态系统的平衡、稳定与发展也给出了重要启示。主要包括三大部分:
     (一)肿瘤体系的时空噪声效应部分
     首先,在Logistic生长模型中引入了加性和乘性关联噪声,通过求解其对应的Fokker-Planck方程,揭示了乘性噪声使肿瘤生长发生相变,发现肿瘤细胞数目以及生长规律随乘性噪声的强度增加,表现出随机共振特征。在一定的乘性噪声强度下,噪声非但不能使肿瘤细胞灭绝,反而促使其增长。噪声关联对随机共振特征起弱化作用,同源强噪声使肿瘤远离衰亡而稳定生长和扩张。
     其次,扩展到酶动力学的范畴,分别引入乘性噪声、免疫效应及治疗性外力等综合作用,考察此时肿瘤细胞的定量演化规律。结果表明:(1)在治疗强度与治疗占空比组成的参数空间中存在一个区分有效治疗与无效治疗的临界治疗边界,其变化规律具有指数衰减特征;(2)引入不同占空比和波形的周期性外场模拟不同临床治疗方案,对肿瘤细胞数量的增长和衰减进行定量计算,结果发现治疗强度的减小使临界治疗占空比显著增加;(3)免疫作用增强使临界治疗强度下降。初步的临床观察结果与动力学理论模拟计算结果在变化趋势上基本一致;(4)对于受周期性调节作用的肿瘤体系,发现乘性噪声可以诱导肿瘤治疗出现随机共振效应。
     最后,研究了一维和二维肿瘤细胞的生长扩散问题,求出相应的平均场理论解。同时,仿真计算二维离散空间中具有不同扩散能力的肿瘤体系的生长形貌和相应的时空斑图,通过引入结构因子对肿瘤的空间形态进行量化表征。结果表明,乘性时空噪声对肿瘤生长起“双刃剑”作用,即非但抑制激发态肿瘤,而且唤醒休眠态肿瘤。均匀时空可能导致肿瘤在空间呈现膨胀性生长,而非均匀时空却导致肿瘤呈浸润性生长,其取决于肿瘤细胞生长的时空环境的涨落程度。
     (二)生态系统的关联噪声研究部分
     分别考虑了被捕食者与捕食者生态系统和互利共生生态系统,通过引入关联的加性噪声和乘性噪声来表现生态系统的自然性涨落和环境外力涨落。结果发现,这些涨落一方面对被捕食者与捕食者生态系统的平衡出现破坏性作用,另一方面对共生生态系统的个体同步发展起到促进作用。在被捕食与捕食生态系统中,涨落的环境总是在催生和淘汰着捕食者,但对被捕食者的影响很小。在共生生态系统中,由于共生个体间的密切利益关系,它们在千变万化的自然中总是同步演化、共同进退。
     (三)关联噪声诱导有序现象部分
     以Ising双稳系统为例,阐述关联噪声在非线性系统中的响应问题,如噪声诱导相变、多参数空间的随机共振和重入(Reentrance)现象等等,探讨处理关联噪声问题的统计物理学方法以及相应的动力学理论,为生物系统中的关联噪声问题的解决提供随机方法,同时也为生物系统的类似噪声诱导有序现象提供启发性思维。
In this dissertation, using the methods of nonlinear dynamics and stochastic process in statistical physics, I have studied spatiotemporal noise dynamics in selected biosystems, e.g., tumor systems, prey-predator ecosystems and mutualism systems. This research has looked insight into the growth law of tumor cells and provided many illuminations to the traditional cancer therapy. At the same time, it is also suggested that the environmental protection is quite necessary in order to keep the balance and the stability of ecosystems. It includes three sections:
     1. The spatiotemporal noise effects on tumor systems
     Firstly, I have studied the effect of additive and multiplicative noises on the growth of a tumor based on a logistic growth model. The steady-state probability distribution and the average population of the tumor cells were given to explain the important roles of correlated noises in the tumor growth. It had been reported that multiplicative noise induces a phase transition of the tumor growth from an uni-stable state to a bi-stable state; the relationship between the intensity of multiplicative noise and the population of the tumor cells shows a stochastic resonance-like characteristic. It was also confirmed that additive noise weakened rather than extinguished the tumor growth. Homologous noises, however, promoted the growth of a tumor. I also discussed about the relationship between the tumor treatment and the model.
     Secondly, considering the growth of tumor cells modeled by an enzyme dynamic process under an immune surveillance, I have studied in anti-tumor immunotherapy the single-variable growth dynamics of tumor cells subjected to a multiplicative noise and an external therapy intervention simultaneously. There are four main findings: (1) Two simulative parameters of therapy, i.e., therapy intensity and therapy duty-cycle, were introduced to characterize a treatment process similar to a tumor clinic therapy. There exists a critical therapy boundary which, in an exponent-decaying form, divides the parameter region of therapy into an invalid and a valid treatment zone, respectively. (2) A greater critical therapy duty-cycle is necessary to achieve a valid treatment for a lower therapy intensity while the critical therapy intensity decreases accordingly with an enhancing immunity. (3) The primary clinic observation of the patients with the typical non-hodgekin’s lymphoma basically agreed with the dynamic simulations. (4) In an anti-tumor system modulated by a seasonal external field, for optimally selected values of the multiplicative noise intensity, stochastic resonance can be observed, which is manifested by the quasi-symmetry of two potential minima.
