用户名: 密码: 验证码:
多成分环境对中药口服吸收影响的评价方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中药的作用特点往往是多种成分同时发挥药效,对于单一成分来说,其处于受其他成分影响的多成分环境中。因此,中药成分的吸收必定会受到多成分环境的影响。但无论是美国FDA、欧盟EMA乃至中国CFDA,对多成分环境中单一成分的吸收评价方法皆无规定。基础研究中,多成分环境对单一成分吸收影响的评价方法也是空白。因此,采用对比研究的科研设计,在目标单一成分的吸收特征研究基础上,将其置于多成分环境中进行实验,通过多成分环境中目标化合物的定性锁定、定量测试和数学分析,以建立多成分环境对中药吸收影响的评价方法流程。
     国际公认药物吸收的三个核心要素为溶解度、溶出度和肠渗透性,这也是生物药剂学分类的核心指标,本文主要是基于测定多成分环境对药物上述三个因素的变化情况,研究多成分环境对药物吸收的影响。科研设计的具体实施过程是以葛根素为目标单一成分,将其置于葛根芩连方中其他药味高含量成分模拟的多成分环境中,对多成分环境作用于葛根素溶解度、溶出度和渗透性的影响趋势、影响程度进行实验,对实验结果采用最小二乘法、人工神经网络等算法进行建模分析,进而构建了影响评价研究的方法流程,并制定了详尽的标准操作规程。具体研究内容包括以下几方面进行:
     1.多成分环境对葛根素溶解度及溶出度影响的研究。
     (1)首次研究多成分环境(黄芩苷、小檗碱和甘草酸)对葛根素溶解度的影响:采用递进式的实验设计方法,分别研究了单一成分(分别为黄芩苷、小檗碱和甘草酸)环境、两成分环境(分别为黄芩苷+甘草酸、黄芩苷+小檗碱和甘草酸+小檗碱)和三成分环境(黄芩苷+甘草酸+小檗碱)对葛根素溶解度影响的变化趋势,从而建立了多成分环境对葛根素溶解度影响的数学回归模型方程。在此研究基础上总结了多成分环境对葛根素水溶解度的影响规律:①影响趋势:黄芩苷对葛根素溶解度影响为增加溶解度;小檗碱在单独存在背景下,对葛根素溶解度的影响为先增加后降低的变化趋势,在多成分环境下,小檗碱表现为降低葛根素的溶解度;三成分环境下甘草酸对葛根素溶解度的影响为先增加后降低的变化规律,其他情况下甘草酸主要表现为增加葛根素的溶解度。②影响程度程度:多成分环境中各个成分对葛根素溶解度的影响效应:效应大小为黄芩苷>小檗碱>甘草酸。最后,我们将多成分环境对解葛根素溶解度的影响进行单元组合建模,并采用此模型方程预测了葛根芩连复方环境对葛根素溶解度的影响,预测结果与实测结果对应较好。(2)首次提出了多成分环境对中药单一成分溶出度影响的研究方法。建立了葛根素溶解度和特性溶出速率的关联模型方程,模型方程:特性溶出速率=0.1694x溶解度-0.1877,在此范围之内的决定系数:R2=0.9984,RMSE=0.0137。首次建立了葛根芩连复方片剂中葛根素于五种不同生理介质中(pH1.0,pH4.0,pH6.8,pH7.4和水)的溶出曲线,并采用Weibull、Higuchi和Ritger-Peppas等数学模型进行方程拟合,结果为:葛根芩连复方片剂中葛根素的溶出行为采用Weibull模型方程拟合效果最好,可采用此模型作为葛根素在制剂中的溶出行为描述。并采用f因子法和聚类分析法评价了在五种不同生理溶出介质下,复方中多成分对葛根素溶出行为的影响。结果表明,多成分环境(葛根芩连复方片)对葛根素的溶出行为的影响主要体现其在pHl.0溶出介质中溶出速度和程度均较慢,结果表明多成环境对葛根素在机体内的胃液中溶出是限制其吸收的主要环节。
     2.多成分环境对葛根素渗透性影响的研究。
     (1)葛根素肠渗透性研究:分别应用离体翻转肠囊模型、在体单向肠灌流模型和单向肠灌流并行肠静脉采血模型,测定葛根素单一成分和两成分环境下的渗透系数。通过比较三种模型的肠渗透系数定量分析结果,确定在体单向肠灌流模型适合于多成分环境对中药成分渗透性影响研究。多成分环境对葛根素渗透性的影响结果为:①影响趋势:小檗碱降低葛根素的渗透性,黄芩苷促进葛根素的渗透性,甘草酸也表现为降低葛根素的渗透性。②影响程度程度:首次提出了多成分环境下渗透性影响系数P影响概念,Pm肠=Ps肠(P影响+1),从多成分环境下多种组合对葛根素渗透系数的影响分析,其中有6种组合的P影响小于0,所以这6组加入成分均降低葛根素的肠渗透性;另外7种组合的P影响均大于0。表明上述7组加入成分提高了葛根素的肠渗透性。综合分析,加入甘草酸组P影响几乎全部为负值,甘草酸能显著降低葛根素肠渗透性。(2)建立了肠渗透性研究方法标准操作规程,重点解决单向肠灌流模型水分校正误差,单向肠灌流方法质控关键点。(3)探索构建一套多成分环境影响中药成分肠渗透性研究方法,根据本论文研究结果,离体翻转肠囊模型、在体单向肠灌流模型组合运用的策略是可行的,首先通过翻转肠囊法定性锁定可吸收成分,然后运用在体单向肠灌流法定量测定肠渗透系数,分别研究在不同的模拟多成分体系下中药成分的吸收情况,通过多成分环境下吸收影响系数P影响参数刻画多成分环境对中药成分吸收的影响。
