用户名: 密码: 验证码:
具扩散的两种群互惠模型解的若干性质
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代科学技术与社会的发展,无论是在工程、医学、生态等自然科学领域,还是在经济、金融等社会科学领域,数学都起着重要的作用。特别地,数学在生态学中的作用日益重要。对于生态学中产生的有趣问题,数学可以为其提供模型和方法去帮助理解。反过来再由生态学去检验数学模型的正确性。目前已有大量的工作研究了生态学中复杂的模型,其中的许多模型可以用非线性抛物和椭圆型偏微分方程组来描述。
     本文将讨论来自生态领域中的反应扩散方程组,为使本文更具可读性和系统性。本文将紧紧围绕描述两种群互惠关系的模型,对有关的数学问题进行深入系统地研究。全文由五个部分组成。
     第一部分,我们简要地介绍与本文所研究的问题有关的背景知识和研究工作的发展概况。
     第二部分,我们考虑了互惠模型中的一个具有自由边界的拟线性抛物方程组。通过采用拉直边界的方法,结合Schauder不动点理论给出了古典解的局部存在唯一性。然后利用先验估计给出了全局解的存在性。同时还对自由边界的渐近性态进行了细致的刻划。结论表明,在种群内部竞争强时,该自由边界问题有全局的慢解,而当种群内部竞争弱时,存在爆破解和全局快解。
     第三部分,考察具有自扩散和交错扩散的强耦合椭圆问题。为克服强耦合扩散项带来的困难,我们通过变换将强耦合椭圆问题转化为弱耦合方程组,然后利用上下解和单调迭代的方法给出其共存解。结果表明,当种群的出生率大而且自扩散和种群内部竞争强时,至少存在一个共存解。最后,通过一个简单数值算例对理论结果进行模拟。
     由于受到季节更替的影响。生物的出生率、死亡率、种群的相互影响以及环境的容纳量呈现出周期性变化。所以,可以考虑用周期的非线性扩散方程组来描述生态模型。因此,在第四部分,我们重点讨论系数为周期函数的两种群Lotka-Voltcrra互惠模型.考察了Robin边界条件下该反应扩散系统的T周期解的存在性。给出了该问题的一个极大T周期解和极小T周期解。同样地,在这一部分我们也给出了数值算例来描绘模型解的周期性。
     非线性扩散方程组的爆破理论也是偏微分方程的重要内容之一。第五部分研究了含自扩散的两种群抛物模型。首先给出了全局解的存在性。为了方便阅读,我们先回顾了不含自扩散模型的爆破结论,在此基础上,给出了相应的含自扩散的抛物模型的解的爆破条件。通过复杂的计算。最终给出了解在有限时刻爆破的充分条件,并且也给出了一个爆破解的数值模拟。
     最后,我们在总结上述结论的基础上,对今后的研究工作做进一步的思考。
With the development of modern science and technology,mathematics has been extensively applied both in natural sciences such as engineering,medicine, ecology,and in social sciences such as economics,finance.Especially,mathematics is playing an increasing important role in ecology.Ecology produces interesting problems,mathematics provides models and ways to understand them. and ecology returns to verify the mathematical models.A great deal of research has been done to sophisticated models in ecology,most models can be described mathematically by nonlinear parabolic and elliptic partial differential equations.
     This presentation is devoted to reaction diffusion systems describing ecological models.To make it more readable and systematic,we concerns primarily with two-species mutualistic models and the qualitative properties of these models are extensively studied.It consists of five parts.
     In the first part,we briefly introduce the background and history about the related work.
     The second part is concerned with a system of semilinear parabolic equations with a free boundary,which arises in a mutualistic ecological model.The local existence and uniqueness of a classical solution are obtained by straightening the free boundary and using Schauder fixed point theorem.The global existence of the solution is given by establishing a priori estimates.The asymptotic behavior of the free boundary problem is studied.Our results show that the free boundary problem admits a global slow solution if the inter-specific competitions are strong, while if the inter-specific competitions are weak there exist the blowup solution and global fast solution.
     The third part deals with strongly-coupled elliptic systems with self-diffusion and cross-diffusion.To overcome the difficulty caused by cross-diffusion,we will change the strongly-coupled problem into a weakly-coupled problem by using a translation.The existence of coexistence follows from the upper and lower solutions and corresponding iterations.Our results show that this strongly coupled mutualistic model possesses at least one coexistence state if the birth rate is big and self-diffusions and intra-specific competitions are strong.Finally,a numerical simulation is presented to illustrate the main results.