     Finally, the studies of one and two dimensional models of spatially extended anti-tumor system with a fluctuation in growth rate was carried out. It is suggested that the spatiotemporal noise, assumed to reflect the environmental fluctuation in a spatially extended tumor system, can induce nonequilibrium phase transition. In this thesis I introduce the structure factor to reveal the invasive tumor growth quantitatively. The multiplicative noise is found to have opposite effects: the positive effect on a non-excited tumor and the negative effect on an excited tumor. The homogenous environment can lead the tumor cells to expansive growth, while the inhomogenous environment may result in the infiltrative growth of the tumor cells. The different responses were determined by the level of environmental fluctuation.
     2. Correlated noises in ecosystems
     I have investigated a Volterra ecosystem driven by correlated noises. The fluctuation in the death rate of the predator induces an increase in population densities of the predators. The fluctuation in the growth rate of the prey, however, leads the predators to decay. It is reported that the predators undergo sensitivity to a random environment, whereas the preys exhibit a surprising endurance to the same stochastic factor. The predators are of better stability under strong correlation of noises.
     Understanding the cause of the synchronization of population evolution is an important issue for ecological improvement. Here I present a Lotka-Volterra-type model driven by two correlated environmental noises and show, via theoretical analysis and direct simulation, that noise correlation can induce a synchronization of the mutualists. The time series of mutual species exhibit a chaotic-like fluctuation, which is independent of the noise correlation, however, the chaotic fluctuation of mutual species ratio decreases with the noise correlation. A quantitative parameter defined for characterizing chaotic fluctuation provides a good approach to measure when the complete synchronization happens.
     3. Correlated noises induced order phenomena
     Here I report the phenomenon of the nonequilibrium dynamical phase transition (NDPT) appearing in a kinetic Ising spin system (ISS) subjected to a joint application of a determinant external field and the stochastic mutually correlated noises simultaneously. For example, within the multi-parameter space, the dynamic order parameter takes on a stochastic resonance with reentrant trend against noise intensity. This method is expected to be applied in the biosystems with correlated noises.
引文
[1] P. W. Anderson, Science, 1972, 177: 393; S.A. Kauffman, The origin of Order (Oxford Univ. Press, Oxford, 1993); At home in the Universe (Oxford Univ. press, Oxford, 1995).
    [2] Hans Frauenfelder, Peter G. Wolynes and Robert H. Austin, Biological Physics, Rev. Mod. Phys., 1999, 71: S419.
    [3] Pikovsky, A., Rosenblum, M. & Kurths, J. (2001). Synchronization: A universal concept in nonlinear sciences. Cambridge University Press, New York.
    [4] A.S. Mikhailov, V. Calenbuhr, From cells to societies: models of complex coherent action, Berlin ;New York, N.Y. :Springer,c2002.
    [5] F. C. Hoppensteadt and C. S. Peskin, Modeling and Simulation in Medicine and the Life Sciences, (Springer-Verlag, New York, 2002).
    [6] Nicolis C, Nicolis G. Stochastic aspects of climatic transition-additive fluctuations. Tellus, 1981,33:225.
    [7] McNamara B, Wiesenfeld K. Theory of stochastic resonance. Phys. Rev. A, 1989, 39(9):4854
    [8] Dykman M I, Mannella R, McClintock P V E. Comment on“stochastic resonance in bistable system”. Phys. Rev. Lett., 1990, 65 (20):2606; Phase shift in stochastic resonance. Phys. Rev. Lett., 1992, 68 (20):2985
    [9] Gong D, Hu G, Wen X. Experimental study of the signal-to-noise ratio of stochastic resonance system. Phys. Rev. A, 1992, 46(6):3243
    [10] Iannelli J M, Yariv A, Chen T R. Stochastic resonance in a semiconductor distributed feedback laser. Appl. Phys. Lett., 1994, 56 (16):1983
    [11] Jost B, Sahleh B E A. Signal-to-noise ratio improvement by stochastic resonance in a unidirectional photorefractive ring resonator. Opt. Lett., 1996, 21 (4):287
    [12] Pecora, L.M. & Carroll, T.L. (1990). Synchronization in chaotic system. Phys. Rev. Lett., 64, 821-824.
    [13]郑志刚,耦合非线性系统的时空动力学与合作行为,高等教育出版社,北京,2004.
    [14]胡岗,随机力与非线性系统,上海科技教育出版社,上海, 1994.