     3.建立了多成分环境对中药成分口服吸收影响的评价方法流程。
     构建了多成分环境影响中药吸收的评价方法流程。具体分成三步,第一步是研究中药单一成分的吸收情况,以明确药物吸收的影响因素。第二步是根据多成分环境对药物吸收的影响结果,建立具有预测功能的数学模型,以分析多成分环境对药物吸收的影响趋势和强度。第三步是制订多成分配伍方案,创造适合吸收的多成分环境。
     上述三个方面的内容,将药物吸收三因素相结合,体外和在体评价相结合,已有模型方程和自建数学模型方程相结合,提出多成分环境对药物吸收影响的评价的方法及药物吸收改进的方向。
The characteristic of traditional Chinese medicine is a variety of ingredients produce efficacy. When a single component in a complex environment, it will be affected by other components of the environment. But whether the FDA, EMA or CFDA, single ingredient adsorption in a complex environment evaluation method are not specified. In basic research, evaluation method of single component absorption in complex environments is also blank. Therefore, using the comparison method, a single target component was put into a complex environment to study absorption characteristics after individual environment research, through qualitative analysis, quantitative test and mathematics to lock the target compounds in the complex environment. Our aim is to establish an evaluation method of the complex environmental impact on the traditional Chinese medicine absorption.
     Three key elements of drug absorption are solubility, dissolution and intestinal permeability, which is the main index of biopharmaceutics classification. This paper based on the determination of complex environmental changing drug on these three factors, in order to study the complex environmental impact on drug absorption. The method and procedure validation experiments, peurarin is the target drug, to research on its aqueous solubility, dissolution and intestinal permeability trends and strength in the Gegenqinlian prescription complex environment. With through mathematic modeling, least square method and artificial neural network algorithm, therefore establish standard operating procedures. The research work mainly focuses on the following aspects:
     1. Investigation on the solubility and dissolution of puerarin in multicomponent environment.
     (1) Investigated the influence of the multicomponent environment (baicalin, berberine and glycyrrhizic acid) to the solubility of puerarin:The experiments were carried out with progressive levels, single component (baicalin, berberine and glycyrrhizic acid), two components (baicalin+glycyrrhizic acid, baicalin+berberine and glycyrrhizic acid+berberine) and three component's environment were used to describe the variation trend of their influence on the solubility of puerarin, respectively. And then, the mathematical regression equation model was established to characterize the solubility of puerarin under multicomponent environment. On this basis, we summarized the influence rule of multicomponent environment to the solubility of puerarin:①influence trend:the influence of baicalin was to increase the solubility of puerarin; When it came to berberine, the influence to puerarin was first increased and then decreased, but once in multicomponent environment, berberine would decrease the solubility of puerarin. Under the environment of three components, the influence to puerarin of glycyrrhizic acid was first increased and then decreased, and in other conditions, glycyrrhizic acid would increase the solubility of puerarin.②influence intension:The influential effect of single component within multicomponent environment:relative effectiveness of the three components was:baicalin>berberine>glycyrrhizic acid. At last, we built a model of the unity constitution of influence to the solubility of puerarin under multicomponent environment and it was used to predict the influence to the solubility of puerarin in the environment of the Gegen Qinlian Compound Tablets. The prediction results represented good correlation with the actual results.(2) First proposed methods that multi-component environment impact solubility of single component. The mathematic model equations of puerarin intrinsic dissolution rate and solubility s established, ntrinsic dissolution rate=0.1694×solubility-0.1877,In this range the coefficient of determination is0.9984and the RMSE is0.0137. We established the dissolution curves of puerarin in five different physiological medium (pH1.0, pH4.0, pH6.8, pH7.4and water) of Gegenqinlian Compound Tablets. This paper fitted Weibull、Higuchi、Ritger-Peppas and others mathematical models. The result indicated Weibull model was the best method to describe the dissolution behavior of puerarin in Gegenqinlian Compound Tablets and it could be used to describe the dissolution behavior of puerarin in preparation. F factor method and clustering methodology were used to evaluate the influence of multicomponent in preparation to the dissolution of puerarin in five different physiological medium. The result was that the influence of dissolution behavior under multicomponent (Gegenqinlian Compound Tablets) mainly embodied in that the dissolution rate and level were slow when in pH1, this suggested us the main rate-limiting step in the absorption of puerarin under multicomponent environment was the dissolution in gastric juice.
     2. The influence of the permeability of puerarin in multi-component environments.
     (1) Study of puerarin intestinal permeability:the permeability coefficient of puerarin in single component and two component environment was evaluated by applying in vitro reverted gut sac model, in vivo single pass perfusion model and double pass perfusion model. Comparing the results of three models of quantitative analysis, we determine the way in vivo intestinal permeability perfusion model is suitable for study the influence of the permeability of Chinese medicine ingredients in multi-component environments. The study of the influence of the permeability of puerarin in multi-component environments shows:①Trend of impact: Berberine reduced the permeability of puerarin, baicalin promote permeability of puerarin, and glycyrrhizin also performed to reduce the permeability of puerarin.②Degree of impact: Proposed the concept of Pimpact (permeability coefficient of ingredient under the impact of multi-component environmental), pmint estine=Psint estine.[Pimpact+1] for the first time.Analyzing from effects of various combinations of puerarin permeability coefficient in multi-component environment, we found that Pimpact<0under six kinds of combinations, so these added ingredient six combinations reduce the intestinal permeability of puerarin; Pimpact>0under the other seven kinds of combinations, therefore, these added groups increased intestinal permeability of puerarin.Comprehensive analysis of glycyrrhizin group shows that the Pimpact is almost entirely negative,so glycyrrhizin can significantly reduce intestinal permeability of puerarin.(2) Intestinal permeability methods are established, focused on solving the moisture calibration errors of intestinal perfusion method and critical points of quality control applying single pass perfusion model.(3)To establish a methodology system for intestinal permeability of TCM in multicomponent environment. According to the research results of this thesis, Combing the in vitro reverted gut sac model and in vivo single pass perfusion model is feasible. First, locking the absorbable components qualitatively by in vitro revert gut sac method. Then, measuring the intestinal permeability coefficient by in vivo single pass perfusion model. To study respectively the absorption of TCM in different simulated multicomponent system. Through multiple ingredients environment effect on absorption coefficient Pimpact depicting Chinese traditional medicine ingredient absorption in multiple ingredients.