     Because of the periodicity of the birth and death rates:rates of interactions and environmental carrying capacities on seasonal scale.nonlinear periodic diffusion equations arise naturally in ecological models.In the forth part,the cooperating two-species Lotka-Volterra model with periodic coefficients is discussed. The existence and asymptotic behavior of T-periodic solutions for the periodic reaction diffusion system under homogeneous Dirichlet boundary conditions are investigated.We show that the problem admits a maximal T-periodic solution and a minimal T-periodic solution.An numerical simulation is also given to illustrate the periodicity of the model.
     The blowup theory of nonlinear diffusion equations is also one of important contents.The fifth part studies a parabolic system with diffusion and selfdiffusion in a two species mutualistic model.The global existence of the solution is given first.For the sake of convenience,we present the blowup result results for the parabolic system without self-diffusion.Then we give the blowup result of the corresponding parabolic equation with self-diffusion and finally the sufficient conditions are given for the parabolic system with self-diffusion to blow up in finite time by complex calculations.An numerical simulation is also given to illustrate the blowup results.
     Finally,by summing up the given conclusions:we try to make further consideration for future research.
引文
[1]S.Ahmad,A.C.Lazer,Asymptotic behavior of solutions of periodic competition diffusion systems,Nonlinear Anal.,13:263-283,1989.
    [2]I.Ahn,L.Li,Positive solutions of certain elliptic systems with density dependent diffusions,Proc.Roy.Soc.Edinburgh Sect.A,125:1031-1050,1995.
    [3]P.Alvarez Caudevilla,J.L6pez-G(?)mez,Metasolutions in cooperative systems,Nonlinear Anal.:RWA,9:1119-1157,2008.
    [4]A.L.Amadori,J.L.Vazquez,Singular free boundary problem from image processing,Math.Models Methods Appl.Sci.,15:689-715:2005.
    [5]H.Amann,Periodic solutions of semilinear parabolic equations,Nonlinear Analysis,Academic Press,New York,1-29,1978.
    [6]H.Amann,Dynamic theory of quasilinear parabolic equations-i,absract evolution equations,Nonlinear Anal.:TMA,12:895-919,1988.
    [7]H.Amann,Dynamic theory of quasilinear parabolic equations-i,global existence,J.Math.Z.,202:219-250,1989.
    [8]H.Amann,Dynamic theory of quasilinear parabolic equations-i,reactiondiffusion,Differential Integral Equations,3:13-75.1990.
    [9]D.W.Bange,Periodic solutions of a quasilinear parabolic differential equation,J.Differential Equations,17:61-72,1975.
    [10]M.Bogoya,R.Ferrcira.J.D.Rossi,A nonlocal nonlinear diffusion equation with blowing.up boundary conditions,J.Math.A nal.Appl.,337:1284-1294,2008.
    [11]J.Barrett..J Blowey,Finite element approximation of a nonlinear crossdiffusion population model.Numer.Math.:202:219-250,1989.
    [12]K.J.Brown,P.Hess,Positive periodic solutions of predator-prcy reactiondiffusion systems,Nonlinear Anal.:TMA,16:1147-1158,1991.
    [13]B.Chen,R.Peng:Coeexistence states of a strongly coupled prey-predator model,J.Differential Equations,18:154-166,2005.
    [14]H.T.Chen,H.C.Yin,A note on the elliptic equation method:Communications in Nonlinear Science and Numerical Simulation,13:547-553,2008.
    [15]L.Chen,A.J(u|¨)ngel,Analysis of multi-dimensional parabolic population model with strong cross-difusion,SIAM J.Math.Anal.,36:301-322,2004.
    [16]W.Y.Chen,R.Peng,Stationary patterns created by cross-diffusion for the competitor-competitor-mutualist model,J.Math.Anal.Appl.:291:550-564,2004.
    [17]X.F.Chen,A.Friedman.A free boundary problem arising in a model of wound healing,SIAM J.Math.Anal.,32:778-800,2000.
    [18]X.F.Chen,A.Friedman,A free boundary problem for an elliptic-hyperbolic system:An application to tumor growth,SIAM J.Math.Anal.,35:974-986,2003.
    [19]M.Delgado,M.Montenefro,A.Su(?)rez,A Lotka-Volterra symbiotic model with cross-diffusion.J.Differential Equations,246:2131-2149,2009.
    [20]X.Ding,F.Wang,Positive periodic solution for a semi-ratio-dependent predator-prey system with diffusion and time delays,Nonlinear Anal.:RWA,9:239-249,2008.