    [15]漆安慎,杜婵英,免疫的非线性模型,上海科技出版社,上海, 1998.
    [16]陈兰荪,陈建,非线性生物动力系统,科学出版社,北京. 1993.
    [17] J. D. Murray, Mathematical Biology I: An introduction (Springer-Verlag, Berlin Heidelberg, 2002).
    [18] J. D. Murray, Mathematical Biology II:Spatial models and biomedical applications, Springer-Verlag, Berlin Heidelberg,2003.
    [19] Benzi R, Sutera A, Vulpiani A. The mechanism of stochastic resonance. J. Phys. A,1981, 14:L453.
    [20] W. R. Zhong, Y. Z. Shao, and Z.H. He,Spatiotemporal fluctuation- induced transition in a tumor model with immune surveillance,Phys. Rev. E 74, 011916 (2006).
    [21] J. M. G. Vilar and J. M. Rubi, spatiotemporal stochastic resonance in the swift-hohenberg equation, Phys. Rev. Lett. 78, 2886-2889 (1997).
    [22] M. Kaern, T. C. Elston, W. J. Blake and J. J. Collins, Stochasticity in gene expression: from theories to phenotypes, Nature Review Genetics 6, 451-464 (2005).
    [23] N. J. Guido, X. Wang, D. Adalsteinsson, D. McMillen, J. Hasty, C. R. Cantor, T. C. Elston and J. J. Collins, A bottom-up approach to gene regulation, Nature 439, 856-860 (2006).
    [24] T. Zhou, L. Chen and K. Aihara, Molecular communication through stochastic synchronization induced by extracellular fluctuations, Phys.Rev. Lett. 95, 178103(2005))
    [25] B. Q. Ai, X. J. Wang, G. T. Liu, and L. G. Liu, Correlated noise in a logistic growth model, Phys. Rev. E, 67: 022903-1~3. (2003).
    [26] B. Q. Ai, X. J. Wang, G. T. Liu, and L. G. Liu,Fluctuation of parameters in tumor cell growth model, Commun. Theor. Phys. 40: 120. (2003).
    [27] W. R. Zhong, Y. Z. Shao and Z. H. He,Stochastic resonance in the growth of a tumor induced by correlated noises, Chin. Sci. Bull. 50: 2273—2275. (2005).
    [28] W. R. Zhong, Y. Z. Shao and Z. H. He. Pure multiplicative stochastic resonance of anti-tumor model with seasonal modulability. Phys.Rev.E, 73 (2006) 060902-1~4.
    [29]《关联性与随机性竞争下粒子的运动与散聚形态》---谭志杰,武汉:武汉大学博士学位论文,2001;
    [30] Z. Tan, X. Zou, and Z. Jin, Percolation with long-range correlations for epidemic spreading, Phys. Rev. E, 2000, 62: 8409.
    [31] Z. Tan, X. Zou, S. Huang, Wei Zhang, and Z. Jin, Random walk with memory enhancement and decay, Phys. Rev. E, 65: 041101. (2002),
    [32] Bak P., Tang C. and Wiesenfeld K., 1988. Self-organized criticality. Phys. Rev. A 38: 364.
    [33] Kim Christensen and Nicholas R. Moloney, Complexity and Criticality, Imperial College Press, London 2005. 33. Keeling, M. (2000). Metapopulation moments: coupling, stochasticity and persistence. J. Anim. Ecol., 69, 725-736.
    [34] R. Albert and A. L. Barabasi, Statistical mechanics of complex networks, Rev. Mod. Phys. 74, 47-97 (2002).
    [35] Klaus Mainzer, Thinking in Complexity: The Computational Dynamics of Matter, Mind, and Mankind, Springer-Verlag, Berlin Heidelberg, 2004.
    [36] M. I. Rabinovich, A. B. Ezersky, P. D. Weidman , The Dynamics of Patterns, World Scientific Publishing, Singapore, 2000.
    [37] L. F. Tannock and R. P. Hill, The basic science of oncology 3rd ed., (McGraw-Hill, New York, 1998).
    [38]李志勇,《细胞工程》,科学出版社,北京,2003;
    [39] M. H. Woo, J. K. Peterson, C、Billups, H. Liang, M-A. Bjornsti, P. J. Houghton, Enhanced anti-tumor activity of irofulven in combination with irinotecan in pediatric solid tumor xenograft models, Cancer Chemother Pharmacol, 55: 411~419 (2005).
    [40] T. Verch, D. C. Hooper, A. Kiyatkin, Z. Steplewski, H. Koprowski, Immunization with a plant-produced colorectal cancer antigen, Cancer Immunol Immunother, 53: 92~99 (2004).
