用户名: 密码: 验证码:
猪免疫力参数及其与部分生产性能关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以大白猪和中畜黑猪两个品种/群体作为受试动物,其中大白猪312头,中畜黑猪209头。测定了4个免疫指标和5个生产性能指标,包括血清总IgG含量(WIgG)、猪瘟抗体滴度(HCVIgG)、淋巴细胞转化力(FAL)、中性粒细胞吞噬力(PA)、初生重(BW)、断奶重(WW)、140日龄重(W_(140))、140日龄背膘厚(BFT_(140))、140日龄眼肌面积(LEA_(140)),并求出了各测定指标的平均表型值、各指标之间的表型相关、各指标的遗传力及各指标之间的遗传相关。同时,还对两个品种/群体的表型值进行了比较,建立了免疫指标与生产性能间的多元线性回归方程。其中总IgG含量的测定采用双抗夹心酶联免疫吸附实验(DAS-ELISA)法,猪瘟抗体滴度采用间接ELISA法,淋巴细胞转化力的测定以植物血凝素(PHA)作为刺激原,以中性粒细胞还原硝基四氮唑(NBT)的能力来代表中性粒细胞的吞噬力。
     研究结果表明,中畜黑猪各免疫指标值比大白猪的都要高,但生产性能值则大白比中畜黑猪都高。显著性检验结果表明,淋巴细胞转化力、中性粒细胞吞噬力、断奶重、140日龄背膘厚和140日龄眼肌面积,这几个指标二者差异极显著(P<0.01):总IgG含量、140日龄体重二者差异显著(P<0.05);但猪瘟抗体滴度,初生重二者差异不显著(P>05)。表型相关分析结果表明,细胞免疫指标间表现为较高的正相关(0.563);细胞免疫指标(淋巴细胞转化力、中性粒细胞吞噬力)与体液免疫指标(血清总IgG含量、猪瘟抗体滴度)则表现为弱的正相关(0.172~0.224);血清总IgG含量与猪瘟抗体滴度间存在着较大的正相关(0.310)。所测几个免疫指标大多与生产性状相关较小(-0.02~0.225),但淋巴细胞转化力与140日龄体重、140日龄背膘厚、140日龄眼肌面积的相关则稍高一些(0.259~0.333)。生产性能中,初生重和断奶重的相关较大(0.474),而二者与140日龄体重、140日龄背膘厚、140日龄眼肌面积的相关却都较小(一0.107~0.235),140日龄眼肌面积与140日龄体重、140日龄背膘厚呈负相关
    
    (一0.211~一0.498),140日龄体重和140日龄背膘厚的相关也较高(0.634)。
    这说明生产性能中,繁殖性状和生长发育性状的相关较小。生产性能的多元线性
    回归分析的结果表明,很多免疫指标(包括血清总IgG含量、淋巴细胞转化力和
    中性粒细胞吞噬力)与生产性能的回归系数都达到了显著水平(P<0 .05),说明
    免疫指标大多对生产性能具有较大的贡献。
     用MTDFREML法求得大白猪各性状血清总IgG含量、猪瘟抗体滴度、淋巴
    细胞转化力、中性粒细胞吞噬力、初生重、断奶重、140日龄重、140日龄背膘
    厚、140日龄眼肌面积的遗传力依次为:0.159、0.102、0.307、0.422、0.148、
    0.095、0.216、0.257、0.341。除断奶重和总IgG含量、猪瘟抗体滴度、淋巴细
    胞转化力的遗传相关值与表型相关值的差异较大外,各性状间的遗传相关与它们
    的表型相关值基本接近。中畜黑猪各性状的遗传力基本上与大白猪一致,但大多
    (除中性粒细胞吞噬力外)稍高于大白猪。
     总之,中畜黑猪和大白猪存在免疫状况的差异,这表明它们可能存在有免疫
    力和抗病力的遗传差异,且中畜黑猪的免疫力和抗病力比大白猪要强,但免疫指
    标(除淋巴细胞转化力外)和生产性能间的相关不很高,要想使二者共同提高,
    还需要进行更进一步的探讨和研究。
In this study, two breeds (Large White and Zhongxu Black pig) were used. 4 immune traits, and 5 production traits were measured for 312 Large White and 209 Zhongxu Black pigs, including whole IgG titer(WIgG), specific antibody after vaccination to Hog Cholera Virus(HCVIgG), the functional activity of lymphocyte(FAL), phagocytic capacity of polymorphonuclear leukocytes(PA),birth weight(BW),weaning weight(WW), backfat thickness(BFT140) and loin eye area (LEA140), weight (W140)at 140 days. WIgG was measured by a double antibody sandwich-ELISA technique. HCVIgG was measured by an indirect ELISA technique. FAL was assessed by phytohemagglutinin(PHA) induced lymphocyte proliferation. PA was determined by a NBT enhanced showing color. The production traits were measured by the breeder in the farm.
