用户名: 密码: 验证码:
偶氮染料废水生物脱色及典型脱色产物好氧降解性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
活性黑5(reactive black5, RB5)是广泛应用于纺织行业的双偶氮染料,在生产和使用过程中产生的废水具有色度深、COD高、生物降解性能差的特点,对其废水的脱色显得很重要。此外,对氨基苯磺酸(sulfanilic acid, SA)是偶氮染料废水脱色后普遍存在的一种芳香胺类化合物。由于其含有磺酸基和氨基使其水溶性高、毒性大和结构稳定,已引起了健康和环境问题,所以在排入环境之前必须进行去除。
     本文利用从处理印染废水的活性污泥中筛选得到高效降解菌GY-1,考察了其对RB5脱色动力学特性。同时,研究了活性污泥对SA的降解性能及氨氧化细菌(Ammonium oxidizing bacteria, AOB)在SA降解中的作用,探讨了微生物燃料电池(microbial fuel cells,MFC)在处理含SA的酸性废水中的应用。本论文主要内容如下:
     1、从处理印染废水的污泥中分离得到一株可使双偶氮染料RB5很好脱色的菌株,初步鉴定该菌为肠杆菌并初步命名为GY-1;菌株GY-1的最佳生长条件为:蛋白胨为碳源、pH=10、温度为30℃、接种量为5%、装液量为50mL。
     2、肠杆菌GY-1对RB5脱色反应必须在厌氧条件下进行,最佳脱色条件为:温度为35℃,pH值为6,接种量为8mL,装液量为100mL。RB5脱色是由于菌株GY-1分泌的胞外诱导酶催化完成的。此外,菌株对其他19种染料脱色研究结果表明菌株GY-l具有广泛应用的可能性。
     3、菌株GY-1对RB5的脱色是通过微生物共代谢机理实现的,葡萄糖、淀粉、蔗糖、果糖、半乳糖、草酸和柠檬酸均可以作为RB5脱色的共代谢底物,葡萄糖作为共基质时,脱色效果较好,其最佳底物浓度为4g/L。有机氮(牛肉膏和蛋白胨)对RB5脱色具有促进作用而无机氮(硝酸钠)对RB5脱色具有明显的抑制作用。
     4、不同金属化合物对RB5脱色的影响不同:MnS04和MgS04可以促进菌株GY-1对RB5的脱色作用,而其它金属化合物对RB5脱色的活性有不同程度的抑制作用,顺序如下:Ag2SO4>CoSO4>Pb(NO3)2> HgSO4>CuSO4>FeCl3> ZnSO4>CaSO4
     5、考察了在不同因素(初始染料浓度、温度、不同电子供体)下菌株GY-1对RB5的脱色动力学实验,并研究了菌株对不同染料脱色的动力学。通过阿伦尼乌斯方程得到了染料浓度、温度和菌体浓度之间的关系,1n(C1/C0)=1-n(Mk0)-Ea/RT,计算出RB5脱色反应的活化能(Ea)为8.5kcal mol-1,指前因子(A0)为6.28×107mg1gMLSS-1h-1,并通过Michaelis-Menten方程和Eadie-Hofstee曲线得到米氏常数(Km)为24.06mg1-1,最大反应速率(Vm)为1.05mg1-1·h-1。
     6、运用在线DO监测来分析系统中SA的好氧降解情况,通过定向驯化得到好氧降解SA的活性污泥,考察不同曝气量(0-1.74L/min)、溶解氧浓度(0-7mg/L)和初始SA浓度(104-1085mg/L)对SA生物降解的影响。采用修订的Haldane基质抑制模型模拟氧气消耗速率(Oxygen uptake rate, OUR)与初始SA浓度之间的关系。结果表明OUR与SA降解速率成正线性关系(R2≥0.91)。3.3mM SA完全降解后释放出3.2mM SO42-且COD的去除率高达97.1%,表明活性污泥作用下的SA几乎可以完全矿化。与单一菌种和混合菌种系统相比,降解SA的活性污泥中存在着氨氧化细菌(Ammonium-oxidizing bacteria, AOB),SA对AOB没有明显的抑制作用。
     7、考察了不同浓度的铵离子(NH4+)对SA降解的作用,分析了在丙烯基硫脲(Allylthiourea, ATU)的作用下选择性抑制污泥中的氨氧化细菌(Ammonium oxidizing bacteria, AOB)对SA降解及铵的氧化作用。结果表明,SA的比降解速率与起始铵离子的浓度呈负线性关系。在起始铵离子浓度很高的条件下(>10mM)活性污泥中的AOB对SA的降解具有促进作用。
     8、考察了连续进水低pH(pH=3)条件下MFC生物阴极系统对SA的降解作用,其结果表明MFC生物阴极系统对SA的降解具有促进作用。此外,研究了序批式条件下不同外阻时MFC生物阴极系统对SA降解的影响及不同曝气量下SA在MFC生物阴极系统中的降解作用。结果表明在初始溶液pH为7左右时低外阻条件下(1Ω和0.5Ω2)SA的降解速率小于高外阻时(100Ω)SA的降解速率。
     总之,本文选择RB5和SA作为典型的偶氮染料及芳香胺类化合物为研究对象,从处理印染废水污泥中分离出一株可以对RB5有效脱色的肠杆菌GY-1。系统研究了肠杆菌GY-1通过共代谢使RB5脱色,对其脱色特性及脱色动力学进行了深入的研究。此外,通过驯化得到有效降解SA的活性污泥,重点研究了氧气对活性污泥降解SA的影响,通过实时监测溶解氧浓度的变化来间接反映污水中SA的含量,研究了活性污泥中共生的氨氧化细菌在SA降解中的作用。此外探讨了利用MFC生物阴极来促进酸性条件下SA的降解。本研究为肠杆菌在偶氮染料废水处理中的应用提供了理论依据,并为传统活性污泥法处理偶氮染料脱色中间体提供了新的依据和实验基础以及电化学法在酸性废水处理中应用奠定了理论和实验基础。
Reactive black5(RB5) which is widely used in textile industry is a typical disazo dye. Wastewater containing RB5should be treated before being discharged into environment as it has the features of deep color, high COD and poor biodegradability. Furthermore, sulfanilic acid is a common aromatic amine produced from decolorization of azo dyes. The negatively charged sulfonyl and amino groups of SA molecule are known to its high water solubility, high toxicity and structural stability. Due to environmental and health concerns, SA contained wastewaters need to be treated prior to its discharged into the environment.
     An Enterobacter strain (GY-1) was isolated from textile wastewater treating sludge. The kinetic of decolorization of RB5was studied. Whilst aerobic degradation of sulfanilic acid (SA) using activated sludge and the effect of ammonium-oxidizing bacteria on SA were investigated. Furthermore, degradation of SA using microbial fuel cells (MFC) was conducted. The main contents of this study are as follows.
