用户名: 密码: 验证码:
固定化微生物净化低浓度SO_2烟气研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对燃煤燃烧、金属冶炼、烟气制酸等过程产生的大量低浓度,无回收价值的SO2烟气,提出了用固定化微生物净化低浓度SO2烟气的治理技术。
     通过对城市污水处理厂氧化沟采集的菌种进行诱导驯化,培养出对SO2有较好降解性能的脱硫菌,并对脱硫菌进行了16S rRNA测序分析鉴定。完成了脱硫菌的复合固定化微生物技术的开发,进行了固定床反应器的设计以及最佳工艺条件确定。分析了固定化微生物反应器净化低浓度SO2的过程机理,并建立动力学模型。具体研究结果如下:
     在曝气量0.1m3/h,曝气时间30min,间歇时间60min,每升菌液投加硝酸钠和磷酸二氢钾溶液17.5ml情况下,对城市污水处理厂氧化沟的菌种进行诱导驯化,经过四-五天可驯化培养出生长繁殖速度快、活性高、温度和pH值范围适应宽的高效脱硫菌。它们不仅以硫代硫酸盐、亚硫酸、硫酸盐为硫源,而且还可以SO2为唯一的硫源。脱硫菌在液相降解亚硫酸根的反应速率方程符合M-M方程,最大反应速率Rmax=95818mg/(L.h),米氏常数Km=36364mg/L。体系pH值和温度对降解速率均有明显的影响,在pH=3,温度30℃时,降解速率1440mg/(L.h+)。当体系温度不高于30℃,液相降解SO32-为一级反应,其速率常数k=6.522×108exp(-5902/T),反应活化能Ea=49.07kJ/mol。
     16S rRNA基因测序分析发现,在驯化的脱硫菌株中主要含有8种优势菌,8条序列中有5条是属于16S rRNA基因片段的V2-V5可变区,有3条是属于16S rRNA基因片段的V6-V8可变区,为此分别构建了两棵系统发育树。8条序列都属于变形菌门的物种,其中4种菌属于α-变形菌纲,4种属于β-变形菌纲。系统发育分析证明上述菌种属于α-变形菌纲中的根瘤菌目(Rhizobiales),慢生根瘤菌科(Bradyrhizobiaceae),红游动菌属(Rhodoplanes)的物种。它们之间相互协同,行使着微生物脱硫的生物学功能。
     用5%海藻酸钠包埋脱硫菌和0.3g活性炭,在4%氯化钙溶液中固定14h,然后再在0.06mol/L已二胺溶液里交联40min,可以制备得到相对活性251.3%,机械强度高,收缩率小的固定化微生物小球。与游离脱硫菌相比,固定化的脱硫菌具有更好的耐酸碱、热稳定性和抗毒物毒性冲击能力,能满足反应器长期运行的要求。固定化脱硫菌在液相降解亚硫酸根的反应速率方程符合M-M方程,最大反应速率rmax=3311mg/(L.h),米氏常数Km=6613mg/L。固定化微生物小球传质分析表明,对直径不大于2.5mm的固定化微生物小球在液相降解亚硫酸根的梯勒(Thiele)模数(φ)不大于0.628,即在液相以反应控制为主,但存在一定扩散影响。与游离脱硫菌降解S032-(pH=3,T=30℃)速率相比,使用直径为2.5mm的固定化微生物小球可以近似达到游离菌的降解速率。在系统温度小于30℃,液相降解S032-为一级反应,其速率常数k=1.62×109exp(-6077.7/T),反应活化能为Eα=50.53(kJ/mol)。这说明脱硫菌固定化后降解机理与游离菌的降解机理相同。
     用固定床反应器净化低浓度SO2烟气不仅反应器的启动时间短,而且在间歇喷淋pH=3-4的循环液,操作温度20℃,气体停留时间8s,固定床反应器净化S02气体的效率大于96%,最大生化去除量达6kg/(m3.h)。这一数值明显高于生物膜填料塔和游离菌的生化去除量。当反应器中的固定化微生物达到饱和后,可以采取通空气和适当喷淋液体进行固定化微生物活性的恢复,实现系统连续稳定的操作。该固定床反应器应用于处理S02浓度为2000mg/m3的实际燃煤烟气,反应器运行稳定,净化效率接近100%。这说明用固定床反应器净化低浓度SO2烟气是可行。
     固定化脱硫菌在固定床反应器降解低浓度S02时,微生物的生长动力学方程与S02气体的浓度(Cg)有关,即rx=(?).而基质消耗动力学方程还与固定床的空隙率有关,即-rs=(1-ε)·(?)。其降解过程机理为SO2从气相通过扩散进入液相,进而又经扩散进入固定化微生物表面供给微生物的生命活动,整个反应体系为气、液和固三相的传质,属于非均相微生物反应过程。固定化脱硫菌净化低浓度S02气体时,气相中SO2为脱硫菌生长的唯一限制性底物。SO2的传质扩散是影响固定化微生物生化反应的主要因素之一。底物SO2在固定化微生物小球内有效扩散与固定化小球的直径相关,其浓度分布的关系式固定床反应器净化SO2过程动力学模型方程参数包括了固定化脱硫菌的性质、内扩散因素和固定床的尺寸及固定床操作条件等因素。经检验与实际检测结果较为一致。该动力学方程模型可用于生化反应器的优化和放大设计,以及对含S02烟气降解能力和效果的预测。
     论文首次通过对城市污水处理厂氧化沟采集的菌种进行诱导驯化,驯化出具有生长繁殖速度快、活性高、对S02有较好降解性能的脱硫菌群。开发出活性炭吸附-海藻酸钙包埋-已二胺交联的复合固定化制备技术。
A new removeal low concentration SO2 technology which aim at the low congcentration dioxide sulfurs (SO2) gas in the coal burning, metal smelting, producing sulfuric acid from gas in metallurgy and other SO2 gas of no recovery worth was study basis immobilization microorganism technology in this thesis. The research focused the domestication of desulfuration bacterium, the technology of preparation immobilization microorganism,16s rRNA sequencing of the desulfuration bacterium, and the operation conditionand, the desulfuration mechanism and dynamics model of removing low concentration SO2 in the fixed bed reactor filled immobilized desulfuration bacterium. The results are as follows:
     An.dominant desulfuration bacterium, which are a quick growth and propagate in a wide activation temperature and acidic condition, high activation and efficiency for removing SO2, were obtained from the oxidation ditch in city waste water treatment plant after inducement domestication by contained SO2 gas four or five day with 17.5ml (NaNO3 and KH2PO42- etc)/L(bacterium liquid) for nutriment of microorganism, at 0.1m3/h of aeration air,30min of aeration time and stop 60min. The dominant desulfuration bacterium can get their sulfur source with the thiosulfate, sulfite, sulfate, and can growth only with SO2. The reaction rate of the desulfuration bacterium degrades SO32- in aqueous solution accord with M-M equation, where the max reaction rate (rmax)=95818mg/L.h, and M-constant (Km)=36364mg/L. The pH value and temperature of system have evident effect to the degradation rate, and the maximal degradation rate is (1440mg/L.h) at pH=3, T=30℃. The degradation kinetics for SO32- is first order reaction under 30"C of the system temperature, and the reaction rate constant is k= 6.522×l08exp(-5902/T), the activation energy is=49.07kJ/mol.