    The results showed that the means of each immune trait obtained from Zhongxu Black pigs were higher than those of the corresponding traits from the Large White, but the means of each production trait obtained from Large White were better than those of the corresponding traits from the Zhongxu Black pig. When tested for significance, the mean values of FAL, PA, WW, BFT140 and LEA140 between two breeds were highly significant(P<0.01), but WIgG and WHO was significant(P<0.05). However, the mean values of HCVIgG, BW between Large White and Zhongxu Black pig were not significant (P>0.05 ) .The phenotypic correlating values between the humoral immunity traits and cellular immunity traits are low (0.172-0.224). The phenotypic correlating values in humoral immunity traits, cellular immunity traits are medium(0.310~0.563). But between immunity and production traits, the phenotypic correlations are relatively lower ( ~0.02~0.225 ) ,except the phenotypic correlations
    
    
    
    (0.259~0.333) of the FAL with BFTi4o,LEAi4o, and Wi4o.From the results of regression analysis, we can see that immunity traits are contributed largely to production traits. Many regression parameter are significant (P<0.05 ) . The heritabilities(h2)ofWIgG, HCVIgG, FAL, PA, BW, WW, W140. BFT140, LEA140 was 0.159, 0.102, 0.307. 0.422, 0.148, 0.095, 0.216, 0.257, 0.341,respectively,in Large White pigs. The genetic correlating values of all measured traits are close to the phenotypic correlating values, except the genetic correlating values of WW with WIgG, HCVIgG and FAL. The h2 of these measured traits in Zhongxu Black pigs are similar with that of the h2 in Large White pigs, but a litter high than that of the h2 in Large White pigs.
    In conclusion, this study has demonstrated variation in the immune status between two breeds, implying of a possible variation in then: immunological differences and disease resistance, Zhongxu Black pig is better than Large White, in these respects. Further more, the h2 of immune traits are medium. The correlations between iminune traits and production traits are low. So if we want to improve these two traits at the same time, it need further study involving more specific immune traits, greater pig numbers and new methods to allow evaluation of genetic characteristics.
引文
[1] 毕爱华.医学免疫学[M].北京:人民军医出版社,1999.106,314.
    [2] 曹洪战,吴常信,师守堃.利用MTDFREML估计大约克双肌臀种猪活体背膘厚遗传力时固定效应及水平的确定[J].中国畜牧杂志,2004,40(3):34—36.
    [3] 杜念兴.兽医免疫学[M].上海:上海科学技术出版社,1985.101—112.
    [4] 李效峰 师守信.香猪某些免疫学指标的测定[J].北京实验动物科学与管理,1995,12(1):21-23.
    [5] 连林生,鲁绍雄,连槿.滇南小耳猪部分胴体性状的遗传参数及育种值估计.中国动物遗传育种研究进展第十次全国动物遗传育种学术讲会论文集[C].中国农业科技出版社,1999.9.
    [6] 林斌,邱剑泰,黄沧海等.中草药对仔猪早期断奶腹泻血液生化指标的影响[J].福建农业学报,2000,15(4):37-40.
    [7] 林清华.免疫学实验[M].武汉:武汉大学出版社,1999.
    [8] 林慰慈,薛冰,魏雪涛[译].免疫学[M].北京:科学出版社,2001.
    [9] 刘榜,张庆德,唐中林等.通城猪及其杂种猪若干免疫性状的研究[J].华中农业大学学报,2003,22(5):469-473.
    [10] 刘玉斌,苟仕金.动物免疫学实验技术[M].吉林:吉林科学技术出版社,1989,234-236.