    [41] J. J. Kim and Ian F. Tannock, Repopulation of cancer cells during therapy: an important cause of treatment failure, Nature Reviews Cancer, 5: 516-525. (2005)
    [42] R. A. Lake and B. W. S. Robinson, immunotherapy and chemotherapy-a practical partnership, Nature Reviews Cancer, 5: 397-405. (2005)
    [43] R. Lefever and R. Garay, Local description of immune tumor rejection, In Biomathematics and Cell Kinetics, Eds. A.J.Valleron and P.D.M.Macdonald, Elsevier/North-Holland Biomedical Press,1978,333; On the growth of celluar tissues under constant and fluctuating environmental conditions, In Nonlinear Electrodynamics in Biological System, Eds. W. Ross and A. Lowrence. Plenum Publishing Corp. 1984,287.
    [44] Grenfell, B.T., Wilson, K., Finkenstadt, B.F., Coulson, T.N., Murray, S., Albon, S.D., Pemberton, J.M., Clutton-Brock, T.H. & Crawley, M.J. (1998). Noise and determinism in synchronized sheep dynamics. Nature, 394, 674-677.
    [45]《数学生态学稳定性理论与方法》---王顺庆、王万雄、徐海根,科学出版社,北京,2004;
    [46] Van der Heijden, M. G. A., Klironomos, J. N., Ursic, M., Moutoglis, P., Streitwolf-Engel, R., Boller, T., Wiemken, A., & Sanders, I. R. (1998). Mycorrhizal fungal biodiversity determines plant biodiversity, ecosystem variability and productivity. Nature, 396: 69-72.
    [47] Benton, T.G., Lapsley, C.T., & Beckerman, A.P. (2001). Population synchrony and environmental variation: an experimental demonstration. Ecology Letter, 4, 236-243.
    [48] Begon, M., Harper, J. & Townsend, C. (1996). Ecology: Individuals, populations and communities, 3rd edn. Blackwell Science, Oxford.
    [49] Cushing, J. M., Costantino, R. F., Dennis, B., Desharnais, R. A. & Henson, S.M. (1998). Nonlinear population dynamics: Models, experiments and data. J. Theoret.Biol., 194, 1-9.
    [50] Higgins, K., Hastings, A., Sarvela, J.N. & Botsford, L.W. (1997). Stochastic dynamics and deterministic skeletons: Population behaviour of Dungeness crab. Science, 276, 1431-1435.
    [51] Leirs, H., Stenseth, N.C., Nichols, J. D., Hines, J.E., Verhagen, R. & Verheyen, W. (1997). Stochastic seasonality and nonlinear density-dependent factors regulate population size in an African rodent. Nature, 389, 176-180.
    [52] Cai, G.Q. & Lin, Y.K. (2004). Stochastic analysis of the Lotka-Volterra model for ecosystems. Phys. Rev. E, 70, 0419101-7.
    [53] Zhong, W.R., Shao, Y.Z. & He, Z.H. (2006). Correlated noises in a prey-predator ecosystem. Chin. Phys. Lett., 23, 742-745.
    [54] Tuljapurkar, S & Haridas, C.V. (2006). Temporal autocorrelation and stochastic population growth. Ecology Letter, 9, 327-337.
    [55] Y. Jia and Jia–rong Li, Reentrance Phenomena in a Bistable Kinetic Model Driven by Correlated Noise, Phys. Rev. Lett., 1997, 78: 994.
    [56] Y. Jia and Jia–rong Li,Steady-state analysis of a bistable system with additive and multiplicative noises, Phys. Rev. E, 53: 5786. (1996).
    [57] Y. Jia, Xiao-ping Zheng, Xiang-ming Hu, and Jia-rong Li, Effects of colored noise on stochastic resonance in a bistable system subject to multiplicative and additive noise, Phys. Rev. E, 63: 031107. (2001).
    [58] B. McNamara and K. Wiesenfeld, Theory of stochastic resonance, Phys. Rev. A, 39: 4854. (1989).
    [59] L. Gammaitoni, P. Hanggi, P. Jung and F. Marchesoni, Stochastic resonance, Rev. Mod. Phys., 70: 223–287. (1998).
    [60] C. Van den Broeck, J. M. R. Parrondo and R. Toral, Noise-Induced Nonequilibrium Phase Transition, Phys. Rev. Lett., 73: 3395 (1994).
    [61] C. Van den Broeck, J. M. R. Parrondo and R. Toral, Nonequilibrium phase transitions induced by multiplicative noise, Phys. Rev. E, 55: 4084. (1997).
    [62] A. A. Zaikin, J. Kurths, and L. Schimansky-Geier, Doubly Stochastic Resonance. Phys. Rev. Lett., 85: 227~231 (2000).
    [63] W. A. Schulz [Ed.], Molecular biology of human cancers, Springer-Verlag, Berlin, 2005.
    [64] A. Bru, S. Albertos, J. A. L. Garcia-Asenjo, and I. Bru, Pinning of Tumoral Growth by Enhancement of the Immune Response. Phys. Rev. Lett., 2004, 92: 238101-1~4.