     3. To establish a methodologyprocedure for oral absorption of TCM in multicomponent environment.
     The methodology of evaluation for drug absorption is established in multicomponent environment It concludes three main steps, the first step is to research the single component absorption and find out the limit factors of absorption, the second step is to establish a mathematical model for predicting compound in complex environment absorption basis on compound absorption in multi component environments, in order to predict drug absorption trend and intensity in complex environments. The third step is to establish a multi component compatibility program and create the suitable multi components for absorption.
     The above three aspects of research have combined the three key factors of drug absorption together, combined in vitro and in vivo together, combined model equation and self-construct model together, thus proposed method to study the oral absorption evaluation method of complex environment and can guide the future absorption optimization.
引文
[1]Ruiz-Garcia A, Bermejo M. Moss A, Casabo VG Pharmacokinetics in drug discovery. J Pharm Sci.2008,97(2):654-690.
    [2]Amidon GL, Lennernas H, Shah VP, and Crison JR. A theoretical basis for a biopharmaceutic drug classification:The correlation of in vitro drug product dissolution and in vivo bioavailability, Pharm Res.1995,12(3):413-420.
    [3]U. S, Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER). Waiver of in vivo bioavailability and bioequivalence studies for immediate-release solid oral dosage forms based on a Biopharmaceutics Classification System, Rockville, U. S. Food and Drug Administration, 2000, [2013-02-24]http://www. fda. gov/ downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM070246. pdf
    [4]European Medicines Agency. Concept paper on BCS-based biowaiver. London, UK, European Medicines Agency,2007, [2013-02-24]http://www. ema. europa. eu/ema/pages/includes/document/open_document.jsp?webContentId=WC500003010
    [5]张继稳,陈立兵,顾景凯,等,多组分中药化合物组释放同步性评价方法[J].药学学报,2008,43(6):647-651.
    [6]王燕,赵嫄,李聪,蛇床子中蛇床子素的大鼠单向肠灌流研究[J].陕西中医,2012,33(9):1235-1237.
    [7]冯志强,谢智勇,廖琼峰,等,千层纸素A在Caco-2细胞模型中的吸收机制研究[J].中南药学,2011,9(7):481-485.
    [8]林文慧,朱春燕,陈卫,等.葛根黄酮在大鼠肠道的吸收动力学研究[J].中国中药杂志,2008,33(2):164-168.
    [9]吴晓青,陈丹,程清,等,玳玳黄酮自微乳化微丸在大鼠小肠的吸收特性和机制研究[J].中草药,2012,43(011):2222-2226.
    [10]赵艳红,贾晓斌,陈彦,等,淫羊藿黄酮类化合物的大鼠在体肠吸收研究[J].中国药学杂志,2008,43(3):188-191.
    [11]袁勇,邢建国,王新春,等,香青兰黄酮类化合物的大鼠在体肠吸收[J].中国医院药学杂志,2011,31(20):1667-1670.
    [12]许英爱,山楂叶总黄酮的肠吸收机理与药动学及其缓释微丸的研究[D].第二军医大学博士学位论文,2007.
    [13]水文波,中药活性成分的小肠吸收[D].浙江大学硕士学位论文,2006.
    [14]辛然,陈彦,贾晓斌,等,枳实白芍提取物配伍主成分的肠吸收变化研究[J].中成药,2011,33(5):791-795.
    [15]董宇,张英丰,杨庆,等,黄连提取物在大鼠肠外翻实验中的吸收研究[J].中国中药杂志,2008,33(9):1056-1060.
    [16]贺俊杰,刘璇,陈彦,等,灯台叶总生物碱中鸭脚树叶碱及瓦莱萨明碱大鼠在体肠吸收特性[J].中国医院药学杂志,2013,33(018):1487-1490.
    [17]王东晓,刘屏,崔捷,等,开心散及其各单药成分的肠吸收研究[J].中国药物应用与监测.2007,3:10-14.
    [18]周伟,狄留庆,毕肖林,等,双黄连口服液中有效成分的大鼠在体肠吸收研究[J],中国中药杂志,2011,36(13):1733-1738.
    [19]王伟,金铃子散不同配伍的肠吸收特征研究[D],中国中医科学院,2011.