    [11] 楼平儿,李学伟,朱砺.不同年龄阶段活体背膘厚的相关和遗传分析[J].中国畜牧杂志,2004,40(3):22—24.
    [12] 陆德源.现代免疫学[M].上海:上海科学技术出版社,1998.1—3.
    [13] 钱锦花,连林生.畜禽抗病育种研究进展[J].动物科学与动物医学.2004,21(1):53-55.
    [14] 卿柳庭,袁宗辉.育成猪免疫学指标的测定[J].华中农业大学学报,2001,20(6):561-563.
    [15] 施启顺.畜禽抗病种研究进展[J].中国畜牧杂志,1995,31(6):48-51.
    [16] 施启顺.畜禽某些疾病的遗传控制与抗病育种[J].中国畜牧杂志,2004,40(2):36-39.
    
    
    [17] 王楚端,马卫东,陈清明等.利用多性状混合模型估计猪繁殖性状的遗传参数[J].中国农业大学学报,2001,6(3):96-100.
    [18] 王桂兰,李长宏,侬鑫等.不同世代改良型路南奶山羊血液免疫学参数的比较研究[J].畜牧兽医学报,2000,31(5).423-429.
    [19] 王金宝,孙立辉,吕永艳等.猪血清中IgG、IgM、IgA含量测定[J].中国畜禽传染病,1996,1:31-34.
    [20] 王世若,王兴龙,韩文瑜.现代动物免疫学[M].2001,219—231.
    [21] 吴雄文,梁智辉.实用免疫学实验技术[M].武汉:湖北科学技术出版社,2002.64-68,122-125,146-148,160-162.
    [22] 向义训,章谷生.临床免疫学检验[M].上海科学技术出版社,1983.
    [23] 杨汉春.动物免疫学[M].北京:中国农业大学出版社,1996.
    [24] 杨利国,魏平华,郭爱珍.酶免疫测定技术[M].南京:南京大学出版社,1998.432-433.
    [25] 杨景山.医学细胞化学与生物技术[M].北京:北京医科大学中国协和医科大学联合出版社,1990.14.
    [26] 张彬,阳连山.免疫遗传学在家畜育种中的应用[J].农业现代化研究,1994,15(6):378-381.
    [27] 张沅,张勤.畜禽育种中的线性模型[M].北京:北京农业大学出版社,1993.
    [28] 郑友民,王立贤,张沅.用MTDFREML方法估计大白猪遗传参数[J].养猪,1999,(1):32-33.
    [29] 郑友民,张沅.大白猪繁殖和生产性状母体遗传效应估计[J].畜牧兽医学报,1999,30(5):394—398.
    [30] Axford, R. F. E., S. C. Bishop, F. W. Nicholas, and J. B. Owen. Breeding for Disease Resistance in Farm Animals[M]. 2nd ed. CABI, Oxon, U.K. 2000.
    [31] Ann Becker.B,Michael,Misfeldt.L.Evaluation of the mitogen-induced proliferation and cell surface differentiation antigens of lymphocytes from pigs 1 to 30 days of age[J].Journal of Animal Science. 1993,71:2073-2087.
    [32] Barbior BM. Oxidants from phagocytes: Agents of defense and destruction[J]. Blood,1984,64: 950.
    
    
    [33] Bianchi A.T.J,Moonen H.W.M,vander Heijden P.J,et al.Tbe use of a double antibody sandwich ELISA and monoclonal antibodies for the assessment of porcine IgM, IgG and IgA concentrations[J].Veterinary Immunology and Immunopathology. 1995,44:309-317.
    [34] Biozzi G, Fourgereau M. et al.Genetic selection for relevant immunological functions[M]. In "Immunology 80",1984, Academic Press, N.Y,432-457.
    [35] Biozzi G, Mouton D, Stiffel C, Bouthillier Y. Amplification of the "high" and "low" intibody production characters resulting from bidirectional selective breeding in the mouse[J]. C.R. Seances Acad. Sci. 1980,299: 753-758.
    [36] Bishop.S.C,Cbesnais,Stear.J.M. Breeding for Disease Resistance: Issues and Opportunities[C]. 7th World Congress on Genetics Applied to Livestock Production, Communication No: 13-01.