    [21]Y.H.Du,Positive periodic solutions of a competitor-competitor-mutualist model,Differential Integral Equations,19:1043-1066,1996.
    [22]M.Eseobedo,M.A.Herrero,Boundedness and blow up for a semilinear reaction-diffusion system,J.Differential Equations,89:176-202,1991.
    [23]W.Feng,X.Lu,Asymptotic periodicity/in logistic equations with discrete delays,Nonlinear Anal.:TMA,26:171-178.1996.
    [24]M.Fila.P.Souplet,Existence of global solutions with slow decay and unbounded free boundary for a superlinear stefsn problem,Interface and Free Boundary,3:337-344,2001.
    [25]A.Friedman,Partial differential equations of parabolic type,Prentice-Hall,Englewood Cliffs,NJ,1964.
    [26]A.Friedman,Y.S.Tao,Nonlinear stability of the Muskat problem with capillary pressure at the free boundary,Nonlinear Anal.:TMA,53:45-80,2003.
    [27]S.M.Fu,R.Y.Ma,Existence of a global coexistence state for periodic competition diffusion systems,Nonlinear Anal.:TMA,28:1265-1271,1997.
    [28]H.Fujita,On the blowing up of solutions of the Cauchy problem for u_t =Δu + u~(1+α),J.Fac.Sci.Univ.Tokyo Sect.IA Math.,13:105-113,1996.
    [29]G.Galiano,A.J(u|¨)ngle,M.Garz(?)n,Semi-discretization intime and nunerical convergence of solutions of a nonlinear cross-diffusion population model,Nurner.Math.,93:655-673,2003.
    [30]Z.H.Ge,L.Y.Song,Y.N.He,Traveling wavefronts for a two-species ratiodependent predator-prey system with diffusion terms and stage structure,Nonlinear Anal.:RWA,10:1691-1701,2009.
    [31]H.Ghidouchc,P.Souplet,D.Tarzia,Decay of global solutions,stability and blow-up for a reaction-diffusion problem with free boundary,Proc.Am.Math.Soc.,129:781-792:2001.
    [32]Z.M.Guo,Coexistence states for systems of mutualist species,J.Math.Anal.Appl.,303:61-80.2005.
    [33]J.S.GUo,B.Hu,Blowup behavior for a nonlinear parabolic equation of nondivergenee form.Nonlinear Anal.:TMA,61:577-590,2005.
    [34]D.Hilhorst,M.Mimura,R.Schatzle,Vanishing latent heat limit in a stefanlike problem arising in biology,Nonlinear Anal.:RIGA,4:261-285,2003.
    [35]D.Horstmann.Remarks on some Lotka-Volterra type cross-diffusion models,Nonlinear Anal.,8:90-117,2007.
    [36]J.Jorn(?),The diffusive Lotka-Voltrerra oscillating system,J.Theor.Biol.,65:133-139,1977.
    [37]Z.Jorn(?),S.Carrel,Liapunov stability of the diffusive Lotka-Voltrerra equations,Math.Biosci.,37:51-61,1977.
    [38]K.I.Kim,Z.G.Lin,A free boundary problem for a parabolic system describing an ecological model,Nonlinear Anal.:RWA,10:428-436,2009.
    [39]K.I.Kim,Z.G.Lin,Coexistence of three species in a strongly coupled elliptic system,Nonlinear Anal.:TMA,55:313-333,2003.
    [40]K.I.Kim,Z.G.Lin,Blow-up in a three-species cooperating model,Applied Mathematics Letters,17:89-94,2004.
    [41]K.I.Kim,Z.G.Lin,Blowup estimates for a parabolic system in a threespecies cooperating model,J.Math.Anal.Appl.,293:663-676,2004.
    [42]D.Kinderlehrer,L.Nirenberg,Tthe smoothness of the free boundary in the one phase stefan problem,Comm.Pure Appl.Math.,31:257-282,1978.
    [43]Ju.S.Kolesov.Periodic solutions of quasilinear parabolic equations of second order,Trans.Moscow Math.Soc..21:114-146,1970.
    [44]P.Korman,A.Leung,On the existence and uniqueness of positive steady states in the voltcrra-lotka ecological models with diffusion,Appl.Anal.,26:145-160.1987.
    [45]O.A.Ladyzenska,V.A.Solonnikov,N.N.Ural:ceva.Linear and quasilinear equations of parabolic type,Amer.Math.Soc.,Providence,RI,1968.