    [65] A. Bru, S. Albertos, J. L. Subiza, J. L. Garcia-Asenjo, and I. Bru, The Universal Dynamics of Tumor Growth. Biophys. J., 85: 2948~2961 (2003).
    [66] Yu J, Hu G., and Ma B K. New growth model: The screened Eden model. Phys. Rev. B, 1989, 39: 4572~4576
    [67] Molski M and Konarski J. Coherent states of Gompertzian growth. Phys. Rev. E, 2003, 68: 021916-1~7
    [68] Kar S, Banik S K, and Ray D S. Class of self-limiting growth models in the presence of nonlinear diffusion. Phys. Rev. E, 2002, 65: 061909-1~5
    [69] Scalerandi M and Sansone B C. Inhibition of Vascularization in Tumor Growth. Phys. Rev. Lett., 2002, 89: 218101-1~4.
    [70] Ferreira S C Jr, Martins M L, and Vilela M. J. Morphology transitions induced by chemotherapy in carcinomas in situ. Phys. Rev. E, 2003, 67: 051914-1~9
    [71] G. Hu, G. Nicolis, and C. Nicolis, Phys. Rev. A 42, 2030 (1990).
    [72] R. B. Banks, Growth and Diffusion Phenomena (Springer-Verlag Berlin Heidelberg, 1994).
    [73] A. Bru, J. M. Pastor, I. Fernaud, I. Bru, S. Melle, and C. Berenguer, Phys. Rev. Lett. 81, 4008 (1998).
    [74] T.Verch, D.C.Hooper, A.Kiyatkin, Z.Steplewski and H.Koprowski. Immunization with a plant- produced colorectal cancer antigen, Cancer Immunol Immunother, 53(2004)92~99.
    [75] P. -F. Verhulst. Recherche math?mathiques sur le loi d'accroissement de la population. Nouveau Memoir?s de l'Acad?mie Royale des Sciences et Belles Lettres de Bruxelles, 1845, 18: 3~38
    [76] McKane A. J. and Newman T. J., 2005. Predator-prey cycles from resonant amplification of demographic stochasticity. Phys. Rev. Lett. 94: 218102.
    [77] Cai G. Q. and Lin Y. K., 2004. Stochastic analysis of the Lotka-Volterra model for ecosystems. Phys. Rev. E 70: 041910.
    [78] Dimentberg M. F., 2002. Lotka-Volterra system in a random environment. Phys. Rev. E 65: 036204.
    [79] Vilar Jose M.G. and Sole Ricard V., 1998. Effects of noise in symmetric two-species competition. Phys. Rev. Lett., 80: 4099.
    [80]白血病患者的新生之路,黄衍强,中国医药科技出版社,北京,2004.
    [81] G. Nicolis and I. Prigogine, Self-organization in Nonequilibrium systems (Willey New-York, 1977).
    [82] H. Haken, Advanced Synergetics (Springer Berlin Heidelberg, 1985).
    [83] G. Nicolis and I. Prigogine, Exploring Complex (Freeman New-York, 1986).
    [84] Russell D F, Wilkens L A, and Moss F. Use of behavioural stochastic resonance by paddle fish for feeding. Nature, 1999, 402: 291~294.
    [85] T. S. Gardner, C. R. Cantor, and J. J. Collins, Nature, 403, 339-342 (2000).
    [86] N. J. Guido, X. Wang, D. Adalsteinsson, D. McMillen, J. Hasty, C. R. Cantor, T. C. Elston and J. J. Collins, Nature 439, 856-860 (2006).
    [87] W. J. Blake, M. Kaern, C. R. Cantor and J. J. Collins, Nature 422, 633-637 (2003).
    [88] D. C. Mei, C.W. Xie and L. Zhang, The stationary properties and the state transition of the tumor cell growth mode, Eur. Phys. J. B 41: 107-112 (2004).
    [89] Anishchenko V S, Astakhov V V, Neiman A B, Vadivasova T E, and Schimansky-Geier L. Nonlinear Dynamics of Chaotic and Stochastic Systems. Berlin Heidelberg: Springer-Verlag, 2002. 327~363
    [90] C. W. Gardiner, Handbook of Stochastic Methods for Physics, Chemistry and the Natural Science (Springer-Verlag Berlin, 1983).
    [91] Wei-Rong Zhong, Yuan-Zhi Shao, and Zhen-Hui He, Influence of Correlated Noises on Growth of a Tumor in a modified Verhulst model, Fluct. Noise Lett., Vol. 6, No. 4, L349-L358 (2006).
    [92] D. Ludwing, J. Anim. Ecol. 47, 315-332 (1978).
    [93]吴宏菊,张清媛,陈德发等,美罗华联合CHOP方案与CHOP方案治疗初治弥漫大B细胞淋巴瘤的临床研究,癌症,24 (2005) No12:1498-1502
    [94]林桐榆,张红雨,黄岩等,R-CHOP与CHOP方案治疗初治弥漫大B细胞型淋巴瘤在中国的多中心随机对照研究,癌症,24 (2005) No12:1421-1426.