     1、An Enterobacter strain (GY-1) with high activity of decolorization of Reactive Black5(RB5) was isolated from textile wastewater treating sludge. The optimal growth conditions are pH10, temperature30℃, inoculum5%and liquid volume50mL.
     2、Decolorization of RB5must be controlled under anaerobic condition. The optimal decolorizing conditions were35C, pH6, inoculum8mL and liquid volume100mL. The decolorization of RB5was attributed to extracellular enzymes. In addition, the strain GY-1exhibited widely decolorization as indicated by19kinds of dye decolorized by the strain GY-1.
     3、The mechanism in which bacteria GY-1decolorize RB5is cometabolism. Cometabolic substrate can be glucose, starch, sucrose, fructose, galactose, oxalic acid and citric acid, among which glucose is the best substrate of this study and the optimal concentration of substrate is4g/L. Organic compounds such as beef extract and peptone can facilitate decolorization of RB5, while inorganic compounds such as sodium nitrate had inhibitory effect on decolorization of RB5.
     4、Various metal compounds have different effects on activity of decolorization of RB5. MgSO4and MnSO4can increase the activity of decolorization of RB5. While some other compounds have inhibitory effects on the activity of decolorization of RB5. The sequence of the inhibitory effect of metal compounds on RB5decolorization is as follows: Ag2SO4> COSO4> Pb(NO3)2> HgSO4> CuSO4> FeCl3> ZnSO4> CaSO4
     5、Effects of different operation parameters (temperature and dye concentration) and various electron donors/co-substrates on decolorization of RB5by GY-1were systematically investigated to reveal the key factors that determine the performance of the azo dye decolorization. A kinetic model was established giving the dependence of decolorization rate on cell mass concentration (first-order). The rate increased with increasing temperature from20to35℃, which can be predicted by Arrhenius equation with the activation energy (Ea) of8.50kcal mol-1and the frequency factor of6.28×107mg1g-MLSS-1h-1. Michaelis-Menten kinetics and Eadie-Hofstee plot were used to determine Vmax,1.05mg l-1h-1and Km,24.06mg l-1
     6、Aerobic SA biodegradation could be monitored by real-time DO measurement. The sludge was enriched for over three months with SA (>500mg/L) as the sole carbon and energy source and dissolved oxygen (DO,>5mg/L) as the primary electron acceptor. Effects of aeration rate (0-1.74L/min), DO concentration (0-7mg/L) and initial SA concentration (104-1085mg/L) on SA biodegradation were quantified. A modified Haldane substrate inhibition model was used to obtain kinetic parameters of SA biodegradation and oxygen uptake rate (OUR). Positive linear correlations were obtained between OUR and SA degradation rate (R2>0.91). The concomitant release of near stoichiometric quantity of sulphate (3.2mmole SO42-released from3.3mmole SA) and the high chemical oxygen demand (COD) removal efficacy (97.1%) indicated that the enriched microbial consortia could drive the overall SA oxidation close to a complete mineralization. In contrast to other pure-culture systems, the ammonium released from the SA oxidation was predominately converted into nitrate, revealing the presence of ammonium-oxidizing bacteria (AOB) in the mixed culture. No apparent inhibitory effect of SA on the AOB activity (i.e. nitrification) was noted.
     7、A series of batch kinetic experiments were conducted to evaluate the effect of AOB on aerobic SA degradation in a SA-enriched activated sludge culture capable of oxidizing SA and ammonium simultaneously. To account for the effect of AOB on SA degradation, allylthiourea (ATU) was used to suppress AOB activity in the culture. The results indicated that specific SA degradation rate of the mixed culture was negatively correlated with the initial ammonium concentration (0-93mM-N, R2=0.99). The presence of AOB could accelerate SA degradation by reducing the inhibitory effect of ammonium (>10mM-N).
     8、Effects of biocathode of MFC on degradation of SA with pH3by continuous experiments were studied. The result indicated that the biocathode of MFC could facilitate degradation of SA. Furthermore, the effects of external resistance and aeration rate on degradation of SA and characteristics of biocathode were also investigated. SA degradation rate with low external resistance (0.5Ω and1Ω) was higher than that with high external resistance (100Ω).
     Overall, RB5and SA which are tipical azo dye and aromatic aimine, separately were studied in this work. The strain GY-1with high efficient decolorization of RB5was isolated from activated sludge treating dye wastewater. Decolorization of RB5by GY-1through cometabolism was investigated systimaticaly. Decolorizing characterization and kinetic were further investigated. Furthermore, activated sludge with ability of degrading SA efficiently was obtained by acclimatizing using SA as the sole carbon and energy source. The effect of dissolve oxygen (DO) on decolorization of SA by activated sludge was studied. The concentration of SA could be indicated indirectly through in-stu DO measurement. In addition, on the use of MFC to facilitate biocathodic degradation of SA under acidic condition was also carried out. This study not only provided theoretical basis for treatment of wastewater containing azo dyes,but also estabilised foundation and experimental basis for mineralization of products from decolorization of azo dyes and treatment of acidic wastewater using electrochemical method.
引文
[1]化工百科全书[M].化学工业出版社,1997,317.
    [2]化学工业部染料工业科技情报中心站编.化工产品手册染料·有机化学[M].化学工业出版社,1995.
    [3]Azmi W, Sani R.K, Banerjee U.C. Biodegradation of triphenylmethane dyes [J]. Enzyme Microbiology Technology,1998,22(2):185-191.
    [4]阮新潮,曾庆福,黎谦等.纺织印染废水处理技术进展[J].武汉科技学院学报,2001,14(2):66-71.
    [5]Pandey A, Singh P, Iyengar L. Bacterial decolorization and degradation of azo dyes [J]. International Biodeterioration & Biodegradation,2007,59:73-84.
    [6]许玫英,郭俊,岑英华,等.染料的生物降解研究[J].微生物学通报,2006,33(1):138-143.
    [7]Coughlin, M.F., Kinkle, B.K., Bishop, P.L. Degradation of acid orange 7 in an aerobic biofilm [J]. Chemosphere,2002(46):11-19.
    [8]Riu, J., Schonsee, I., Barcelo, D. Determination of sulphonated azo dyes in water and wastwater [J]. Trends in Analytical Chemistry,1997(16):405-419.
    [9]Greim, H., Ahlers, J., Bia, R. Toxicity and ecotoxicity of sulfonic acids: structure-activity relationship [J]. Chemosphere,1994,2(12):2203-2236.
    [10]李怡,何珊,曹海鹏等.孔雀石绿脱色菌恶臭假单胞菌菌株M6的分离、鉴定及其生长特性研究[J].微生物学通报,2009,36(1):57-63.