    [46]D.Le.Cross-diffusion systems on n spatial dimensional domains,Indiana Univ Math J,51:625-643,2002.
    [47]A.W.Lcung,L.A.Ortega,Existence and monotone scheme for time-periodic nonquasimonotone reaction-diffusion systems:Application to autocatalytic chemistry,J.Math.Anal.Appl.,221:712-733,1998.
    [48]B.P.Liu,C.V.Pao,Periodic solutions of coupled semilinear parabolic boundary value problems,Nonlinear Anal.:TMA,6:237-252,1982.
    [49]L.Li,A.Ghoreishi,On positive solutions of general nonlinear elliptic symbiotic interacting systems,Appl.Anal.,40(4):281-295,1991.
    [50]T.H.Li,D.Wang,Blowup phenomena of solutions to the Euler equations for compressible fluid flow,J.Differential Equations,221:91-101,2006.
    [51]W.T.Li,X.P.Yan,C.H.Zhang,Stability and hopf bifurcation for a delayed cooperation diffusion system with dirichlet boundary conditions:Chaos,Solitons and Fractals,38:227-237,2008.
    [52]G.M.Lieberman,Time-periodic solutions of quasilinear parabolic equations,J.Math.Anal.Appl.,264:617-638,2001.
    [53]Z.G.Lin,A free boundary problem for a predator-prey model,Nonlinearity,20:1883-1892,2007.
    [54]J.Lopez-Gomez,R.Pardo San Gil,Coexistence regions in lotka-volterra models with diffusion,Nonlinear Anal.:TMA,19:11-28,1992.
    [55]Y.Lou,Necessary and sufficient condition for the existence of positive solutions of certatin cooperative system,Nonlinear Anal.:RWA,26:1079-1095,1996.
    [56]Y.Lou,A strongly coupled predator-prey system with non-monotonic functional response,Nonlinear Anal.:TMA,67:1966-1979,2007.
    [57]Y.Lo(?),M.Salom(?),W.M.Ni,On 3×3 Lotka-Volterra competition system with cross-diffusion,Discrete Contin.Dynam.Systems,67:1966-1979.2007.
    [58]Y.Lou,W.M.Ni,Diffusion,self-diffusion and crossodiffusion,J.Differential Equations,131:79-131,1996.
    [59]Y.Lou,W.M.Ni,Diffusion,vs.cross-diffusion:An elliptic approach,J.Differential Equations,154:157-190,1999.
    [60]Y.Lou;T.Nagylaki,W.M.Ni,On diffusion-induced blowups in a mutualistic model,Nonlinear Anal.:TMA,45:329-342,2001.
    [61]Y.Lou,W.M.Ni,Y.Wu,On the global existence of a cross-diffusion system,Discrete Contin.Dynam.Systems,4:193-203,1998.
    [62]Q.Liu,Y.X.Li,H.J.Gao,Uniform blow-up rate for a nonlocal degenerate parabolic equations,Nonlinear Anal.:TMA,66:881-889,2007.
    [63]Z.H.Liu,L.Zhou,The spinor Ginzburg - Landau model in dimension three,Appl.Math.Comp.,207:448-461,2009.
    [64]X.Lu,W.Feng,Periodic solution and oscillation in a competition model with diffusion and distributed delay effect,Nonlinear Anal.:TMA,27:699-709,1996.
    [65]H.Malchow,S.V.Petrovskii,Dynamical stabilization of an unstable equilibrium in chemical and biological systems,Mathematical and Computer Modelling,36:307-319,2002.
    [66]J.Mawhin,Equivalence theorems for nonlinear operator equations and coincidence degree theory for some mappings in locally convex topological vector spaces,J.Differential Equations,12:610-636.1972.
    [67]A.K.Mclikulov,E.V.Radkcvich,Boundary Value Problems with Free Boundary,FAN,Tashkent,1988.
    [68]W.Mcrz,P.Rybka,A free boundary problem describing reaction-diffusion problems in chemical vapor infiltration of pyrolytic carbon,J.Math.Anal.Appl.,292:571-588,2004.
    [69]M.Mimura,Y.Yamada,S.Yotsutani,A free boundary problem in ecology,Japan J.Appl.Math.,2:151-186,1985.
    [70]M.Mimura,Y.Yamada,S.Yotsutani,Stability analysis for free boundary problems in ecology,Hiroshima Math.J.,16:477-498.1986.
    [71]M.Mimura,Y.Yamada,S.Yotsutani,Free boundary problems for some reaction-diffusion equations,Hiroshima Math.J.,17:241-280,1987.