     The desulfuration bacterium were studied using molecular biology based on 16S rRNA sequence comparison, and the results of the conformation or function of microbial communities with in situ hybridization and in situ PCR were exhibited. There are 8 dominant desulfuration bacterium to be found and they occupy about 70%of all microorganism. Tow phylogenetic trees were got because there are 5 bacterial strain in the V2-V5 variable region and 3 bacterial strain in the V6-V8 variable region of 16S rRNA gene segment. There are 4 desulfuration bacterium to belongα—Proteobacteria, and can be placed in Rhodoplanes, Bradyrhizobiaceae, Rhizobiales, and another 4 belong toβ-proteobacteria. The results indicated there are large of microorganism classification in the the desulfuration bacterium, and they are exertion biology function to transfer SO2 with their synergy. The discovery about the desulfuration bacterium have an important value for devolpment way of microorganism desulfuration from fuel gas.
     The immobilization desulfuration bacterium ball with 251.3%of comparatively activity, high mechanical strength and acid resistance and heat stability can be made by the technology for complexed immobilized bacterium with adsorption by activated carbon, embedded by 5%of sodium alginate, and immobilized drop in calcium chloride, then crosslinked 40 min in 0.06mol/L of hexamethylene diamine liquid. The immobilization desulfuration bacterium ball can be satisfied long period running in fixed bed, and the immobilized desulfuration bacterium degrades SO32- in aqueous solution satisfied also M-M equation as free desulfuration bacterium, and the parameter of kinetics equation: rmax=3311mg/L.h, Km=6613mg/L. The Thiele modulus (Φ) is 0.628 at 2.5mm the diameter of the mmobilized bacterium ball, and the degradation process of immobilized bacterium to SO32- is mainly controlled by reaction. The diffusion of substrate in the ball have some influenced at the diameter of the mmobilized desulfuration bacterium ball is over 3mm. The degradation rate of the mmobilized bacterium at the 25mm of ball diameter, pH=3, T=30℃is same with free desulfuration bacterium, and the degradation kinetics for SO32- is first order reaction under 30℃of the system temperature, where the reaction rate constant is k= 1.62xl09exp(-6077.7/T), the activation energy isEa=50.53 (kJ/mol). That showed the. desulfuration mechanism to SO32-is the same with that of free desulfuration bacterium.
     The fixed bed biochemical reactor with 42mm of tower diameter,100mm of high filled 25mm immobilized desulfuration bacterium ball, have a lesser startup time and a high removing SO2 efficiency over 96%and biochemical removal quantity over 6kg[SO2]/(m3.h) for low concentration SO2 gas at pH=3-4 of cycled spraying liquid,20℃of operation,8s of gas residence time. The result showed that biochemical removal quantity in fixed bed biochemical reactor is higher than that of free desulfuration bacterium. When the activity of immobilized desulfuration bacterium in fixed bed reactor is inactivation, it is effective to spray cycled liuquid and aeration air into the fixed bed reaction. When the tester plants have been used to remove SO2 of 2000mg/m3 from fuel oil tail gas and fuel coal tail gas in a catering industry, it showed that the reactor run stable, there are any SO2 to be detected at outlet (detection limit of 1mg/m3), and the removing efficiency is near to 100%. So the fixed bed biochemical reactor is possible for removal SO2 from fuel gas.
     The kinetics equation about cell growth of immobilized desulfuration bacterium in this bio-reactor is and that of substrate consumed is The mechanism of removing SO2 by fixed bed bio-reactor is that the SO2 in the gas is that the SO2 is diffluence in liquid, then diffusing into immobilized ball for desulfuration bacterium using. Which the process belong to heterogeneous microorganism reaction include mass tranfer of SO2 and other substance in gas-liquid-solid. It is discover that the SO2 is a alone restricted substance by immobilized desulfuration bacterium removal SO2 from low concentration SO2 gas, and the mass transfer of SO2 in immobilized ball is one of main factor for removing SO2. And the internal diffusion of SO2 in the ball is related with the face concentration of substrate and semidiameter of ball, and the concentration distribution in the ball can be described with The kinetics model for fixed bed bio-reaction removal SO2 can be showed as which include the character of immobilized desulfuration bacterium, internal diffusion factor, dimension of fixed bed bio-reactor, and operation condition and so on. The model prediction results have a good coherence with experiment data. So the kinetics model can provide a theory guide for optimizing of operation condition, enlarge design of the bio-reactor, and forecast of the desulfur ability.
引文
1 《全国环境统计公报》(1995年—2006年)
    2《三废治理与利用》编委会.《三废治理与利用》[M].北京:冶金工业出版社,1995
    3郝吉明,王书肖,陆永琪.燃煤SO2污染控制技术手册[M].化学工业出版社,2000.
    4 http://www.bjmu.edu.cn/xueyuan/huanjing/air.htm
    5 http://house.focus.cn/fviewmsg/1597/14824756.html
    6徐明.烟气SO2污染控制技术发展及现状[X].安徽师范大学学报.2001,24(2):87-189.
    7冯宗炜.酸雨对生态系统的影响-西南地区酸雨研究[M].中国科学技术出版社,1993
    8李珍珍.沈阳东陵公园与陨石山SO2公园污染及树木含硫量的比较分析[X].辽宁大学学报(自然科学版).2000,27(1):80-84.
    9曹桂萍,黄兵.我国SO2烟气治理技术现状及发展趋势[J].云南环境科学.2002,21(1):43-46.
    10陈兵、张学学.烟气脱硫技术研究与进展[J].工业锅炉,2002(4):6-10.
    11钟秦等.燃煤烟气脱硫脱硝技术及工程试例[M]北京:化学工业出版社,2002,25.
    12陶其鸿.锅炉烟气SO2的防治对策探讨[M].冶金环境保护.1998,19.
    13马文斗.空气污染控制工程(第二版)[M].冶金工业出版社.1994.
    14 W.R. Richard and A.B. Gregory, Flue gas desulphurization by in-duct dry scrubbing using calcium hydroxide[J],AIChE J. 1990,36:473-478.
    15董相声.燃煤电厂烟气脱硫工艺技术[J].冶金动力,2003,98(4):33-35.
    16严峻.海水烟气脱硫[J].华东电力,2001(4):42-44.
    17徐息.PAFP法烟气脱硫及硫资源综合利用技术[J].冶金环境保护,1998(1):13-14.
    18陈东,林继发.湿法烟气脱硫技术简述[J].陕西环境,2003,10(5):32-34.
    19夏益忠,李士生.缓冲二级氨吸收法处理二氧化硫尾气[J].杭州化工,2004,34(1):34-35.
    20山乐胜.应用氧化镁法烟气脱硫工艺的可行性分析[J].山东电力技术,2003(6):14-16.