    [11]郭建博,张立辉,杨景亮等.耐盐偶氮染料脱色菌株GYW的筛选及特性[J].微生物学通报,2009,36(5):644-651.
    [12]张胜琴,陈必强,杨光等.耐碱的偶氮染料脱色菌筛选及其特性研究[J].中国生物工程杂志,2010,30(5):76-80.
    [13]程铸生,朱承炎,王雪梅.精细化学品化学(第2版).上海:华东理工大学出版社,1996.
    [14]杨惠芳.水污染防治及城市污水资源化技术.北京:科学出版社,1993.
    [15]Gorrod, J.W., Damani, L.A. Biological oxidation of nitrogen in organic molecules. Taylor & Francis Ltd,1972:171-174.
    [16]Ogawa, T., Yatome, C., Idaka, E. Biodegradation of paminoazobene by continuous cultivation of Pseudomonas pesudomallei [J]. Journal of the Society of Azo dyes and Colourists,1981(97):435-438.
    [17]Michaels, G.B., Lewis, D.L. Sorption and toxicity of azo and triphpnylmethane dyes to aquatic microbial populations [J]. Envrionmental Toxicology Chemistry, 1985,25(6):45-50.
    [18]杜晓明,刘厚田.偶氮染料分子结构特征与其生物降解性的关系[J].环境化学,1991,10(6):12-17.
    [19]戴树桂,宋文华,李彤等.偶氮染料结构与其生物降解性关系研究进展[J].环境科学进展,1996,6(4):1-9.
    [20]阎存仙.粉煤灰的综合利用[J].上海环境科学,1996,15(2):21-23.
    [21]甘光奉,甘利.无机高分子絮凝剂研究的进展[J].工业水处理,1999,19(2):6-7.
    [22]Qin J.J., Qo, M.H., Kekre, K.A. Nanofiltration for recovering wastewater from a specific dyeing facility [J]. Separation and Purification Technology,2007,56: 199-203.
    [23]Rccd, B.E., Matsumoto, M.R., Jensen, J.N. Physicochemical processes [J]. Water Environmental Research,1998,70(4):449-473.
    [24]韩洪军,刘彦忠,杜冰.铁屑-碳粒法处理纺织印染废水[J].工业水处理,1997,17(6):15-17.
    [25]安虎仁,钱易,顾夏生.染料在好氧条件下的生物降解性能[J].环境科学,1995,15(6):16-18.
    [26]肖羽堂,许建华,陈伟等.难生化降解的某丝绒印染废水处理新工艺(A20)工程应用研究[J].工业水处理,1999,19(3):14-16.
    [27]Banat I.M., Nigam P., Singh D., Marchant R. Microbial decolorization of textile dye containing effluents:A Review [J]. Bioresource Technoligy,1996,58(3): 217-227.
    [28]Wouter D, Cliona O, Freda R.H., Helena M.P. Anaerobic Treatment of textile effluents:A review [J]. Journal of Chemical Technology and Biotechnology, 1998,73(4):323-335.
    [29]徐文东,文湘华.微生物在含染料废水处理中的应用[J].环境污染治理技术与设备,2000,1(2):9-16.
    [30]陈勇,沈日华.染料废水的微生物处理法[J].应用基础与工程科学学报,1998,6(4):353-359.
    [31]张志杰.染料在厌氧塘内净化的可行性与转移规律的研究[J].环境科学学报,1993,13(4):198-404.
    [32]Duran N, Rosa MA, D'Annibale A, Gianfreda, L. Applications of laccases and tyrosinases (phenoloxidases) immobilized on different supports:a review [J]. Enzyme and Microbial Technology,2002,31(7):907-931.
    [33]Stolz A. Basic and applied aspects in the microbial degradation of azo dyes [J]. Applied Microbiology and Biotechnology,2001,56(1-2):69-80.
    [34]Heinfling A, Bergbauer M, Szewzyk U. Biodegradation of azo and phthalocyanine dyes by Trametes versicolor and Bjerkandera adusta [J]. Applied Microbiology and Biotechnology,1997,48(2):261-266.
    [35]Glenn JK, Akileswaran L, Gold MH. Manganese-Ii oxidation is the principal function of the extracellular manganese peroxidase from Phanerochaete chrysosporium [J]. Archives of Biochemistry and Biophysics,1986,251: 688-696.
    [36]Elias, A., Tzanov T, Silgia, C., Karl-Heinz, R., Artur, C.P., Georg, M.G. Decolorization and detoxification of textile dyes with a laccase from Trametes hirsute [J]. Applied and Environmental Microbiology,2000,66 (8): 3357-3362.
    [37]Claus H, Faber G, Koenig H. Redox-mediated decolouration of synthetic dyes by fungal laccases [J]. Applied Microbiology and Biotechnology,2002, 59 (6):672-678.
    [38]Itoh, K., Yatome, C., Ogawa, T. Biodegradation of antraquinone dyes by Bacillus Subtilis [J]. Bulletin of Environmental Contamination and Toxicology, 1993(50):522-527.
    [39]Liu, J., Liu, H. Degradation of azo dyes by algae. Environmental Pollution, 2000,19(3):124-128.
    [40]孙红文,黄国兰,丛丽莉等.藻类对偶氮染料的降解及定量结构生物降解性研究,中国环境科学,1999,19(4):289-291.
    [41]Bromley-Challenor KCA, Knapp JS, Zhang Z, Gray N.C.C., Hetheridge, M.J., Evans M.R. Decolorization of an azo dye by unacclimated activated sludge under anaerobic conditions. Water Research,2000,34 (18): 4410-4418.
    [42]Gingell R, Walker R. Mechanism of azo reduction by Streptococcus faecalis Ⅱ. The role of soluble flavins. Xenobiotica,1971,1:231-239.
    [43]Kudlich M, Keck A, Klein J. Localization of the enzyme system involves in anaerobic reduction of azo dyes by Sphingomonas sp. strain BN6 and effect of artificial redox mediators on the rate of azo dye reduction [J]. Applied and Environmental Microbiology,1997,63:3691-3694.
    [44]Russ R, Rau J, Stolz A. The function of cytoplasmic flavin reductases in the reduction of azo dyes by bacteria [J]. Applied and Environmental Microbiology,2000,66 (4):1429-1434.
    [45]Rau J, Stolz A. Oxygen-insensitive nitroreductases NfsA and NfsB of Escherichia coli function under anaerobic conditions as lawsone-dependent azo reductases [J]. Applied and Environmental Microbiology,2003,69 (8): 3448-3455.
    [46]Horitsu H, Tateda M., Idaka E, Tomoyeda M., Ogawa T. Degradation of p-aminoazobenzene by Bacillus subrilis. [J]. European Journal of Applied Microbial,1977,14:217-224.
    [47]Wang P K, Yuen P Y. Decolorization and biodegradation of methyl red by klebsiella Pneumonia RS-13. [J].Water Research,1996,30(7):1736-1744.