    [95] Zoltan Szallasi, Jorg Stelling and Vipul Periwal, System Modeling in Cell Biology: From Concepts to Nuts and Bolts, MIT Press, Cambridge, MA, 2006.
    [96] W. G. Stetler-Stevenson, , S. Aznavoorian, and , L A Liotta, Tumor Cell Interactions with the Extracellular Matrix During Invasion and Metastasis, Annu. Rev. Cell Biol., 9, 541-573 (1993).
    [97] L. Trusolino and P. M. Comoglio, Scatter-factor and semaphoring receptors: cell signaling for invasive growth, Nat. Rev. Cancer, 2, 289-300 (2002).
    [98] J. D. Hood and D. A. Cheresh, Role of integrins in cell invasive and migration, Nat. Rev. Cancer, 2, 91-100 (2002).
    [99] A. Wicki, F. Lehembre, N. Wick, B. Hantusch, D. Kerjaschki,and G. Christofori, Tumor invasion in the absence of epithelial-mesenchymal transition: podoplanin-mediated remodeling of the actin cytoskeleton, Cancer Cell, 9, 261-272 (2006).
    [100] C. Boccaccio and P. M. Comoglio, Invasive growth: a MET-driven genetic programme for cancer and stem cells, Nat. Rev. Cancer, 6, 637-645 (2006).
    [101] W. D. Jin, C. Li, and K. S. Zhi, Phys. Rev. E 50, 2496 (1994).
    [102] A. N. Grigorenko, P. I. Nikitin, and G. V. Roschepkin, Phys.Rev. E 56, R4907-4910 (1997).
    [103] L. Gammaitoni, F. Marchesoni, E. Menichella--Saetta, and S. Santucci, Phys. Rev. E 49, 4878-4881 (1994).
    [104] Charles R. Doering, Khachik V. Sargsyan, Peter Smereka, Phys. Lett. A 344, 149-155 ( 2005).
    [105] P. E. Kloeden and E. Platen, Numerical solution of stochastic differential equations,(Springer-Verlag, Berlin, 1995).
    [106] P. P. Delsanto, A. Romano, M. Scalerandi and G. P. Pescarmona, Phys. Rev. E 62, 2547-2554 (2000).
    [107] H. Byrne and P. Matthews, IMA J Math. Appl. Med. Biol. 19, 1-29 (2002).
    [108] G. S. Stamatakos, D. D. Dionysiou, E. I. Zacharaki, N. A. Mouravliansky, K. Nikita and N. Uzunoglu, Proceedings of the IEEE, 90, 1764-1777 (2002).
    [109] M. H. Woo, J. K. Peterson, C. Billups, H. Liang, M-A. Bjornsti and P. J. Houghton, Cancer Chemoth. Pharm., 55: 411-419 (2005).
    [110] M. I. Dykman, R. Mannella, P. V. E. McClintock, and N. G. Stocks, Phys. Rev. Lett. 68, 2985 (1992).
    [111] M. Scalerandi and B. C. Sansone, Phys. Rev. Lett. 89, 218101 (2002).
    [112] R. V. Sole and T. S. Deisboeck, J. Theor. Biol. 228, 47 (2004).
    [113] J. M. G. Vilar and J. M. Rubi, Phys. Rev. Lett., 78, 2886-2889 (1997). J. M. G. Vilar and J. M. Rubi, Phys. Rev. Lett. 77, 2863-2866 (1996).
    [114] W. Genovese and M. A. Muńoz, Phys. Rev. E 60, 69-78 (1999).
    [115] N. G. van Kampen, Stochastic Processes in Physics and Chemistry (North-Holland, Amsterdam, 1981).
    [116] L. F. Tannock and R. P. Hill, The basic sience of oncology 3rd ed., (McGraw-Hill, New York, 1998).
    [117] An-Shen Qi, Multiple solutions of a model describing cancerous growth, Bull. Math. Biol. 50, 1-17 (1988).
    [118] T. Alarcon, H. M. Byrne and P. K. Maini, A cellular automaton model for tumour growth in inhomogeneous environment, J. Theor. Biol. 225, 257-274 (2003). Y. Oono and S. Puri, Study of phase-separation dynamics by use of cell dynamical systems.Ⅰ. Modeling, Phys. Rev. A 38, 434-453 (1988).
    [119] A. R. Kansal, S. Torquato, IV G. R. Harsh, E. A. Chiocca, T. S. Deisboeck, Simulated brain tumour growth dynamics using a threedimensional cellular automaton, J. Theor. Biol. 203, 367–382 (2000).
    [120] Goldbeter, (1973) Proc. Nat. Acad. Sci. USA, 70:3255-3259.