    21 Kyung Sook Jung, Tim C.Keener, Soon-Jai Khang, etc. A technical and economic. Evaluation of CO2 separation from power plant flue gases with reclaimed Mg(OH)2[J]. Clean Technologies and Environmental Policy.2004,6 (3):201-212.
    22陈然振.一种副产石膏的烟气脱硫技术及装置[P],CN1213580,中国专利,1999.
    23刘忠生.一种烟气脱硫方法[P].CN1393281中国专利,2003.
    24乔力.权田电子束湿法烟气脱硫工艺[P].CN1310038,中国专利,2001.
    25冯玲,杨景玲,蔡树中.烟气脱硫技术的发展及应用现状[J].环境工程.1997,15(2):19-24.
    26白希尧,白敬冬,依成武,傅锐.用脉冲活化法治理CO2及SO2、NOx有害气体[J].环境保护.1994(7):12-16.
    27 E.J. Anthony, E.M. Bulewicz, L. Jia, Reactivation of limestone sorbents in FBC for SO2 capture[J]. Progress in Energy and Combustion Science.2007,33(2):171-210.
    28 Y. Suyadal, M. Erol, H. Oguz Deactivation model for dry desulphurization of simulated flue gas with calcined limestone in a fluidized-bed reactor[J]. Fuel.2005,84(12-13):1705-1712.
    29张颉,张泽,李雄浩等.一种W型循环流态化的干法烟气脱硫方法.CN1488428,2004.
    30 Keat Teong Lee, Subhash Bhatia. Abdul Rahman Mohamed Removal of sulfur dioxide using absorbent synthesized from coal fly ash:Role of oxygen and nitrogen oxide in the desulfurization reaction[J]. Chemical Engineering Science.2005,60(12):3419-3423.
    31 P. Davini. Investigation of the SO2 adsorption properties of Ca(OH)2-fly ash systems[J]. Fuel,1996, 75:713-716.
    32 J. Fernandez, M.J. Renedo, A. Garea, J. Viguri and J.A. Irabien, Preparation and characterization of fly.ash/hydrated lime absorbents for SO2 removal[J]. Powder Technology.1997, (94):133-139.
    33. H. Tsuchiai, T. Ishizuka, H. Nakamura, etal. Removal of sulfur dioxide from flue gas by the absorbent prepared from coal fly ash:effects of nitrogen oxide and water vapor[J]. Industrial and Engineering Chemistry Research.1996, (35):851-855.
    34 H. Tsuchiai, T. Ishizuka, H. Nakamura, T. Ueno and H. Hattori, Study of flue gas desulfurization absorbent prepared from coal fly ash:effects of the composition of the absorbent on the activity[J]. Industrial and Engineering Chemistry Research.1996, (35):2322-2326.
    35 J. Fernandez, M.J. Renedo, A. Pesquera etal. Effect of CaSO4 on the structure and use of Ca(OH)2/fly ash absorbents for SO2 removal[J]. Powder Technology.2001, (119):201-205.
    36 N. Karatepe, A.E. Mericboyu, U. Demirler and S. Kucukbayrak. Determination of the reactivity of Ca(OH)2 fly ash absorbents for SO2 removal from flue gases[J]. Thermochimica Acta.1998,(319): 171-176.
    37 T. Ishizuka, H. Tsuchiai, T. Murayama, etal. Preparation of active absorbent for dry-type flue gas desulphurization from calcium oxide, coal fly ash and gypsum[J]. Industrial and Engineering Chemistry Research.2000, (39):1390-1396.
    38 T. Ishizuka, T. Yamamoto, T. Murayama, T. Tanaka and H. Hattori, Effect of calcium sulphate addition on the activity of the absorbent for dry flue gas desulphurization[J]. Energy and Fuels.2001 (15):438-443.
    39 M.J. Renedo and J. Fernandez. Preparation, characterization and calcium utilization of fly ash/Ca(OH)2 absorbents for dry desulphurization at low temperature[J]. Industrial and Engineering Chemistry Research.2002, (41):2412-2417.
    40 B.L. Lin, S.M. Shih and C.F. Liu. Structural properties and reactivities of Ca(OH)2/fly ash absorbents for flue gas desulphurization[J]. Industrial and Engineering Chemistry Research, 2003,(42):1350-1356.
    41 C.F. Liu, S.M. Shih and R.B. Lin, Kinetics of the reaction of Ca(OH)2/fly ash absorbent with SO2 at low temperatures[J]. Chemical Engineering Science.2002, (57):93-104.
    42 S.B. Han and P.W. Park. Absorption from a rising bubble of sulfur dioxide in pure water[J]. Int. Chem.Eng.1990, (30):308-341.
    43 B.C. Meikap, G. Kundu and M.N. Biswas, Modeling of a novel multi-stage bubble column scrubber for flue gas de-sulfurization[J]. Chem. Eng. J.2002, (86):331-343.
    44 B.C. Meikap, S. Satyanarayan. A. Nag and M.N. Biswas, Scrubbing of sulfur dioxide from waste gas stream by horizontal co-current flow ejector system [J]. Indian J. Environ. Protect.1999 (19): 523-532.
    45 S. Sarkar, B.C. Meikap, S.G. Chatterjee Modeling of removal of sulfur dioxide from flue gases in a horizontal cocurrent gas-liquid scrubber[J]. Chemical Engineering Journal.2007,131 (1-3): 263-271.
    46 B.C. Meikap, G. Kundu and N.M. Biswas, A novel modified multi-stage bubble column scrubber for SO2 removal from industrial off gases[J]. Sep. Sci. Technol.2002 (37):3421-3442.
    47 H. Levent ucan, G. Ozkan, A. Bicer, V. Pamuk Removal of Sulphur Dioxide in a Periodically Operating Trickle-Bed Reactor with Activated Carbon Bed[J]. Process Safety and Environmental Protection.2005,83 (1):47-49.
    48Umran Tezcan On, A. Savas Koparal, Ulker Bakir Ogutveren. Sulfur dioxide removal from flue gases by electrochemical absorption[J]. Separation and Purification Technology.2007,53 (1):57-63.
    49 M. Aurousseau, T. Hunger, A. Storck and F. Lapicque, Electrochemical scrubbing Of SO2-containing gas:coupling absorption to electrochemical reaction[J]. Chem. Eng. Sci.1993,48 (3): 541-549.
    50 K. Scott, W. Taama and H. Cheng, Towards an electrochemical process for recovering sulphur dioxide[J]. Chem. Eng. J.1999 (73):101-111.
    51 K. Scott and W.M. Taama, An investigation of anode materials in the anodic oxidation of sulphur dioxide in sulphuric acid solutions[J].Electrochim. Acta.1999 (44):3421-3427.
    52 C.F. Oduoza and K. Scott, Preliminary evaluation of electrochemical oxidation for flue gas treatment of sulphur dioxide[J]. Icheme Res. Event.1992,329-331.