    [48]Hu T L. Decolorization of reactive azo dyes by transformation with pseudomonas luteola [J].Biosource Technoligy,1994,49:47-51.
    [49]Nishant D N, Nageswara R, Sudhir U M, Wate S.R. Decolorization of azo dyes and simulated dye bath wastewater using acclimatized microbial consortium-Biostimulation and halo tolerance. [J].Bioresource Technology, 2008,99:2552-2558.
    [50]董新姣,吴楚,林贤芬.染料脱色菌群德初筛及脱色条件的研究[J].浙江师范大学学报,1999,22(4):71-75.
    [51]徐文东,文湘华,付莉燕.偶氮染料派拉丁蓝RRN脱色细菌的选育与研究[J].环境科学学报,2001,21(4):127-132.
    [52]文湘华,徐文东,付莉燕,等.活性翠兰KN-G脱色细菌的选育与研究[J].北京建筑工程学院学报,2002,18(3):1-7.
    [53]许玫英,钟小燕,曹渭,等.脱色希瓦氏菌(Shewanwlla decolorationis)S 12T的脱色特性[J].微生物学通报,2005,32(1):5-9.
    [54]王兴祖,郑慧,程翔,等.沼泽红假单胞菌W12对活性黑5的厌氧脱色和讲解作用[J].环境工程学报,2008,2(1):6-10.
    [55]杨东虎.染料脱色细菌的筛选和脱色条件的研究[M].河北大学,2003.
    [56]闵一珏.ZE-1号印染废水脱色菌群的选育及使用条件的研究[J].环境污染与防治,1992,14(6):14-16.
    [57]Pinheiro, H.M., Touraud, E., Thomas, O. Aromatic amines from azo dye reduction:status review with emphasis on direct UVspectrophotomtric detection in textile industry wastewaters. Dyes and Pigments,2004,61(2):121-139.
    [58]Reid, T.M., Morton, K.C., Wang, C.Y., King, C.M. Multagenicity of azo dyes following metabolism by different reductive/oxidative systems [J]. Environmental Mutagenesis,1984,6(5):705-717.
    [59]周琪,赵由才.染料对人体健康和生态环境的危害[J].环境与健康杂志,2005,22(3):229-231.
    [60]李中和,祝万鹏,杨志华等.高浓度J酸废液资源化技术研究[J].环境科学,1997,18(1):17-19.
    [61]Haug, W., Schmidt, A., Nortemann, B., Hempel, D.C., Stolz, A., Knackmuss, H.J. Mineralization of the sulfonated azo dye Mordant Yellow 3 by a 6-aminonaphthalene-2-sulfonate-degrading bacterial consortium [J]. Applied Environmental Microbiology,1991,57(11):3144-3149.
    [62]Kudlich, M., Hetheridge, M.J., Knackmuss, H.J., Stolz, A. Autoxidation reactions of different aromatic o-aminohydroxynaphthalenes that are formed during the anaerobic reduction of sulfonated azo dyes. Environmental Science and Technology,1999,33(6):896-901.
    [63]Tan, N.C.G, Leeuwen, A.V., Voorthuizen, E.V., Slenders, P., Prenafeta-Boldu, F.X., Temmink, H., Lettinga, G, Field, J.A. Fate and biodegradability of sulfonated aromatic amines [J]. Biodegradation,2005(16):527-537.
    [64]Kulla, H.G. Microbial degradation of xenobioties and recalcitrant compounds. Academic Press. Inc. Ltd., London,1981.
    [65]Haug, W., Schmidt, A., Nortemann, B., Hempel, D.C., Stolz, A., Knackmuss, H.J. Mineralization of the sulfonated azo dye Mordant Yellow 3 by a 6-aminonaphthalene-2-sulfonate-degrading bacterial consortium [J]. Applied Environmental Microbiology,1991,57(11):3144-3149.
    [66]刘厚田,杜晓明,刘金齐,邹晓燕,柳若安.藻类系统降解偶氮染料的机理研究.环境科学学报,1993,13(3):332-338.
    [67]刘志培,杨惠芳,周培谨.微生物降解苯胺类的特性及其降解代谢途径.应用与环境生物学报,1999,5(8):5-9.
    [68]Khehra, M.S., Saini, H.S., Sharma, D.K., Chadha, B.S., Chimni, S.S. Biodegradation of azo dye C.I. Acid Red 88 by an anoxic-aerobic sequential bioreactor [J]. Dyes and Pigments,2006,70(1):1-7.
    [69]Xu, M.Y., Guo, J., Sun, G.P. Biodegradation of textile azo dye by Shewanella decolorationis S12 under microaerophilic conditions [J]. Applied Microbiology Biotechnology,2007(76):719-726.
    [70]Perei, K., Rakhely, G, Kiss, I., Polyak, B., Kovacs, K.L. Biodegradation of sulfanilic acid by Pseudomonas paucimobilis [J]. Applied. Microbiological. Biotechnology,2001(55):101-107.
    [71]Chung, K.T., Cerniglia, C.E.,1992. Mutagenicity of azo dyes:structure-activity relationships [J]. Mutation Research,1992(277):201-220.
    [72]Oh, S.W., Kang, M.N., Cho, C.W., Lee, M.W.,1997. Detection of carcinogenic amines from dyestuffs or dyed substrate [J]. Dyes and Pigments,1997(33): 119-135.
    [73]Topac, F.O., Dindar, E., Ucaroglu, S., Baskaya, H.S. Effect of a sulfonated azo dye and sulfanilic acid on nitrogen transformation [J]. Journal of Hazardous Materials,2009(170):1006-1013.
    [74]王玉军,骆广生,蔡卫滨等.膜萃取去除水中对氨基苯磺酸的研究[J].现代化工,2000,20(10):31-33.
    [75]罗学辉,秦炜,符钰等.络合萃取法处理磺酸类染料中间体工业废水的研究[J].化学工程,2003,31(2):51-54.
    [76]孙越,朱兆连,潘丙才等.树脂吸附法处理磺胺中间体生产废水的研究[J].化工环保,2003,23(1):9-13.
    [77]Wang, Y.Q., Zhang, J.S., Zhou, J.T., Zhang, Z.P. Biodegradation of 4-aminobenzenesulfonate by a novel Pannonibacter sp. W1 [J]. Journal of Hazardous Materials,2009,169:1163-1167.
    [78]Feigel, B.J., Knackmuss, H.J. Bacterial catabolism of sulfanilic acid via catecho-4-sulfonic [J]. FEMS Microbiology Letters,1988(55):113-118.
    [79]Feigel, B.J., Knackmuss, H.J.,1993. Syntrophic interactions during degradation of 4-aminobenzenesulfonic acid by a two species bacterial culture [J]. Archives of Microbiology,1993(159):124-130.