    [37] Bishop, S. C., M. C. M. De Jong, and D. Gray. Opportunities for incorp- orating genetics elements into the management of farm animal diseases[M].FAO Commission on Genetic Resources for Food and Agriculture. Background Study Paper.2002.No. 18.
    [38] Bumstead N.et al. Breeding for Disease Resistance in Farm Animals [M].C.A.B.International. 1991, 123-135.
    [39] Buschman H. Development of an immunocompetence profile for pigs as basis for future selection on disease resistance[C].in:Proceedings of the 2nd World Congress on Genetics Applied to Livestock Production,1982,7:351-356.
    [40] Edfors-Lilja.I, Eva. W, Maria.M,et al. Mapping Quantitative Trait Loci for Immune Capacity in the Pig[J].The Journal of Immunology, 1998, 161: 829-835.
    [41] Edfors-Lilja.I,Wattrang E,Magnusson V, Fossum C.Differences between paternal half sib pigs in various immune response traits[C].In: Proceedings of the 4th world Congress on Genetics Applied to Livestock Production,Edinburgh, 1990,16:411-414.
    
    
    [42] Freeman,B.M., Bumstead,N.Breeding for disease resistance the prospective role of genetic manipulation[M].Avian Pathology. 1987,16:353-365.
    [43] Gavora.J.S,Spencer.J.L.Immune response and breeding for disease resistance[J].Animal blood groups and biochemi.Genet. 1983, 14:159-180.
    [44] Halbur, P.G.,Rothschild,M.F.,Paul,P.S.,et al.Differences in susc- eptibility of Duroc, Hampshire, and Meishan pigs to infection with a high virulence strain(VR2385)of porcine reproductive and respiratory syndrome virus(PRRSV) [J].Journal of Animal Breeding and Genetics. 1998,115:181-189.
    [45] Hessing.M.J.C,Coenen.G.J,Vaiman.M,et al. Individual differences in cell mediated and humoral immunity in pigs[J]. Veterinary Immunology and Immunopathology, 1995,45:97-113.
    [46] Hofer A. Variance component estimation in animal breeding:a review[J].J Animal Breeding and Genetics. 1998,115:247-265.
    [47] Inger Edfors-Lijia, Eva Wattrang,Magnusson.U,et al.Genetic in parameters reflecting immune competence of swine[J].Veterinary Immunology and Immunopathology, 1994,40:1-16.
    [48] Jayagopala Reddy NR, Wilkie BN, Borgs P, et al. Cytokines in Mycoplasma hyorhinis-induced arthritis in pigs bred selectively for high and low immune responses[J].Infect Immun.2000,68(3): 1150-1155.
    [49] Joling P, Mok KS, G de Vries Reilingh, et al. An evaluation of immune competence in different swine breeds [J].The Veterinary Quarterly. 1993,15(1):9-15.
    [50] Kikuchi.Y,Ogawa.T,Wako.K,et al. A prospect for genetic improvement of chronic disease resistance in swine [C].7th World Congress on Genetics Applied to livestock production, Communication, 2002,No: 13-34.
    [51] Lacey C.,Wilkie B.N.,Kennedy B.W.,et al.Genetic and other effects on baterial phagocytosis and killing by cultured peripheral blood monocytes of SLA-defined miniature pigs[J].Animal Genetics. 1990,20:371-382.
    [52] Lantier.F, Moreno.C,Lantier.I,et al. Molecular approaches to disease resistance[C].7th World Congress on Genetics Applied to Livestock Production, Communication[C] No: 13-12.
    
    
    [53] Magnusson U, Wilkie B, Arursson K, et al. Inerferon-alpha and haptoglobin in pigs selectively for high and low immune response and infected with Mycoplasma hyorhinis[J].Vet Immunol Immunopathol 1999,68(2-4): 131-137.
    [54] Magnusson U, Wilkie B, Mallard B, et al. Antibody response to Actinbacillus pleuropneumoniae antigens after vaccination of pigs bred for high and low immune response[J]. Vaccine,1997,15:997-1000.
    [55] Mallard.B.A,Wilkie.B.N,Gibson.J,et al.Immune responsiveness in swine: eight generations of selection for high and low immune response in Yorkshire pigs[C].6th World Congress on Genetics Applied to Livestock Production,1996, 27:257-264.