    53李春花王华胡建杭吴桢芬.Fe203强化CaO粉末中温烟气脱硫的研究[J].应用化工.2006,35(2):92-95.
    54刘平.陶政修,醋酸钙溶液吸收二氧化硫烟气的实验研究[J].环境科学导刊.2007,26(1):4-61.
    55戴笃武.电石渣乳液处理硫酸尾气[J].硫酸工业.2001(5):49.
    56郭声波、肖戈等.烟气脱硫及硫资源化新工艺[J].环境工程学报.2007,1(3):97-102.
    57肖保正.氨法脱硫装置经验点滴[J].硫酸工业.2008(1):43-45.
    58肖保正.对硫酸尾气制取亚硫酸铵若干问题的探讨[J].硫酸工业.2005(6):46-47.
    59李纪康徐学宁.碱法治理硫酸尾气副产结晶亚硫酸钠[J].硫酸工业.1994(5):47-45.
    60 Masuda S. pulse corona induced plasma chemical process:a horizon of new plasma chenical techonlogies[J]. pure and Appl. Chem.1988,60 (5):727-731.
    61 Zu-wu Wang, Jia Guo, Han-cai Zeng, Chun-liang Ge, Jiang Yu Sulphur dioxide (SO2) electrotransfer in electric field generated by corona discharge[J]. Fuel Processing Technology,. 2007,88 (5):471-475.
    62岳建华.丁杰.一种高温等离子体烟气脱硫方法[P],CN1307924.7,2001.
    63顾璠.叶丹.一种低温等离子体吸附催化烟气脱硫装置及其脱硫方法[P].10041453.5,2004.
    64王召启.超声波膜吸收法处理低浓度二氧化硫的研究[D].西安建筑科技大学硕士学位论文2006.3.
    65金美芳,曹义鸣.膜吸收法脱出二氧化硫[J].膜科学与技术.1999,19(3):44-47.
    66郭占虎,史季芬.中空纤维膜组件分离酸性气体[M].化工冶金.2000,21(3):268-273.
    67薛娟琴,王召启,洪涛等.中空纤维膜吸收烟气二氧化硫[J].广东化工.2005,6:8-10,14.
    68 Hyung-Keun Lee, Hang-Dae Jo, Won-Kil Choi, Hyun-Hee Park, Chun-Won Lim, Yong-Taek Lee,Absorption of SO2 in hollow fiber membrane contactors using various aqueous absorbents[J]. Desalination.2006,200(1-3):604-605.
    69 Lusi Xu, Jia Guo, Feng Jin, Hancai Zeng Removal of SO2 from O2-containing flue gas by activated carbon fiber (ACF) impregnated with NH3[J]. Chemosphere,2006,62(5):823-826.
    70 Vivekanand Gaur, Ritesh Asthana, Nishith Verma Removal of SO2 by activated carbon fibers in the presence of O2 and H2O[J]. Carbon,2006,44(1):46-60.
    71王华祝社明.烟气脱硫技术研究新进展[J].电站系统工程.2006.11(6):5-7.
    72 S.M. Mousavi, S. Yaghmaei, A. Jafari Influence of process variables on biooxidation of ferrous sulfate by an indigenous Acidithiobacillus ferrooxidans. Part Ⅱ:Bioreactor experiments[J]. Fuel, 2007,86(7-8):993-999.
    73 A. Gangagni Rao, P. Ravichandra, Johny Joseph, Annapurna Jetty, P.N. Sarma Microbial conversion of sulfur dioxide in flue gas to sulfide using bulk drug industry wastewater as an organic source by mixed cultures of sulfate reducing bacteria[J]. Journal of Hazardous Materials.2007, 147(3),718-725.
    74史家梁.环境微生物学[M].华东师范大学出版社.1993.25-26.
    75 L.A. Robertson and J.G. Kuenen, The colorless sulphur bacteria (3rd ed.). In:M. Dworkin, S. Falkow, E. Rosenberg, K.H. Schleifer and E. Stackebrandt, Editors, The Prokaryotes Springer, New York,2006(2):985-1011.
    76 R. Rabus, T.A. Hansen and F. Widdel, Dissimilatory sulfate-and sulfur-reducing (3rd ed.). In:M. Dworkin, S. Falkow, E. Rosenberg, K.H. Schleifer and E. Stackebrandt, Editors, The Prokaryotes Springer, New York,2006,2:659-768.
    77 K.L. Sublette, R. Kolhatkar and K. Raterman, Technological aspects of the microbial treatment of sulphide-rich waste-waters:a case study[J]. Biodegradation.1998, (9):259-271.
    78 P.F. Henshaw and W. Zhu, Biological conversion of hydrogen sulphide to elemental sulphur in a fixed-film continuous flow photo-reactor[J]. Water Res.2001,35:3605-3610.
    79A.B. Jensen and C. Webb, Treatment of H2S-containing gases:a review of microbiological alternatives[J]. Enzyme Microb. Technol.1995,17:2-10.
    80 F. Widdel, Microbiology and ecology of sulphate and sulphur reducing bacteria. In:A.J.B. Zehnder, Editor, Biology of Anaerobic Microorganisms, Wiley Wiley, New York (1988):469-584.
    81 S.M. Mousavi, S. Yaghmaei, F. Salimi, A. Jafari,Influence of process variables on biooxidation of ferrous sulfate by an indigenous Acidithiobacillus ferrooxidans. Part I:Flask experiments[J]. Fuel, 2006,85(17-18):2555-2560.
    82 C. Pagella and D.M. De Faveri, H2S gas treatment by iron bioprocess[J]. Chem. Eng. Sci..2000,55: 2185-2194.
    83李国辉,胡洁南.煤的微生物法脱硫研究进展[J].化学进展.1997,9(1):79-89.
    84石慧芳,陈春涛,刘启旺.微生物烟气脱硫技术及其研究方向[X].郑州轻工业学院学报(自然科学版),2002,17(2):100-103.
    85 Temple K L, Colmer A R, The autotrophic oxidation of iron by a new bacterium.-Thiobacillus ferroxidans[J]. J. bacterium.1951,62:605-611.
    86 J.R. Postgate, The Sulphate Reducing Bacteria (2nd ed.), University Press, Cambridge (1984)
    87 Badri N D,kerry L S. Biotechnology and Bioengineering, [J].1989,34:405-409.
    88 A.B. Jensen and C. Webb, Treatment of H2S-containing gases:a review of microbiological alternatives, Enzyme Microb Techno.1995 (17):2-10.
    89 Magota H, Shiratori Y. Treatment of sour natural gas containing hydrogen sulfide. Jpn Kokai Tokkyo Koho, JP:63205124,1988.
    90 C. Pagella, P. Perego and M. Zilli, Biotechnological H2S gas treatment with Thiobacillus ferrooxidans, Chem Eng Technol 1996 (19):79-88.
    91 J. Gasiorek, Microbial removal of sulfur dioxide from a gas stream, Fuel Process Technol.1994, (40):129-138.
    92 Lee K H, Sublette K L. Simultaneous combined microbial removal of sulfur dioxide and nitric from a gas stream [J]. Applied Biochemistry and Biotechnology.1991(28):623-634.