    [80]Perei, K., Rakhely, G., Kiss, I., Polyak, B., Kovacs, K.L. Biodegradation of sulfanilic acid by Pseudomonas paucimobilis [J]. Applied. Microbiological. Biotechnology,2001(55):101-107.
    [81]Singh, P., Birkeland, N.K., Iyengar, L., Gurunath, R. Mineralization of 4-aminobenzenesulfonate (4-ABS) by Agrobacterium sp. strain PNS-1 [J]. Biodegradation,2006(17):495-520.
    [82]Gan, H.M., Shahir, S., Ibrahim, Z., Yahya A. Biodegradation of 4-aminobenzenesulfonate by Ralstonia sp. PBA and Hydrogenophaga sp. PBC isolated from textile wastewater treatment plant [J]. Chemosphere,2011(82): 507-513.
    [83]Carvalho, M.C. Pereira, C., Goncalves, I.C., Pinheiro, H.M., Santos, A.R., Lopes, A., Ferra, M.I. Assessment of the biodegradability of a monosulfonated azo dye and aromatic amines. International Biodeterioration & Biodegradation, 2008(62):96-103.
    [84]Carvalho, C., Fernandes, A., Lopes, A., Pinherio, H., Goncalves, I. Electrochemical degradation applied to the metabolites of Acid Orange 7 anaerobic biotreatment [J]. Chemosphere,2007,67(7):1316-1324.
    [85]Santos, V., Diogo, J., Pacheco, M.J.A., Ciriaco, L., Morao, A., Lopes, A. Electrochemical degradation of sulfonated amines on SI/BDD electrodes [J]. Chemosphere,2010,79:637-645.
    [86]Bullen, R.A., Arnot, T.C., Lakemanc, J.B., et al. Biofuel cells and their development [J]. Biosensors and Bioelectronics,2006,21(11):2015-2045.
    [87]Bond, D.R., Holmes, D.E., Tender, L.M., et al. Electrode-reducing microorganisms that harvest energy from marine sediments [J]. Science,2002, 295(5554):483-485.
    [88]Lovley, D.R. Microbial fuel cells:novel microbial physiologies and engineering approaches [J]. Current Opinion in Biotechnology.2006(17):327-332.
    [89]Huang, L., Cheng, S., Chen G. Bioelectrochemical systems for efficient recalcitrant wastes treatment [J]. Journal of Chemical Technology and Biotechnology,2011(86):481-491.
    [90]Rabaey, K., Verstraete, W. Microbial fuel cells:novel biotechnology for energy generation [J]. TRENDS in Biotechnology,2005,23(6):291-298.
    [91]Pant, D., Bogaert, G.V., Diels, L., Vanbroekhoven, K. A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production [J]. Bioresource Technology.2010(101):1533-1543.
    [92]贾斌,刘志华,李晓明等.剩余污泥为染料的微生物燃料电池产电特性研究[J].环境科学.2009,30(4):1227-1231.
    [93]Mu, Y., Rabaey, K., Rozendal, R., Yuan, Z., Keller, J. Decolorization of azo dyes in bioelectrochemical systems. Environmental Science and Technology, 2009(43):5137-5143.
    [94]Li, Z., Zhang, X., Lin, Jun., Han, Song., Lei, L. Azo dye treatment with simultaneous electricity production in an anaerobic-aerobic sequential reactor and microbial fuel cell coupled system. Bioresource Technology,2010(101): 4440-4445.
    [95]Sun, J. Bi. Z., Hou, B., Cao, Y.Q., Hu, Y.Y. Further treatment of decolorization liquid of azo dye coupled with increased power production using microbial fuel cell equipped with an aerobic biocathode. Water Research,2011,45(1): 283-291.
    [1]Lee, Y.H., Pavlostathis, S.G. Decolorization and toxicity of reactive anthraquinone textile dyes under methanogenic conditions [J]. Water Research, 2004(38):1838-1852.
    [2]Padmavathy, S., Sandhya, S., Swaminathan, K., Subrahmanyam, Y.V., Chakrabarti, T., Kaul, S.N. Aerobic decolorization of reactive azo dyes in presence of various cosubstrates [J]. Chemical and Biochemical Engineering Quarterly,2003(17):147-151.
    [3]Vijaykumar, M.H., Vaishampayan, P.A., Shouche, Y.S., Karegoudar, T.B. Decolourization of naphthalene-containing sulfonated azo dyes by Kerstersia sp. strain VKY1 [J]. Enzyme and Microbial Technology,2007(40):204-211.
    [4]Banat, I.M., Nigam, P., Singh, D., Marchant, R. Microbial decolorization of textile-dye-containing effluents:a review [J]. Bioresource Technology,1996(58): 217-227.
    [5]Slokar, Y.M., Le Marechal, A.M. Methods of decoloration of textile wastewater [J]. Dyes and Pigments,1998(37):335-356.
    [6]Bae, J.S., Freeman, H.S. Aquatic toxicity evaluation of new direct dyes to the Daphnia magna [J]. Dyes and Pigments,2007(73):81-85.
    [7]Chung, K.T., Stevens, S.E.-Jr., Cerniglia, C.E. The reduction of azo dyes by the intestinal microflora [J]. Critical Reviews in Biotechnology,1992(18):175-190.
    [8]Golab, V., Vinder, A., Simonic, M. Efficiency of the coagulation/flocculation methods for the treatment of dye bath effluent [J]. Dyes and Pigments,2005(67): 93-97.
    [9]Saxe, J.P., Lubenow, B.L., Chiu, P.C. Enhanced Biodegradation of Azo Dyes Using an Integrated Elemental Iron-Activated Sludge System:Ⅱ. Effects of Physical-Chemical Parameters [J]. Water Environment Research,2006(78): 26-30.
    [10]Alinsafi, A., Evenou, F., Abdulkarim, E.M., Pons, M.N., Zahraa, O., Benhammou, A., Yaacoubi, A., Nejmeddine, A. Treatment of textile industry wastewater by supported photocatlysis [J]. Dyes and Pigments,2007(74):439-445.
    [11]Stolz, A. Basic and applied aspects in the microbial degradation of azo dyes [J]. Applied Microbiology and Biotechnology,2001(56):69-80.
    [12]Pieper, D.H., Reineke, W. Engineering bacteria for bioremediation [J]. Current Opinion in Biotechnology,2000(11):262-270.
    [13]Xu, Y.Z., Lebrum, R.E. Treatment of textile dye plant effluent by nanofiltration membrane [J]. Separation Science and Technology,1999(34):2501-2519.
    [14]Asgher, M., Kausar, S., Bhatti, H.N., Shah, S.A.H., Sarbolouki, M.N. Optimization of medium for decolorization of Solar golden yellow R direct textile dye by Schizophllim commune IBL-06 [J]. International Biodeterioration & Biodegradation,2008(61):189-193.