    [20]白宇,珍菊降压片配伍机理的研究[D],黑龙江中医药大学,2011.
    [21]沈岚,冯怡,徐德生,等,配伍前后甘草特征化学组分大鼠药动学变化研究[J],2010,
    [22]王志,冯年平,叶贝妮,等,大鼠在体单向肠灌流模型研究麝香及其复方配伍的肠吸收机制[J],上海中医药杂志,2013,6:048.
    [23]张艺竹,等.基于药代动力学参数分析比较葛根芩连汤的不同配伍肠吸收特性[J].药学学报,2013.48(10):1611-1617.
    [24]白晶,丁振铎,徐昶儒,等.“当归-川芎”药对中阿魏酸在体肠吸收研究[J].哈尔滨商业大学学报自然科学版,2013,29(2).
    [25]袁菱,陈彦,辛然,等.柚皮苷,橙皮苷,新橙皮苷与芍药苷配伍的肠吸收研究[J].中国医院药学杂志,2013,33(015):1256-1260.
    [26]郭友立,谭晓梅.盐酸小檗碱与葛根素配伍肠吸收变化的研究[J].中药药理与临床,2011,27(2):27-29.
    [27]朱秀媛,苏成业,李振华,等,葛根有效成分的代谢研究III,葛根素的代谢及其药代动力学分析[J].药学学报,1979,14(6):349-355.
    [28]Yasuda T, Kano Y, Saito K, Ohsawa K, Urinary and Biliary Metabolites of Puerarin in Rats, Biol, Pharm, Bull,1995,18(2):300-303.
    [29]李煦颖,张懋璠,赵妍,等,不同剂量葛根素在大鼠体内的药代动力学[J],中国医科大学学报,2009,38(12):885-887.
    [30]吴恒,陈礼明,张善堂,葛根素在大鼠体内的药动学研究[J],安徽医药,2010,14(2):139-141.
    [31]Wang Q, Huang L, Yu P, et al, Magnetic solid-pHase extraction and determination of puerarin in rat plasma using C(18)-functionalized magnetic silica nanoparticles by high performance liquid chromatography, J Chromatogr B Analyt Technol Biomed Life Sci,2013, 912(1):33-37.
    [32]Li Y, Pan WS, Chen SL, et al, Pharmacokinetic, tissue distribution, and excretion of puerarin and puerarin-pHospHolipid complex in rats, Drug Dev Ind Pharm,2006,32(4): 413-422.
    [33]Wu H, Zhou A, Lu C, et al, Examination of lympHatic transport of puerarin in unconscious lymph duct-cannulated rats after administration in microemulsion drug delivery systems, Eur J Pharm Sci,2011,42(4):348-353.
    [34]Luo CF, Yuan M, Chen MS, et al, Pharmacokinetics, tissue distribution and relative bioavailability of puerarin solid lipid nanoparticles following oral administration, Int J Pharm,2011,410(1-2):138-144.
    [35]Jiang L, Dai J, Huang Z, et al, Simultaneous determination of gastrodin and puerarin in rat plasma by HPLC and the application to their interaction on pharmacokinetics, J Chromatogr B Analyt Technol Biomed Life Sci,2013,915-916:8-12.
    [36]吴恒,小檗碱对大鼠体内葛根素药动学的影响[D],安徽医科大学硕士毕业论文,2010.
    [37]Ning Li, Ying Deng, Dan Wang, et al, Determination of glibenclamide and puerarin in rat plasma by UPLC-MS/MS:Application to their pharmacokinetic interaction study, Talanta, 2013,104(30):109-115.
    [38]潘莹,葛根素在大鼠体内的药动学研究[J].安徽农业科技,2011,39(5):2666-2667.
    [39]潘璐琳,欧阳臻,杨雨,等,葛根及复方中葛根素在大鼠体内的药动学研究[J],中国药学杂志,2009,44(9):703-705.
    [40]张仙,韩凤梅,杜鹏,等,脉君安片主要降压成分葛根素和氢氯噻嗪在大鼠体内的药动学研究[J],药学学报,2009,44(9):1056-1060.