    [72]M.Mimura,K.Kawasaki,Spatial segregation in competitive interactiondiffusion equations,J.Math.Biol.,9:49-64,1980.
    [73]M.Mimura,M.Tabata,Y.Hosono,Multiple solutions of two point boundary value problems of Neumann type with small parameters,SIAM J.Math.Anal.,11:613-631,1980.
    [74]T.Malolepszy,W.Okrasinski,Conditions for blow-up of solutions of some nonlinear Volterra integral equation,J.Comput.Appl.Math.,205:744-750,2007.
    [75]N.Mizoguchi,H.Ninomiya,E.Yanagida,On the blowup induced by diffusion in nonlinear systems,J.Dyn.Diff.Eqns.,10:619-638,1998.
    [76]N.Mizoguchi,Blowup rate of solutions for a semilinear heat equation with the Neumann boundary condition,J.Differential Equations,193:212-238,2003.
    [77]H.Nie,J.H.Wu,Positive solutions of a competition model for two resources in the unstirred chemostat,J.Math.Anal.Appl.,355:231-242,2009.
    [78]M.N.Nkashama,Semilinear periodic-parabolic equations with nonlinear boundary conditions,J.Differential Equations,130:377-405,1996.
    [79]J.R.Ockendon;W.R.Hodgkins,Moving bonndary problems in heat flow and diffusion,Oxford:Clarendon Press,England,1975.
    [80]O.A.Oleinik,On a method of solution of a general stefan problem,Dokl.Akad.Nauk USSR,135:1054-1057,1960.
    [81]C.V.Pao,Nonlinear Parabolic and Elliptic Equations,Plenum Press.New York,1992.
    [82]C.V.Pao,Strongly coupled elliptic systems and applications to lotkavolterra modcls with cross-diffusion,Nonlinear Anal.:TMA,60:1197-1217,2005.
    [83]C.V.Pao,Pcriodic solutions of parabolic systems with nonlincar boundary conditions,J.Math.Anal.Appl.,234:695-716,1999.
    [84]C.V.Pao,Periodic solutions of parabolic systems with time delays,J.Math.Anal.Appl.,251:251-263,2000.
    [85]C.V.Pao,Periodic solutions of systems of parabolic equations in unbounded Domains,Nonlinear Anal.:TMA,40:523-535,2000.
    [86]C.V.Pao,Stability and attractivity of periodic solutions of parabolic systems with time delays,J.Math.Anal.Appl.,304:423-450,2005.
    [87]M.Pascual,H.Caswell,Environmental heterogeneity and biological pattern in a chaotic predator-prey system,J.Theoretical Biology,185:1-13,1997.
    [88]M.Pedersen,Z.G.Lin,Stationary.atterns in one-predator,two-prey models,Differential Integral Equations,14:605-612,2001.
    [89]P.Peter,M.X.Wang,Non-constant positive steady states of a predator-prey system with non-monotonic functional response and diffusion,Proc.London Math.Soc.,88(1):135-157,2004.
    [90]F.Reitich,A.Friedman,Nonlinear stability of a quasi-state stefan problem with surfacc tension:A continuation approach,Ann.Scuola Norm.Sup.Pisa Cl.Sci.,30:341-401,2001.
    [91]W.H.Ruan,Positivc stcady-statc solutions of a compcting rcaction-diffusion system with large cross- diffusion coefficients,J.Math.Anal.Appl.,197:558-578.1996.
    [92]L.I.Rubinstein,The stefan problem,American Mathemalical Society,Providence,R.I.,1971.
    [93]K.Ryu,I.Ahn,Coexistence theorem of steady states for nonlinear selfcross diffusion system with competitive dynamics:J.Math.Anal.Appl.,283:46-65,2003.
    [94]K.Ryu,I.Ahn,Positive solutions of certain nonlincar elliptic systcms with self-diffusions:nondegenerate vs.degenerate diffusions,Nonlinear Anal.:TMA,63:247-259,2005.
    [95]R.Ricci,D.A.Tarzia,Asymptotic behavior of the solutions of the dead-core problem,Nonlinear Anal.:TMA,13:405-411,1989.
    [96]N.Shigesada,K.Kawasaki,E.Teramoto,Spatial segregation of interacting species,J.Theo.Biology,79:83-99,1979.
    [97]S.A.Shim,Uniform boundedness and convergence of solutions to crossdiffusion Systems,J.Differential Equations,185:281-305,2002.