    [15]Martins, M.M., Cardoso, M.H., Queiroz, M.J., Ramalho, M.T., Oliveira-Campos, A.M. Biodegradation of azo dyes by the yeast Candida zeyalnoides in bath aerated cultures [J]. Chemosphere,1999(38):2455-2460.
    [16]Daneshvar, N., Khataee, A.R., Rasoulifard, M.H. Pourhassan, M. Biodegradation of dye solution containing Malachie Green:optimization of effective parameters using Taguchi method [J]. Journal of Hazardous Materials,2007(143):214-219.
    [17]Verma, P., Madamwar, D. Decolorization of synthetic dyes by a newly isolated strain of Serratia marcescens [J]. World Journal of Microbiology and Biotechnology,2003(19):615-618.
    [18]Pandey, A., Singh, P., Iyengar, L. Bacterial decolorization and degradation of azo dyes [J]. International Biodeterioration & Biodegradation,2007(59):73-84.
    [19]Wang, X.Z., Cheng, X., Sun, D.Z. Autocatalysis in Reactive Black 5 biodecolorization by Rhodopseudomonaspalustris W1 [J]. Applied Microbiology and Biotechnology,2008(80):907-915.
    [20]Wang, X.Z., Chen, X., Sun, D.Z., Qi, H. Biodecolorization and partial mineralization of Reactive Black 5 by a strain of Rhodopseudomonas palustris [J]. Journal of Environmental Sciences,2008(20):1218-1225.
    [21]Khalid, A., Arshad, M., Crowley, D.E. Accelerated decolorization of structurally different azo dyes by newly isolated bacterial strains [J]. Applied Micobiolology and Biotechnology,2008(78):361-369.
    [22]巴迎迎,张通,吕静等.一株碱性脱除硫酸盐细菌的筛选及其生长特性研究[J].环境工程学报,2009,3(9):1639-1642.
    [23]李杏,项学敏,周集体等.耐盐菌对偶氮染料酸性红B的脱色研究[J].环境科学学报,2007,27(10):1737-1642.
    [1]Leisinger, T., Cook, A.M., Hunter, R., Nuesh, J. Microbial degradation of xenobiotic and recalcitrant compounds, In:FEMS symposium 12. Academic Press, London,1981.
    [2]Zimmermann, T., Kulla, H.G., Leisinger, T. Properties of purified Orange II azoreductase, the enzyme initiating azo dyes degradation by Pseudomonas KF46 [J]. European Journal of Biochemistry,1982,129:197-203.
    [3]黄丽萍,周集体,杨风林,王竞.菌株HP3降解溴氨酸特性研究[J].大连理工大学学报,2000,40(5):557-561.
    [4]付莉燕,文湘华,徐丽婕,钱易.活性翠蓝生物降解性能的实验研究[J].环境科学,2001,22(4):100-103.
    [5]Yang, L. Biodegradation of dispersed diesefuel under high salinity conditions [J]. Water Research,2000,34(13):3303-3314.
    [6]刘铁汉,周培瑾.嗜盐微生物.微生物学通报[J].1996,126(3):232.
    [7]邹士洋,张建平,伍俊荣,丁冰泉,黄富民.生物技术处理高含盐废水的研究进展,2008,28(11):1-4.
    [8]Zollinger, H. Color chemistry-syntheses, properties and applications of organic dyes pigments [M]. New York:Wile-VCH,2003.
    [9]Wuhrman, K., Mechsner, K., Kappeler, T. Investigation on rate-determining factors in microbial reduction azo dyes [J]. Microbial Biotechnology,1980, 9(4):325-338.
    [10]Mustafa I., Delia, T.S. Effect of oxygen on decolorization of azo dyes by Escherichia coli and Pseudomonas sp. and fate of aromatic amines [J]. Process Biochemistry,2003,38:1183-1192.
    [11]Chang, J.S., Kuo, T.S. Kinetics of bacterial decolorization of azo dye with Escherichia coil NO3 [J]. Bioresource Technology,2000,75:107-111.
    [12]Pearce, C.I., Loyd, J.R., Guthrie, J.T. The removal of color from textile wastewater using whole bacterial cell:a review [J]. Dyes and Pigment,2003, 11:262-270.
    [13]Chung, K.T., Fulk, G.E., Egan, M. Reduction of azo dyes by instential anaerobes. Applied Environmental Microbiology,1978,35(3):175-90.
    [14]Wang, X.Z., Chen, X., Sun, D.Z. Autocatalysis in Reactive Black 5 biodecolorization by Rhodopseudomonas palustris W1 [J]. Applied Microbiology and Biotechnology,2008,80:907-15.
    [15]Zhang, C., Zeng, G.M., Yuan, L., Yu, J., Li, J.B., Huang, G.H., Xi, B.D., Liu, H.L. Aerobic degradation of bisphenol a by Achromobacter xylosoxidans strain B-16 isolated from compost leachate of municipal solid waste [J]. Chemosphere,2007,68:181-190.
    [16]Dafale, N., Rao, N.N., Meshram, S.U., Wate, S.R. Decolorization of azo dyes and simulated dye bath halo wastewater using acclimatized microbial consortium biostimulation and halo tolerance [J]. Bioresource Technology, 2008,99:2555-2558.
    [17]李杏,项学敏,周集体等.耐盐菌对偶氮染料酸性红B的脱色研究[J].环境科学学报,2007,27(10):1737-1642.
    [18]姜炜,吕彤,吴赞敏,翁亮.微生物的选择及对染料废水脱色的研究[J].染整技术,2006,28(12):26-29.
    [19]Dong. X.L., Zhou, J.T., Liu, Y. Peptone-induced biodecolorization of Reactive Brilliant Blue (KN-R) by Rhodocyclus gelatinosus XL-1 [J]. Process Biochemistry,2003,39:89-94.
    [20]Wang, X.Z., Cheng, X., Sun, D.Z. Autocatalysis in Reactive Black 5 biodecolorization by. Rhodopseudomonas palustris Wl [J]. Applied Microbiology and Biotechnology,2008,80:907-915.
    [21]Wang, X.Z., Chen, X., Sun, D.Z., Qi, H. Biodecolorization and partial mineralization of Reactive Black 5 by strain of Rhodopseudomonas palustris [J]. Journal of Environmental Sciences,2008,20:1218-1225.
    [22]Yu, J., Wang, X.W., Yue, P.L. Optimal decolorization and kinetic modeling of synthetic dyes by pseudomonas strains [J]. Water Research,2008,35: 3579-3586.
    [23]Zissi, U., Lyberatos, G. Azo-dye biodegradation under anoxic conditions [J]. Water Science and Technology,1996,34:495-500.