    [56] Meeker, D.L., Rothschild, M.F., Christian, L.L.,et al. Genetic control of immuneresponse to pseudorabies and atrophic rhinitis vaccines: Ⅰ. Heterosis, general combining ability and relationship to growth and backfat[J]. J. Anim. Sci, 1987a, 64: 407-413.
    [57] Meeker, D.L., Rothschild, M.F., Christian, L.L., et al. Genetic control of immune response to pseudorabies and atrophic rhinitis vaccines: Ⅱ. Comparison of additive direct and maternal genetic effects[J]. J. Anim. Sci, 1987b, 64: 414-419.
    [58] Murtaugh MP, Xiao Z, Zuckennann F. Immunological responses of swine to porcine reproductive and respiratory syndrome virus infection [J].Viral Immunol.2002, 15(4):533-47. Review.
    [59] Nguyen VP, Wong CW, Hinch GN,et al. Variation in the immune status of two Australian pig breeds[J]. Aust Vet J 1998 Sep: 6(9):613-617.
    [60] Nath M,Woolliams J A,Bishop S C. Identifying critical parameters in the dynamics and control of microparasite infection using a stochastic epidemiological modell [J].Journal of Animal Science.Savoy:Feb 2004. Vol.82,Iss.2:284-397.
    [61] Pescoviz MD,Sakoppulos AG,Gaddy JA, Husmann RJ,Zuckermann FA.Porcine peripheral blood CD4+/CD8+ dual expressing T-cell[J]. Vet Immunol immunopathol 1994,43:53-62.
    
    
    [62] Raymond C, Wilkie BN. Natural killer cell frequency and function in pigsselectively bred for high or low antibody and cell-mediated immune response: response to vaccination with modified live trandmissible gastroenteritis virus[J].Nat Imun. 1998,16(1):18-26.
    [63] Raymond C, Wilkie BN, Mallard B, et al. Natural killer cell frequency and function in Yorkshire pigs selectively bred for high or low antibody and cell-mediated immune response[J]. Nat.Imun. 1998,16(4): 127-136.
    [64] Rothschild MF.Selective breeding for immune responsiveness and disease resistance in livestock[J]. Agbiotechnology News Information 1989,1:355-360.
    [65] Rothschild,M.F. Selection for Disease Resistance in the Pig[J]. Pig news and information. 1985,6:277-280.
    [66] Rothschild MF,Hill HT, Christian LL,Wanner CM.Genetic diferences in serum-neutralization titres of pig after vaccination with pseudorabies modified live virus vaccine[J]. Am J Vet Res 1984,45:1216-1218.
    [67] Salmi AA. Antibody avidity and protection in virus fections[J]. Current Opinion in Immunology, 1991,3:503-506.
    [68] Straw B.E., Rothschild M.F.Genetic influences on liability to acquired disease.In:Disease of Swine[M].7th ed.,ISU Press. 1992.pp: 709-717.
    [69] Van Diemen PM, Kreukniet MB, Galina L,et al.Characterisation of a resource population of pigs screened for resistance to salmonellosis[J]. Vet Immunol Immunopathol. 2002 Sep 25, 88(3-4):183-196.
    [70] Van Heugten E, Sepears J W, Coffey M T, et al. The effect of methionine and aflatoxin on immune function in weanling pigs[J]. Journal of Animal. Science, 1994, 72(3): 658—664.
    [71] Van Zijpp.A.Z,et al.Genetic analysis of the humoral immune response of White Leghorn chicks[J].Poultry Sci.1982,59:1363-1369.
    [72] Vander Zijpp A.J.The effect of genetic origin, source of antigen and dose of antigen on the immune response of cockerels[J]. Poultry Sci, 1983, 62:205-211.
    [73] Warner C.M.,Meeker D.L.,Rothschild,M.F.Genetic control of immune responsiveness: A review of its use as a tool for selection for disease resistance[J].Journal of Animal Science. 1987,64:159-180.
    [74] Wilkie.B.N, Mallard.B.A. Breeding for Disease Resistance in Farm Animals[M].CAB International.2000:379-397.
    [75] http://www.37c.com.cn/literature/library/theory/059.
    [76] http://www.pigworld.info/PMWS%20files.htm.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700