    [121] P. Marmillot, J. F. Hervagault, and G. R. Welch, (1992) Proc. Nat. Acad. Sci. USA, 89: 12103-12107.
    [122] C. J. Kastrup, M. K. Runyon, F. Shen, and R. F. Ismagilov, (2006) Proc. Nat. Acad. Sci. USA, 103: 15747-15752.
    [123] Volterra V., 1926. Mem. Acad. Lincei., 2: 31-113 . also Variations and fluctuations of a number of individuals in animal species living together. Translation by R. N. Chapman. 1931. Animal Ecology. McGraw Hill, New York, pp. 409-448.
    [124] Yoshida T., Jones L. E., Ellner S. P., Fussmann G. F. and Hairston N. G. Jr, 2003. Nature, 424:303.
    [125] Berryman A. A., 2002. Population Cycles, Oxford University Press, New York.
    [126] Anderson R. M. and May R. M., 1991. Infectious Diseases of Humans, Oxford University Press, New York.
    [127] Stiling, P. (2002). Ecology: Theories and applications, 4th edn. Prentice-Hall, New Jersey.
    [128] Gao, J.B., Hwang, S.K. & Liu, J.M. (1999). When can noise induce chaos? Phys. Rev. Lett., 82, 1132-1135.
    [129] Miller, Paul A. & Greenberg, K. E. (1992). Period-doubling bifurcation in a plasma reactor. Appl. Phys. Lett., 60, 2859-2861.
    [130] Ruiz, G.A. (1995). Period doubling bifurcations in cardiac systems. Chaos, Solitons & Fractals, 6, 487-494.
    [131] Jing, Z.J. & Yang, J.P. (2006). Bifurcation and chaos in discrete-time predator–prey system. Chaos, Solitons & Fractals, 27, 259-277.
    [132] Wolf, A., Swift, J.B., Swinney, H.L. & Vastano, J.A. (1985). Determining lyapunov exponents from a time series. Physica D, 16, 285-317.
    [133] Charles R. Doering, Khachik V. Sargsyan, Peter Smereka, 2005. A numerical method for some stochastic differential equations with multiplicative noise, Phys. Lett. A 344: 149.
    [134] Joshua Wilkie, Murat ?etinbas, 2005. Variable-stepsize Runge–Kutta methods for stochastic schrodinger equations, Phys. Lett. A 337: 166.
    [135] Landau D P and Binder K. A Guide to Monte Carlo Simulations in Statistical Physics.Cambridge University Press: 2000 p15, p78
    [136] Chakrabrati B K and Acharyya M. Dynamic transitions and hysteresis. Rev. Mod. Phys.,1999,71: 847~859
    [137] Sides S W, Rikvold P A and Novotny M A. Kinetic Ising Model in an Oscillating Field: Finite-Size Scaling at the Dynamic Phase Transition. Phys.Rev.Lett., 1998, 81: 834~837
    [138] Acharyya M. Nonequilibrium phase transition in the kinetic Ising model: Existence of a tricritical point and stochastic resonance. Phys.Rev. E, 1999, 59: 218~221.
    [139] Acharyya M and Chakrabrati B K. Response of Ising systems to oscillating and pulsed fields: Hysteresis, ac, and pulse susceptibility. Phys.Rev. B, 1995,52: 6550~6568.
    [140] Korniss G, Rikvold P A and Novotny M A. Absence of first-order transition and tricritical point in the dynamic phase diagram of a spatially extended bistable system in an oscillating field. Phys.Rev. E. 2002,66: 056127-1~12
    [141] Shao Y Z, Lai J K L, Shek C H, Lin G M, and Lan T. Nonequilibrium dynamical phase transition of 3D kinetic Ising/Heisenberg spin system. Chinese Physics, 2004,13:0243-0250
    [142] Fujisaka H, Tutu H and Rikvold P A. Dynamic phase transition in a time-dependent Ginzburg-Landau model in an oscillating field Phys.Rev. E, 2001,63: 036109-1~11
    [143] Denisov S I Vitrenko A N and Horsthemke W, Nonequilibrium transitions induced by the cross-correlation of white noises, Phys.Rev.E 2003,68:046132-1~5
    [144]邵元智,钟伟荣,林光明,动态外场作用下Ising自旋体系的非平衡动态相变,物理学报,2004,53: 3165~3170.
    [145]邵元智,钟伟荣,林光明,李坚灿,随机外磁场作用下Ising自旋体系的随机共振,物理学报,2004,53: 3157~3164.
    [146] Chatterjee A and Chakrabrati B K. Competing field pluse induced dynamic transition in Ising models. arXiv:cond-mat/0312454 v2 21 Jan 2004.
    [147] Bloembergen N. and Wang S. Relaxation effects in para- and ferromagnetic resonance. Phys.Rev, 1954,93:72~83.