    93 Dasu.B.N.Deshmane.V,et.al.Microbial reduction of sulfur oxide and nitric oxide[J]. fuel.1993. 72(12):1750-1714.
    94王玮,屠传经和胡亚才.微生物烟气脱硫技术的展望[J].环境污染与防治.1997,19(2):28-30.
    95宣群黄兵.降解低浓度SO2废气的菌株分离及其固定化研究[J].云南大学学报.2003,25(2): 157-160.
    96王安,张永奎,陈华等.微生物法烟气脱硫技术研究.重庆环境科学[J].2001,23(2):37-39.
    97 Brandt c.et al. kinetics and mechanism of iron (III)-catalyzed autoxidation of sulfur (IV) in aqueous solution evidence for the redox cycling of iron in the presence of oxygen and modeling of the overall reaction mechanism[J]. Inorganic Chemistry.1994,33 (4):686-701.
    98张永奎,王安等.微生物处理含SO2气体的实验研究[J].环境工程.2001.19(5):30-32.
    99蒋文举,童小双,朱晓帆等.微生物法液相氧化SO2[J].环境科学.2006,27(5):841-845.
    100张子间,陈凡植等.生物滴滤池脱除烟气SO2的实验研究[J].环境污染治理技术与设备.2003,4(7):29-31.
    101 Punjai T S, mark H L, Eric N K, Biodesulfurization of flue gases and other sulfate/sulfite waste streams using immobilized mixed sulfate-reducing bacteria, Biotechnol Prog[J].,1997,13:583-589
    102刘鸿元.THIOPAQ生物脱硫技术[J].中氮肥.2002(5):53-57.
    103 Sublette K L, Gwozdz K J. An economic analysis of microbial r eduction of sulfur dioxide as a means of byproduct recovery from regenerable processes for flue gas desulfurization [J]. A pplied Biochemistry and Biotechnology,1991(28):635-64.
    104 Van Houten RT. Hulshoff Pol LW & Lettinga G, Biological sulphate reduction using gas-lift reactors fed with hydrogen and carbon dioxide as energy and carbon source[J]. Biotech.Bioeng.. 1994(44):586-594.
    105 Selvaraj PT, Mark H. Analysis of immobilized cell bioreactors for desulfurization of flue gases and sulfite/sulfate —laden wastewater [J]. Biodegradation.1997,8(4):227-236,
    106 Selvaraj T, Badri N D, Microbial process for the reduction of sulfur dioxide[P]. US:5269929 A 14, 1993-12-07.
    107邱广亮.微生物脱除工业烟气[D].天津大学博士论文.2006.
    108 S. Ebrahimi, R. Kleerebezem, M.C.M. van Loosdrecht and J.J. Heijnen, Kinetics of the reactive absorption of hydrogen sulfide into aqueous ferric sulfate solutionsfJ]. Chem Eng Sci,2003, 58:417-427.
    109.S.I. Grishin and O.H. Tuovinen, Fast kinetics of Fe2+ oxidation in packed-bed reactors[J]. Appl Environ Microbiol.1988,54:3092-3100.
    110 D.G. Karamanev, Model of the biofilm structure of Thiobacillus ferrooxidans[J]. J Biotechnol 1991,20:51-64.
    111 M.M. Mesa, M. Mac'ias and D. Cantero, Mathematical model of the oxidation of ferrous iron by a biofim of Thiobacillus ferrooxidans[J]. Biotechnol Prog.2002,18:679-685.
    112 K. Nyavor, N.O. Egiebor and P.M. Fedorak, The effect of ferric ion on the rate of ferrous oxidation by Thiobacillus ferrooxidans[J]. Appl Microbiol Biotechnol.1996,45 (5):688-691.
    113 A.B. Jensen and C. Webb, Ferrous sulfate oxidation using Thiobacillus ferrooxidans:a review, Process Biochem 1995,30 (3):225-236.
    114 Jan gasiorek, Microbial removal of sulfur dioxide from a gas stream[J], Fuel Processing Technology,1994,40(2-3):129-138.
    115王艳锦郑正.微生物法烟气脱硫技术的研究进展[J].火电厂烟气脱硫脱硝研讨会论文集.2005:92-96.
    116李继珩.生物工程[M].中国医药科技出版社.1998,139-140.
    117 Kourkoutas a, A. Bekatorou, I. M. Banat, R. Marchant and A. A. Koutinas, Immobilization technologies and support materials suitable in alcohol beverages production:a review [J].Food Microbiology.2004,21(4):377-397.
    118王建龙. 生物固定化技术与水污染控制[M].科学出版社.2002.
    119马子骏,陆志号.固定化细胞技术及其应用[M].宁夏人民出版社.1998.
    120邓晓泉.吸附法固定微生物细胞的研究进展[J].生物工程进展.1993,13(4):7-10.
    121 Bardi, E. and Koutinas, A.A., Immobilization of yeast on delignified cellulosic material for room temperature and low-temperature wine making[J]. J. Agric. Food Chem.1994.42:221-226.
    122 Bardi, E., Koutinas, A.A., Soupioni, M. and Kanellaki, M., Immobilization of yeast on delignified cellulosic material for low temperature brewing[J]. J. Agric. Food Chem.1996.44:463-467.
    123 Bardi, E.P., Bakoyianis, V., Koutinas, A.A. and Kanellaki, M., Room temperature and low temperature wine making using yeast immobilized on gluten pellets[J]. Process Biochem.1996.31: 425-430.
    124 Tata, M., Bower, P., Bromberg, S., Duncombe, D., et al. Immobilized yeast bioreactor systems for continuous beer fermentation[J]. Biotechnol. Progr.1999.15:105-113.
    125 Norton, S. and D'Amore, T., Physiological effects of yeast cell immobilization:applications for brewing[J]. Enzyme Microb. Technol.1994.16:365-375.
    126 Navarro, J.M. and Durand, G., Modification of yeast metabolism by immobilization onto porous glassfJ]. Eur. J. Appl. Microbiol.1977.4:243-254.
    127 N.M. Ehrhardt and H.J. Rehm, Phenol degradation by microorganisms adsorbed on activated carbon[J]. Appl. Microbiol. Biot.1985,21:32-36.
    128 GM. Walker and L.R. Weatherley, Biological activated carbon treatment of industrial wastewater in stirred tank reactors[J]. Chem. Eng. J.1999,75:201-206.
    129 A.S. Sirotkin, L.Y. Koshkina and K.G Ippolitov, The BAC-process for treatment of waste water containing non-ionogenic synthetic surfactants [J]. Water Res.2001,35:3265-3271.
    130 R.J. Abumaizar, W. Kocher and E.H. Smith, Biofiltration of BETX contaminated air streams using compost-activated carbon filter media[J]. J. Hazard. Mater.1998,60:111-126.
    131 H.S. Kim, YJ. Kim, J.S. Chung and Q. Xie, Long-term operation of a biofilter for simultaneous removal ofH2S and NH3[J],J. Air Waste Manage.2002,52:1389-1398.