    [1]Wuhrmann, K., Mechsner, K., Kappeler, T. Investigation on rate-determining factors on the microbial reduction of azo dyes. Eur. J. Applied Microbiology and Biotechnology,1980(9):325-338.
    [2]Haug, W., Schmidt, A.., Nortemann, B., Hempel, D., Stolz, A., Knackmuss, H. Mineralization of sulfonated azo dye Mordant Yellow 3 by a 6-aminonaphthalene-2-silfonate-degrading bacterial consortium. Applied Environmental Microbiology,1991,57(11):3144-3149.
    [3]Banat, I.M., Nigam, P., Singh, D. Marchant, R. Microbial decolorization of textile-dye-containing effluents:a review. Bioresource Technology,1996(58): 217-227.
    [4]Carliell, C.M., Barclay, S.J., Naidoo, N., Buckley, C.A., Mulholland, D.A., Senior, E. Microbial decolorization of a reactive azo dye under anaerobic conditions. Water SA,1995(21):61-69.
    [5]Hu, T.L. Degradation of azo dye RP2B by Pseudomonas luteola. Water Science and Technology,1998,38(4-5):299-306.
    [6]Van der Zee, F.P., Lettinga, G, Field, J.A. Azo dye decolourization by anaerobic granular sludge. Chemosphere,2001,75:1169-1176.
    [7]Watabe, T., Ozawa, N., Kobayashi, F. Reduction of sulphonated water-solube azo dyes by micro-organisms from human faeces. Food and Chemical Toxicology,1980(18):325-338.
    [8]Harmer, C., Bishop, P. Transformation of azo dye AO-7 by wastewater biofilms. Water Science and Technology,1992,26(3-4):627-636.
    [9]Yu, J., Wang, X., Yue, L.,2001. Optimal decolorization and kinetic modeling of synthetic dyes by Pseudomonas strains. Water Research,2001,35(15): 3579-3586.
    [10]Van der Zee, F.P., Bowman, R.H., Strik, D.P.., Lettinga, G, Field, J.A. Application of redox mediators to accelerate the transformation of reactive azo dyes in anaerobic bioreactors. Biotechnology and Bioengineering,2001, 75(6):691-701.
    [11]Albuquerque, M.G.E., Lopes, A.T., Serralheiro, M.L., Novais, J.M., Pinheiro, H.M. Biological sulphate reduction and redox mediator effects on azo dye decolourisation in anaerobic-aerobic sequencing-batch reactors. Enzyme Microbiology and Technology,2005,36:790-799.
    [12]高廷耀,顾国维.水污染控制工程(下册)第二版.北京:高等教育出版社.2004.
    [1]O'Neill, C., Hawkes, F.R., Lourenco, N.D., Pinheiro, H.M., Delee, W. Colour in textile effluents-sources, measurements, discharge, contents and simulation:a review [J]. Journal of Chemical Technology and Biotechnology,1999(74): 1009-1018.
    [2]Perei, K., Rakhely, G., Kiss, I., Polyak, B., Kovacs, K.L. Biodegradation of sulfanilic acid by Pseudomonas paucimobilis [J]. Applied. Microbiological. Biotechnology,2001(55):101-107.
    [3]Chung, K.T., Cerniglia, C.E.,1992. Mutagenicity of azo dyes:structure-activity relationships [J]. Mutation Research,1992(277):201-220.
    [4]Oh, S.W., Kang, M.N., Cho, C.W., Lee, M.W.,1997. Detection of carcinogenic amines from dyestuffs or dyed substrate [J]. Dyes and Pigments,1997(33): 119-135.
    [5]Topac, F.Q., Dindar, E., Ucaroglu, S., Baskaya, H.S. Effect of a sulfonated azo dye and sulfanilic acid on nitrogen tansformation [J]. Journal of Hazardous Material,2009(170):1006-1013.
    [6]Feigel, B.J., Knackmuss, H.J. Bacterial catabolism of sulfanilic acid via catecho-4-sulfonic [J]. FEMS Microbiology Letters,1988(55):113-118.
    [7]Feigel, B.J., Knackmuss, H.J.,1993. Syntrophic interactions during degradation of 4-aminobenzenesulfonic acid by a two species bacterial culture [J]. Archives of Microbiology,1993(159):124-130.
    [8]Singh, P., Birkeland, N.K., Iyengar, L., Gurunath, R. Mineralization of 4-aminobenzenesulfonate (4-ABS) by Agrobacterium sp. strain PNS-1 [J]. Biodegradation,2006(17):495-520.
    [9]Wang, Y.Q., Zhang, J.S., Zhou, J.T., Zhang, Z.P. Biodegradation of 4-aminobenzenesulfonate by a novel Pannonibacter sp. W1 isolated from activated sludge. Journal of Hazardous Material,2009(169):1163-1167.
    [10]Gan, H.M., Shahir, S., Ibrahim, Z., Yahya A. Biodegradation of 4-aminobenzenesulfonate by Ralstonia sp. PBA and Hydrogenophaga sp. PBC isolated from textile wastewater treatment plant [J]. Chemosphere,2011(82): 507-513.
    [11]Tan, N.C.G, van Leeuwen, A., van Voorthuinzen, E.M., Slenders, P., Prenafeta-Boldu, F.X., Temmink, H., Lettinga, G., Field, J.A.,2005. Fate and biodegradability of sulfonated aromatic amines [J]. Biodegradation,2005(16): 527-537.
    [12]Carvalho, M.C. Pereira, C., Goncalves, I.C., Pinheiro, H.M., Santos, A.R., Lopes, A., Ferra, M.I. Assessment of the biodegradability of a monosulfonated azo dye and aromatic amines [J]. International Biodeterioration & Biodegradation,2008(62):96-103.
    [13]Cheng, K.Y., Ho, G., Cord-Ruwisch, R. Anodophilic biofilm catalyses cathodic oxygen reduction. Environmental Science and Technology,2010(44):518-525.
    [14]Maeda M., Itoh, A., Kawase, Y. Kinetics for aerobic biological treatment of o-cresol containing wastewaters in a slurry bioreactor:biodegradation by utilizing waste activated sludge. Biochemical Engineering Journal,2005(22): 97-103.
    [15]Garcia-Ochoa, F., Gomez, E., Santos, V.E., Merchuk, J.C. Oxygen uptake rate in microbial process:An overview. Biochemical Engineering Journal,2010(49): 289-307.
    [16]APHA, (American Public Health Association). In:Eaton, A., Clesceri, L Greenberg, A., (Eds), Standard Methods for the Examination of Water and Wastewater,19th ed. Washington, DC,1995, pp.5-15-5-17.
    [17]Pereira, R., Pereira, L., van der Zee, F.R., Alves, M.M. Fate of aniline and sulfanilic acid in UASB bioreactors under denitrifying conditions, Water Research,2011(45):191-200.