    [98]S.A.Shim,Uniform boundedness and convergence of solutions to the systems with cross-diffusion dominated by self-diffusion,Nonlinear Anal.:RWA,4:65-86,2003.
    [99]P.Souplet,Blow-up in nonlocal reaction-diuffsion equations,SIAM,J.Math.Anal.,29:1301-1334:1998.
    [100]W.Sun,S.Chen,Z.M.Hong,C.P.Wang,On positive periodic solution of periodic competition Lotka-Volterra system with time delay and diffusion:Chaos,Solitons and Fractals,33:971-978,2007.
    [101]Y.S.Tao,M.J.Chen,An elliptic-hyperbolic free boundary problem modelling cancer therapy,Nonlinearity:19:419-440,2006.
    [102]Y.S.Tao,Q.Guo,Analysis and simulation of a model for intracellular drug accumulation in tumors,Appl.Math.Comp.,176:577-593,2006.
    [103]C.R.Tian,Z.G.Lin,Periodic solutions of reaction diffusion systems in a half-space Domain,Nonlinear Anal.-.RWA,9:811-821,2008.
    [104]A.Tineo,Existence of global coexistence for periodic competition diffusion systems,Nonlinear Anal,19:335-344,1992.
    [105]A.Tineo,J.Rivero,Permanence and asymptotic stability for competition lotka-voltcrra systems with diffusion,Nonlinear Anal.:RWA,4:625-637,2003.
    [106]L.Y.Tsai,Periodic solutions of nonlinear partial differential equations,Bull.Inst.Math.Acad.Sinica,5:219-247,1977.
    [107]C.Y.Wang,Existence and stability of periodic solutions for parabolic systems with time delays,J.Math.Anal.Appl.,339:1354-1361,2008.
    [108]M.X.Wang,Global existence and finite time blow up for a reactiondiffusion system,Z.Angew.Math.Phys...51:160-167,2000.
    [109]M.X.Wang,Stationary patterns of strongly coupled prey - predator models,J.Math.Anal.Appl.,292:484-505,2004.
    [110]M.X.Wang,Q.Wu,Positive solutions of a prey-predator model with predator saturation and competition,J.Math.Anal.Appl.345:708-718,2008.
    [111]Y.Wang,Convergence to periodic solutions in periodic quasimonotone reaction diffusion systems,J.Math.Anal.Appl.268:25-40,2002.
    [112]H.F.Weinberger,An example of blowup produced by equal diffusions../.Differential Equations,154:225-237,1999.
    [113]N.Xu,H.C.Yin,The weighted W~(2,p) estimate on the solution of the Gellerstedt equation in the upper half space,J.Math.Anal.Appl.,15:1148-1164,2007.
    [114]H.C.Yin,C.H.Zhou.On global transonic shocks for the steady supersonic Euler flows past sharp 2-D wedges,J.Differential Equations,In Press.
    [115]X.P.Yan:W.T.Li,Stability and hopf bifurcation for a delayed cooperative system with diffusion effects,in press.
    [116]S.J.Yang,B.Shi,Periodic solution for a three-stage-structured predatorprey system with time delay,J.Math.Anal.Appl.,341:287-294,2008.
    [117]F.H.Yi,One dimensional combustion free boundary problem,Glasgow Mathematical Journal,46:63-75,2004.
    [118]X.Q.Zhao,Global asymptotic behavior in a periodic competitor-competitor -mutualist system,Nonlinear Anal.:TMA,29:551-568,1997.
    [119]H.Zhou,Z.G.Lin,Coexistence in a strongly coupled system describing a two-species cooperative model,Applied Mathematics Letters,20:1126-1130,2007.
    [120]L.Zhou,Y.P.Fu,Periodic quasimonotone global attractor of nonlinear parabolic systems with discrete delays,J.Math.Anal.Appl.,250:139-161,2000.
    [121]陈兰荪,宋新宇,陆征一,数学生态学模型与研究方法,四川科学技术出版社,2003.
    [122]伏升茂,高海燕,竞争-竞争-互惠交错扩散模型的整体解,工程数学学报,3:481-486.2007.
    [123]黄荣里,一类与生态学竞争系统有关的自由边界问题,华南师范大学硕士学位论文,2005.
    [124]马知恩.种群生态学的数学建模与研究,安徽教育出版社,1996.
    [125]姜礼尚,陈亚浙,刘西垣:易法槐,数学物理方程讲义,高等教育出版社,2007.
    [126]谷超豪.李大潜,陈恕行,郑宋穆,谭永基:数学物理方程(第二版),高等教育出版社,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700