    132 W.M. Moe and B. Qi, Performance of a fungal biofilter treating gas-phase solvent mixtures during intermittent loading[J]. Water Res.2004,38:2259-2268.
    133 H.Q. Duan, L.C.C. Koe and R. Yan, Treatment of H2S using a horizontal biotrickling filter based on biological activated carbon:reactor setup and performance. evaluation[J]. Appl. Microbiol. Biot. 2005,67:143-149.
    134 H.Q. Duan, R. Yan and L.C.C. Koe, Investigation on the mechanism of H2S removal by biological activated carbon in a horizontal biotrickling filter[J]. Appl. Microbiol. Biot.2005,69:350-357.
    135 Jin, Y.L. and Speers, R.A., Flocculation of Saccharomyces cerevisiae[J]. Food Res. Int.1998.31: 421-440.
    136 Pilkington, P.H., Margaritis, A., Mensour, N.A. and Russell, I., Fundamentals of immobilized yeast cells for continuous beer fermentation:a review[J]. J. Inst. Brew.1998.104:19-31
    137 Kennedy J F, Molo E H. Immobilized enzymes and cells[J]. Chemical Engineering Progress. 1990,7:81-89.
    138黄铃.琼脂包埋法固定化α-淀粉酶特性的研究,化学与生物工程2007,24(8):56-58.
    139李慧蓉,高云霞,尹艳.卡拉胶与明胶包埋黄孢原毛平革菌的方法研究.上海环境科学.2002,21(4):205-209.
    140 Huang, J., Hooijmans, C.M., Briasco, C.A., et al. Effect of free-cell growth parameters on oxygen concentration profiles in gel-immobilized recombinant Escherichia coIi[J]. Appl. Microbiol. Biotechnol.1990.33:619-623.
    141李超敏,韩梅,张良,陈锡时.细胞固定化技术--海藻酸钠包埋法的研究进展Development of the Sodium-aliginate Immobilized Cell Technology[J].安徽农业科学.2006,34(7):1280-1284.
    142 Patkova, J., Smogrovicova, D., Domeny, Z. and Bafrncova, P., Very high gravity wort fermentation by immobilized yeast[J]. Biotechnol. Lett.2000,22:1173-1177.
    143 Suzzi, G., Romano, P., Vannini, L., etal. Cell-recycle batch fermentation using immobilized cells of flocculent Saccharomyces cerevisiae wine strains[J]. World J. Microbiol. Biotechnol.1996. 12:25-27.
    144王家东,姜子明,曹彬,毕韬韬,侯红萍.固定化糖化酶的研究[J],中国调味品2006,3:14-16
    145 Domeny, Z., Smogrovicova, D., Gemeiner, etal. Continuous secondary fermentation using immobilized yeast[J]. Biotechnol. Lett.1998,20:1041-1045.
    146刘桂萍,刘长风,张月澜.改性聚丙烯酰胺固定化苯酚降解菌的研究[J].环境工程学报.2008,2(6):861-864.
    147 Norton, S. and D'Amore, T., Physiological effects of yeast cell immobilization:applications for brewing[J]. Enzyme Microb. Technol..1994.16:365-375.
    148 Park, J.K. and Chang, H.N., Microencapsulation of microbial cells[J]. Biotechnol. Adv.2000. 18:303-319.
    149 Freeman, A. and Lilly, M.D., Effect of processing parameters on the feasibility and operational stability of immobilized viable microbial cells[J]. Rev. Enzyme Microb. Technol.1998,23:335-345
    150戚以政,汪树雄.生化反应动力学与反应器[M].化学工业出版社.1999.
    151 Masschelein, C.A., Ryder, D.S. and:Simon, J.P., Immobilized cell technology in beer production[J]. Crit. Rev. Biotechnol.1994.14:155-177.
    152 Nedovic, V.A., Durieux, A., Van Nedervelde, L.etal. Continuous cider fermentation with co-immobilized yeast and Leuconostoc oenos cells [J]. Enzyme Microb. Technol.2000,26:834-839.
    153 M. Moosa, M. Nemati and S.T.L. Harrison, A kinetic study on anaerobic reduction of sulphate. Part Ⅱ. Incorporation of temperature effects in the kinetic model[J]. Chem. Eng. Sci,2005,60 (13): 3517-3524.
    154 S. Nagpal, S. Chuichulcherm, A. Livingston and L. Peeva, Ethanol utilization by sulfate-reducing bacteria:an experimental and modeling study[J]. Biotechnol. Bioeng.2000,70:533-543.
    155 C. Hubert, M. Nemati, G.E. Jenneman and G. Voordouw, Containment of biogenic sulfide production in continuous up-flow packed-bed bioreactors with nitrate or nitrite[J]. Biotechnol. Prog. 2003,19(2):338-345.
    156 T. Jong and D.L. Parry, Removal of sulfate and heavy metals by sulfate reducing bacteria in short-term bench scale upflow anaerobic packed bed reactor runs[J]. Water Res.2003,37: 3379-3389.
    157 Pai S L. Continuous degradation of phenol by R. hodoccus sp. mmobilized on granular activated carbon and in caccium alginate[J]. Bioresource Technol.1995,51:37-42.
    158Shindo, S., Sahara, S., Watanabe, N., Koshino, S., Main fermentation with immobilized yeast using fluidised-bed reactor. I. Brewing Proceedings of the 23rd Convention, Sydney, p109-113.1994.
    159 A.H. Kaksonen, P.D. Franzmann and J.A. Puhakka, Effects of hydraulic retention time and sulfide toxicity on ethanol and acetate oxidation in sulfate-reducing metal-precipitating fluidized-bed reactor[J], Biotechnol. Bioeng.2004,86(3):332-343.
    160 S. Nagpal, S. Chuichulcherm, L. Peeva and A. Livingston, Microbial sulfate reduction in a liquid-solid fluidized bed reactor[J], Biotechnol. Bioeng.2000,70:370-380.
    161 A.H. Kaksonen, M.L. Riekkola-Vanhanen and J.A. Puhakka, Optimization of metal sulphide precipitation in fluidized-bed treatment of acidic wastewater[J], Water Res.2003,37:255-266.
    162赵兴利,兰淑澄.固定化硝化菌去除废水中氨氮工艺的研究[J].环境科学.1999,20(1):39-42.
    163 Puhakka, J.A.et al, Aerobicfluidized-bed treatment of polychiorinated phenolic wood preservative constitutents[J]. Wat Res.1998,26:765.
    164 Cop, J., Dyon, D., Iserentant, V., Masschelein, C.A., Reactor design optimisation with a view to the improvement of amino acid utilization and flavour development in calcium alginate entrapped brewing yeast fermentation. Proceedings of the European Brewery Convention. Zurich,1989, 315-322.
    165 Messner K, ct al. Treatment of bleach plant effluents by the mycopor systerm[M]. Biotechnology in pulp and paper manufacture Botterworth-Heninemann.1990:245.