    [18]Kuhn, E.P., Suflita, J.M.,1989. Anaerobic biodegradation of nitrogen-substituted and sulfonated benzene aquifer contaminants. Hazardos Waste and Hazardous Mater,1989(6):121-134.
    [19]Razo-Flres, E., Donlon, B., Field, J., Lettinga, G. Biodegradability of N-substituted aromatics and alkylphenols under methanogenic conditions using granular sludge. Water Science and Technology,1996(33):47-57.
    [20]Kumar, N.J., Krishnamoorthi, K.P., Swaminthan, T. Studies on nitrification of aniline with acclimated activated sludge. Biotechnology and Bioengineering, 1984(26):197-202.
    [21]Than, K., Gheewala, S.H., Annachhatre, A.P. Modeling of nitrification inhibition with aniline in suspended-growth process. Water Environment Research,2002(6):531-540.
    [1]Philips, S., Wyffels, S., Sprengers, R., Verstraete, W.,2002. Oxygen-limited autotrophic nitrification/denitrification by ammonia oxidizers enables upward motion towards more favorable conditions [J]. Applied Microbiology and Biotechnology,2002(59):557-566.
    [2]Khin, T., Annachhatre, A.P. Novel microbial nitrogen removal process [J]. Biotechnology Advance,2004(22):519-532.
    [3]Ahn, Y.H.,2006. Sustainable nitrogen elimination biotechnologies:a review. Process Biochemistry,2006(41):1709-1721.
    [4]Kim, D.J., Lee, D.I., Keller, J. Effect of temperature and free ammonia on nitrification and nitrite accumulation in landfill leachate and analysis of its nitrifying bacterial community by FISH. Bioresource Technology,2006(97): 459-468.
    [5]Guo, X., Zeng, L., Li, X., Park, H.S.,2007. Removal of ammonium from RO permeate of anaerobically digested wastewater by natural zeolite. Separation Science and Technology,2007(42):3169-3185.
    [6]Singh, P., Birkeland, N.K., Iyengar, L., Gurunath, R. Mineralization of 4-aminobenzenesulfonate (4-ABS) by Agrobacterium sp. strain PNS-1 [J]. Biodegradation,2006(17):495-520.
    [7]Wang, Y.Q., Zhang, J.S., Zhou, J.T., Zhang, Z.P.,2009. Biodegradation of 4-aminobenzenesulfonate by a novel Pannonibacter sp. W1 isolated from activated sludge [J]. Journal of Hazardous material,2009(169):1163-1167.
    [8]Gan, H.M., Shahir, S., Ibrahim, Z., Yahya A. Biodegradation of 4-aminobenzenesulfonate by Ralstonia sp. PBA and Hydrogenophaga sp. PBC isolated from textile wastewater treatment plant [J]. Chemosphere,2011(82): 507-513.
    [9]Davies, L.C., Pedro, I.S., Novais, J.M., Martins-Dias, S. Aerobic degradation of acid orange 7 in a vertical-flow constructed wetland [J]. Water Research, 2006(40):2055-2063.
    [10]Texier, A.C., Gomez, J. Simultaneous nitrification and p-cresol oxidation in a nitrifying sequencing batch reactor. Water Research,2007(41):315-322.
    [11]Beristain-Cardoso, R., Gomez, J., Mendez-Pampin, R. Sulfide and ammonium oxidation, acetate mineralization by denitrification [J]. Bioresource Technology.2011(102):2549-2554.
    [12]Silva, C.D., Gomez, J., Beristain-Cardoso, R. Simultaneous removal of 2-chorophenol, phenol, p-cresol and p-hydroxybenzaldehyde under nitrifying conditions:Kinetic study [J]. Bioresource Technology,2011(102):6464-6468.
    [13]Carrera, J. Jubany, I., Carvallo, L., Chamy, R., Lafuente, J. Kinetic models for nitrification inhibition by ammonium and nitrite in a suspended and an immobilised biomass systems [J]. Process Biochemistry,2004(39):1159-1165.
    [14]Cheng, K.Y., Ho, G., Cord-Ruwisch, R. Anodophilic biofilm catalyses cathodic oxygen reduction [J]. Environmental Science and Technology,2010(44): 518-525.
    [15]Han and Levenspiel. Extended monod kinetics for substrate product and cell inhibition. Biotechnology and Bioengineering,1988(32):430-437.
    [16]APHA. Standard Method for the Examination of Water and Wastewater, seventeenth ed. American Public Health Editons Association, Washington DC, 1995.
    [1]Bullen, R.A., Arnot, T.C., Lakemanc, J.B., et al. Biofuel cells and their development [J]. Biosensors and Bio electronics,2006,21(11):2015-2045.
    [2]Bond, D.R., Holmes, D.E., Tender, L.M., et al. Electrode-reducing microorganisms that harvest energy from marine sediments [J]. Science,2002, 295(5554):483-485.
    [3]Lovley, D.R. Microbial fuel cells:novel microbial physiologies and engineering approaches [J]. Current Opinion in Biotechnology.2006(17): 327-332.
    [4]Huang, L., Cheng, S., Chen G. Bioelectrochemical systems for efficient recalcitrant wastes treatment [J]. Journal of Chemical Technology and Biotechnology,2011(86):481-491.
    [5]Rabaey, K., Verstraete, W. Microbial fuel cells:novel biotechnology for energy generation [J]. TRENDS in Biotechnology,2005,23(6):291-298.
    [6]Pant, D., Bogaert, G.V., Diels, L., Vanbroekhoven, K. A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production [J]. Bioresource Technology.2010(101):1533-1543.
    [7]贾斌,刘志华,李晓明等.剩余污泥为染料的微生物燃料电池产电特性研究[J].环境科学.2009,30(4):1227-1231.
    [8]Rozendal, R.A., Hamelers, H.V., Buisman, C.J.N. Effects of membrane cation transport on pH and microbial fuel cell performance [J]. Environmental Science and Technology,2006(40):5206-5211.
    [9]Logan, B.E. Microbial Fuel Cells; John Wiley & Sons, Inc.:New York,2008.
    [10]Zhao, F., Harnisch, F, Schroder, U., Scholz, F., Bogdanoff, P., Herrmann, I. Challenges and constraints of using oxygen cathodes in microbial fuel cells [J]. Environmental and Science and Technology,2006(40):5193-5199.
    [11]Rabaey, K., Read, S.T., Clauwaert, P., Freguia, S., Bond, P.L., Blackall, L.L., Keller, J. Cathodic oxygen reduction catalyzed by bacteria in microbial fuel cells [J]. ISMEJ,2008,1-9.
    [12]Cheng, K.Y., Ho, G, Cord-Ruwisch, R.,2010. Anodophilic biofilm catalyses cathodic oxygen reduction [J]. Environmental Science and Technology, 2010(44):518-525.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700