    [148] Kim B J, Minnhagen P, Kim H J, Choi M Y and Jeon G S. Double stochastic resonance peak in systems with dynamic phase transitions. Europhys. Lett. 2001,56:333~339.
    [149] S. W. Sides, P A Rikvold and M A Novotny. Kinetic Ising Model in an Oscillating Field: Finite-Size Scaling at the Dynamic Phase Transition. Phys.Rev.Lett., 1998, v81: 834~837.
    [150] Y. L. He and G. C. Wang. Observation of dynamic scaling magnetic hysteresis in ultrathin ferromagnetic Fe/Au (001) films, Phys.Rev.Lett., 1993,v70:2336~2339.
    [151] J.M.Liu, H.L.W.Chan, C.L.Choy and C.K.Ong, Scaling of hysteresis dispersion in a model spin system, Phys.Rev.B., 2001,v65:014416..
    [152] R. Maimon and J.M. Schwarz, Continuous Depinning Transition with an Unusual Hysteresis Effect. Phys.Rev.Lett., 2004, v92: 255502.
    [153] J. R. Lensing and D. H. Wise, Predicted climate change alters the indirect effect of predators on an ecosystem process, PNAS, v103: 15502~15505.
    [154] D. A. Head and G. J. Rodgers, Speciation and extinction in a simple model of evolution, Phys.Rev.E., 1997,v55:3312~3319.
    [155] R. Mankin, A. Sauga, A. Ainsaar, A. Haljas, and K. Paunel, Colored-noise-induced discontinuous transitions in symbiotic ecosystems, Phys.Rev.E., 2004,v69: 061106.
    [156] H.Fujisaka, H.Tutu and P.A.Rikvold, Dynamic phase transition in a time-dependent Ginzburg-Landau model in an oscillating field, Phys.Rev.E., 2001,v63:036109.
    [157] P. B. Reich, M.G. Tjoelker, J. L. Machado and J. Oleksyn, Universal scaling of respiratory metabolism, size and nitrogen in plants, Nature, 2006,v439:457~461.
    [158] B. J. Enquist, E. P. Economo, T. E. Huxman, A. P. Allen, D. D. Ignace and J. F. Gillooly, Scaling metabolism from organisms to ecosystems, Nature, 2003,v423:639~642.
    [159] P. A. Marquet, Of Predators, Prey, and Power Laws, Science, 2002, v295:2229~2230.
    [160] P. A. Marquet, R. A. Quinones, S. Abades, F. Labra, M. Tognelli, M. Arim and M. Rivadeneira, Review: Scaling and power-laws in ecological systems, The Journal of Experimental Biology, 2005, v208:1749~1769.
    [161] G.B. West, J. H. Brown and B. J. Enquist, A General Model for the Origin of Allometric Scaling Laws in Biology, Science, 1997, v276:122~126.
    [162] H. Kurz and K. Sandau, Allometric Scaling in Biology, Science, 1998, v281: 751a
    [163] R. Catalano and T. Bruckner, Secondary sex ratios and male lifespan: Damaged or culled cohorts, PNAS, v103: 1639~1643.
    [164] J. J. Kim and I. F. Tannock, Repopulation of cancer cells during therapy: an important cause of treatment failure. Nature Rev. Cancer, 2005,v5:516~525.
    [165] A.-L. Barabasi, E. Bonabeau, Scale-Free Networks, Scientific American 288, 60-69 (2003); M. Argollo de Menezes and Albert-Laszlo Barabasi, Fluctuations in Network Dynamics, Physical Review Letters 92, 028701 (2004).
    [166] R. E. Crandall, Mathematica for science, Addison-Wesley Publishing Co., Redwood City 1991.
    [167] R. E. Crandall, Topics in advanced scientific computation, Springer-Verlag, New York, 1996.
    [168] D.R.Shier, K. T. Wallenius, Applied Mathematical modeling: A multidisciplinary Approach, 1999, Chapman & Hall/CRC, Boca Raton London, New York, Washington, D.C.
    [169] Linda J S Allen, Bernd Aulbach, Saber Elaydi, and Robert Sacker, Difference Equations and Discrete Dynamical Systems: proceeding of the 9th international conference, World Scientific Publishing, Singapore (2005).
    [170] W. Kinzel and G. Reents, Physics by computer: programming physical problems using Mathematica and C, Springer-Verlag, Berlin Heidelberg, 1998.
    [171]《Mthematica软件与数学教学》----梁浩云,广州,华南理工大学出版社2001.
    [172] D. James and H. Thomas, Master Simulink, Upper Saddle River, N.J. : Pearson /Prentice Hall,c2004.
    [173]《MATLAB 6工程计算与应用》--何仁斌,重庆:重庆大学出版社,2001.
    [174]《表面反应体系中若干重要非线性问题的理论研究》,侯中怀,合肥:中国科技大学博士论文,2000。
    [175]《反应扩散系统中的斑图动力学》,欧阳颀,上海:上海科技教育出版社,2000。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700