    166 S. Chuichulcherm, S. Nagpal, L. Peeva and A. Livingston, Treatment of metal-containing wastewaters with a novel extractive membrane reactor using sulfate-reducing bacteria[J]. J. Chem. Technol. BiotechnoL 2001,76:61-68.
    167 Livingston A G.A novel membrane bioreactor for detoxifying industrial waste waterfJ]. Biotechnol Bioeng,1993,39:915-924.
    168魏东芝,袁渭康等.固定化细胞分布对动力学影响的模型化研究[J].生物工程学报.1996,12(2):201-205.
    169 Korgel,et al. Effective diffusivity of galactose in calcium alginate fels containing innobilized Zymonmonas mobilis[J]. Biltechnol Prog.1992,8,111-117.
    170 Arzu Y Dursun, Zu Aksu. Biodegradation kinetics of ferrous(II) cyanide complex iron by immobilized Pseudomanas-fluorescens in a packed bed column reactor[J]. Process Biochemistry, 2000,35:615-622.
    171全向春,韩力平.固定化皮氏伯克霍而德氏菌降解喹啉的研究[J].环境科学.2000,21(3):74-76.
    172纪树兰,谭立扬等.固定化细胞降解废水的动力学模型研究[J].北京工业大学学报.1997,23(4):92-97.
    173朱必凤,马海燕.陶瓷载体固定化酵母发酵动力学研究[J].生物工程学报.1996,12(2):227-229
    174陈敏,罗启芳.固定化微生物对水胺硫磷的降解速率和动力学模式[J].同济医科大学学报.1994,23(5):380-382.
    175孙艳.一种耐酚菌种及其固定化细胞降解含酚废水性能的比较研究[J].环境科学研究,1999,12(1): 1-4.
    176 A Laca,et al.Modelling and description of internal profiles in immobilized cells systems [J] Biochemical Engineering Journal.1998,1 (3): 225-232.
    177 G.S. Hansford, Recent development in modelling the kinetics of bioleaching. In:D.E. Rawlings, Editor, Biomining:Theory, Microbes and Industrial Processes, Springier and Landes Bioscience, Colombus, OH,1997,153-175.
    178 H. Olem and R.F. Unz, Rotating-disc biological treatment of acid mine drainage[J]. J. Water Pollut. Control Fed.1980,52 (2):257-269.
    179 J. Tampion and M.D. Tampion, Immobilized cells:Principles and Applications. Cambridge Univ. Press, New York (1987).
    180C. Pagella, P. Perego and M. Zilli, Biotechnological H2S gas treatment with Thiobacillus ferrooxidans[J], Chem. Eng. Technol.1996,19:79-88.
    181 A.B. Jensen and C. Webb, Ferrous sulphate oxidation using Thiobacillus ferrooxidans[J] a review, Process. Biochem.1995,30 (3):225-236.
    182 A.B. Jensen and C. Webb, Treatment of H2S-containing gases:A review of microbiological alternatives[J]. Enzyme. Microbiol. Technol.1995,17:2-10.
    183 M. Nemati, S.T.L. Harrison, G.S. Hansford and C. Webb, Biological oxidation of ferrous sulphate by Thiobacillus ferrooxidans:a review on the kinetic aspects[J], Biochem. Eng. J.1998,1:171-190.
    184 M. Bacon and W.J. Ingledew, The reductive reaction of Thiobacillus ferrooxidans on sulphur and selenium, FEMS Microbiol. Lett.1989,58 (2-3):189-194.
    185 M.E.A. Giro, O. Garcia Jr. and M. Zaiat, Immobilized cells of Acidithiobacillus ferroxidans in PVC strands and sulfide removal in a pilot-scale bioreactor[J], Biochem. Eng. J.2006,28:201-207.
    186黄兵.生物膜填料塔净化低浓度硫化氢恶臭气体研究[J].环境科学与技术,1999,(4):17-21.
    187绍立明,何品晶,傅钟等.固定化微生物处理含H2S气体的实验研究[J].环境科学.1999,20(1):19-22.
    188巢赛红,张小广.氧化亚铁硫杆菌烟气脱硫实验研究[J].广东化工,2005(8):30-31.
    189 Davidova Y B. SchrederE D. Chang D P Y; Biofiltration of ni-tric oxide[A] [M]. Proceedings of the 90thAnnual Meeting and Exhibition of A&WMA[C];1997 (6),8-13.
    190 Okuno K, Hirai M, Sugiyama M, et al. Microbial removal of nitrogen monoxide (NO) under aerobic conditions. Biotechnology Letters,2000,22(1):77-79.
    191 Okuno K,Hirai M,Sugiyama M,et al; Microbial removal of nitro-gen monoxide(NO) under aerobic conditions [M];Biotechnology Letters; 2000,50(4):502-508.
    192 Punjai T. Selvaraj, Mark Hlittle&EeicN. Kaufman[J]. Biotechnology Progress.1997.(13):583-589.
    193袁志文等.固定化微生物法处理含甲硫醇恶臭气体[J].上海环境科学,2000,3,19(3):108-111.
    194张子间,陈凡植等.生物滴滤池脱除烟气SO2的实验研究[J].环境污染治理技术与设备.2003,4(7): 29-31.
    195邱建辉,邸进申,赵新巧.氧化亚铁硫杆菌固定化技术研究[J].生物技术.2002,12(2):18-20.
    196谭钦文,蒋文举,刘承军.生物脱硫细菌的载体培养条件优化与动力学研究[J].环境污染与 防治.2004,26(2):79-91.
    197曹桂萍,黄兵.固定化微生物脱除SO2[X].华中科技大学学报(自然科学版).2006,34(1):111-113
    198王燕燕,黄兵,曹桂平等.固定化微生物法净化低浓度SO2气体的实验研究[J].昆明理工大学学报(增刊).2003.
    199王燕燕,黄兵,廖雄稳等.净化SO2气体的固定化微生物方法的研究[J].环境污染与防治.2005,27(2):105-108.
    200程为,辛宝平,霍祥明等.生物还原一化学沉淀去除烟气SO2中Na2S03和硫化物的研究[J].环境化学.2005,24(5):506-509.
    201 HJ/T56-2000.固定污染源排气中二氧化硫测定碘量法(S).
    202地下水标准检验方法[J].地质实验室.1988,4(z):95-99.
    203地下水标准检验方法[J].地质实验室.1988,4(z):126-127.
    205程树培编.环境生物技术实验指南[M].南京:南京大学出版社,2001.
    206李海英,李小明.固定化微生物处理造纸漂白废水.工业用水与废水[J].2001,32(5):19—22.
    207吴晓磊,刘建广,黄霞等.海藻酸钠和聚乙烯醇作为固定化微生物包埋剂的研究[J].环境科学.1992,14(2):28-31.
    208曹桂平.固定化微生物净化低浓度SO2烟气的应用基础研究[D].昆明理工大学硕士研究生论文.2003.4.
    209周群英,高廷耀.环境工程微生物学[M].第二版北京:高等教育出版社,1999.
    210马文漪,杨柳燕主编.环境生物工程[M].南京:南京大学出版社,1998.
    211焦瑞身.微生物工程[M].北京:化学工业出版社.2003,7:34-36.
    212姚玉英.化工原理[M].天津科学出版社.1998.
    213夏青.化工原理[M].天津科学出版社.95-96,2007.7.
    214 Soldo I., Begovac J., Bace A., and B. Lehpamer. Lactate and glucose in cerebrospinal fluid heavily contaminated with blood[J]. ActaMedica Iugoslavica.1991.45:341-345.
    215 Campbell, A. M., and D. V. Land. Dielectric properties of female human breast tissue measured in-vitro at 3.2 GHz. [J]. Physics in Medicine and Biology.1992.37:193-210.
    216 Ingraham J. L., Maaloe O., and Neidhardt F. C., Growth of the bacterial cell. Sunderland. Massachusetts, Sinauer:12-107,1983.
    217 Atlas R. M., and Bartha R.. Microbial Ecology. Fundamentals and Applications.4th, In:Microbial evolution and biodiversity. An imprint of Addison Wesley Longman, Inc.:27-54.1998.
    218 Hori, H., and S. Osawa. Evolutionary change in 5S rRNA species[J]. Proc. Natl. Acad Sci. USA. 1979.76:381-385.
    219 Pace N. R., Stahl D. A., D. J. Lane, and Olsen G. J.. The analysis of natural microbial populations by ribosomal RNA sequences[J]. Adv. Microb. Ecol.1986.9:1-55.
    220 Woese, C. R. Bacterial Evolution[J]. Microbiol. Rev.51:221-271.1987.
    221 Muyzer G, Brinkhoff T, Nubel U, et al. Denaturing gradient gel electrophoresis (DGGE) in microbial ecology[J]. Molecular Microbial Ecology Manual.1998.34(4):1-27.
    222 Ishii K, Fukui M, Takii S. Microbial succession during acomposting process as evaluated by denaturing gradient gelelectrophoresis analysis[J]. Journal of Applied Microbiology.2000,89: 768-777.
    223 Fox, G. E., E. Stackebrandt, and C. R. Woese[J]. The phylogenetic of prokaryotes. Science.1980. 209:457-463.
    224罗海峰,齐鸿雁,薛凯.PCR-DGGE技术在农田土壤微生物多样性研究中的应用[J].生态学报.2003,23(8):1570-1575.
    225刘玮琦,茆振川,杨宇红等.应用16S rRNA基因文库技术分析土壤细菌群落的多样性[J].微生物学报.2008,48(10):1344-1350.
    226段学军,闵航.镉胁迫下稻田土壤微生物基因多样性的DGGE分子指纹分析[J].环境科学.2004,25(5):122-126.
    227杨朝晖等.厨余垃圾高温堆肥中嗜热细菌种群结构分析[J].中国环境科学.2007,27(6):733-737.
    228 Sekiguchi Y, Kamagata Y, Syutsubo K, eatl. Phylogenetic diversity of mesophilic and thermophilic granular sludges determined by 16S rRNA gene analysis[J]. Microbiology. 1998(144):2655-2665.
    229 Chouari R, Le Paslier D, Daegelen P, Ginestet P,Weissenbach J, Sghir A. Novel predominant archaeal and bacterial groups revealed by molecular analysis of an anaerobic sludge digester[J]. Environ Microbiol.2005(7):1104-1115.
    230殷峻,陈英旭,刘和.应用PCR-DGGE技术研究处理含氨废气的生物滤塔中微生物多样性[J].环境科学,2004,25(6):11-15.
    231邢德峰,任南琪,宫曼丽.PCR-DGGE技术解析生物制氢反应器微生物多样性[J].环境科学.2005,26(2):172-176.
    232赵阳国,任南琪,王爱杰等.一株硫酸盐还原菌的16SrRNA基因鉴定及亚硫酸盐还原酶基因序列分析.第八次全国环境微生物学术研讨会论文集,2005.8,哈尔滨.
    233祖波,张代钧,阎青.一种新厌氧氨氧化菌的16SrRNA基因序列测试[J].环境科学.2008.29(2):469-473.
    234黄立南,周惠,陈月琴等.垃圾填埋场渗滤液中古细菌群落16SrRNA基因的ARDRA分析[J].生态学报.2002,22(7):1085-1090.
    235 Peter M D, William C G. Microbial diversity in hot synthetic compost as revealed by PCR-amplified rRNA sequences from cultivated isolates and extracted DNA[J]. FEMS Microbiology Ecology.2001,35(2):207-216.
    236 Snaidr J, Amann R, Huber I, et al. Phylogeny analysis and in situ identification of bacteria in activated sludge[J]. Applied Environmental Microbiology.1997,63(7):2884-2896.
    237Lau K P,Woo C Y,Mok M Y,et al. Characterization of haernophilus, an important cause of bacteremia, by 16S rRNA gene sequencing[J]. Clin Microbiol.2004.42(2):877-880)
    238 Prescott, H., Harley T., and Klein A. Microbiology,4th Copyright (?)2000, The McGraw-Hill Companies:386-789.1999.
    239 Akira Himishi and Yoko Ueda. Rhodoplanes gen. nov., a New Genus of Phototrophic Including Rhodopseudomonas rosea as Rhodoplanes Bacteria roseus comb. nov. and Rhodoplanes elegans sp. nov. International Journal Of systematic bicacteriology Oct.1994,44(4):665-673.
    240邱建辉,邸进申,赵新巧.氧化亚铁硫杆菌固定化技术研究[J].生物技术.2002,12(2):18-20.
    241曹桂平,黄兵.固定化脱硫菌性能改进的研究[J].常州工学院学报.2005,18(3)53-54
    242孙艳,谭立扬.用于生物降解酚类毒物的固定化细胞性能改进的研究[J].环境科学研究,1998,11(1):59-62.
    243孙艳,谭立扬.利用固定化细胞法降解含酚废水的研究[J].北京工业大学学报,1997,23(1):62-67.
    244武淑文.固定化微生物净化低浓度SO2烟气工艺的研究[D].昆明理工大学硕士论文,2004.
    245 Yaws Carl L. Matheson Gas Data[M]. Book. New York:Mcgraw Hill Book Company inc.,2001
    246赵红霞.酸性工业气体细菌中固定化技术的研究及应用.河北工业大学硕士论文2003.5.
    247山根恒夫.生化反应工程.化学工业出版社,2006,121-126.
    248曾二丽,孙佩石,束嘉秀等.生物膜填料塔净化SO2废气初探[J].云南化工,2005,32(1):15-16
    249郭凯.化学反应工程[M].化学工业出版社,195-196,2000.7.
    250贾士儒.生物反应工程原理[M].第二版,科学出版社,2005.6.
    251 Ho C S, Ju L K. effects of microorganisms of effective oxygen diffusion coefficients and solubilities in fermentation media[J]. Biotechnology and Bioengineering.1988,32:313-325.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700