    [41]李颖,潘卫三,陈士林,等,葛根素及其磷脂复合物在 Beagle犬体内的药动学比较[J],中草药,2006,37(5):695-697.
    [42]王立,赵瑛,煎煮方式对葛根素家犬体内药动学的影响[J],中药材,2010,33(9):1442-1444.
    [43]Ren F, Jing Q, Shen Y, et al, Quantitative determination of puerarin in dog plasma by HPLC and study on the relative bioavailability of sustained release tablets, J Pharm Biomed Anal,2006,41(2):549-553.
    [44]谭晓梅,吴艳萍,葛根芩连汤配伍葛根素在兔体内药动学的研究[J],中药药理与临床,2006,22(5):1-2.
    [45]Wang WY, Yao C, Shao YF, et al, Determination of puerarin in rabbit aqueous humor by liquid chromatography tandem mass spectrometry using microdialysis sampling after topical administration of puerarin PAMAM dendrimer complex, J Pharm Biomed Anal, 2011,56(4):825-829.
    [46]Ma Z, Wu Q, Lee DY, et al, Determination of puerarin in human plasma by high performance liquid chromatography, J Chromatogr B Analyt Technol Biomed Life Sci,2005, 823(2):108-114.
    [47]Liu YK, Jia XY, Liu X, et al, On-line solid-pHase extraction-HPLC-fluorescence detection for simultaneous determination of puerarin and daidzein in human serum, Talanta,2010, 82(4):1212-1217.
    [48]Prasain JK, Jones K, Brissie N, Moore R, Wyss JM, Barnes S, Identification of puerarin and its metabolites in rats by liquid chromatography-tandem mass spectrometry, J Agric Food Chem,2004,52(12):3708-3712.
    [49]陈丽红,范慧佳,唐于平,等,葛根芩连配方颗粒在大鼠体内的药物代谢产物研究[J],中国实验方剂学杂志,2011,17(24):101-104.
    [50]张启云,徐良辉,李冰涛,等,复方葛根芩连汤多效应成分分类整合药代动力学研究[J],中国临床药理学与治疗学,2011,16(1):51-56.
    [51]Wang Q, Li X, Dai S, et al, Quantification of puerarin in plasma by on-line solid-pHase extraction column switching liquid chromatography-tandem mass spectrometry and its applications to a pharmacokinetic study, J Chromatogr B Analyt Technol Biomed Life Sci, 2008,863(1):55-63.
    [52]崔升淼,赵春顺,何仲贵,大鼠肠管外翻模型对葛根素吸收机制的研究[J],时珍国医国药,2008,19(7):1715-1716.
    [53]赖珺,廖正根,梁新丽,等,吸收促进剂对葛根素肠吸收的研究[J],江西中医学院学报,2009,21(4):30-32.
    [54]王蕾,吴鸿飞,鲁传华,等,葛根素口服油基纳米乳大鼠体内吸收转运通路研究[J],药学学报,2009,44(7):798-802.
    [55]黄嗣航,龙晓英,袁飞,等,酚红法和改良重量法分别研究葛根素的大鼠在体肠吸收机制[J],广东药学院学报,2012,28(6):1-4.
    [56]何典鸿,以混合胶束制备技术提高葛根素生物利用度的研究[D],北京中医药大学硕士论文,2008.
    [57]安叡,张华,张艺竹,等,采用在体单向肠灌流模型研究葛根芩连汤不同配伍组主要指标成分的肠吸收特性[J],药学学报,2012,47(12):1696-1702.
    [58]Luo CF, Yuan M, Chen MS, et al, Metabolites of puerarin identified by liquid chromatography tandem mass spectrometry:similar metabolic profiles in liver and intestine of rats, J Chromatogr B Analyt Technol Biomed Life Sci,2010,878(3-4):363-370.
    [59]孔一帆,李俊,黄成,等,基于MDCK的葛根素跨膜转运机制的研究[J],安徽医科大学学报,2012,47(12):1418-1422.
    [60]Liang XL, Zhao LJ, Liao ZG, et al, Transport properties of puerarin and effect of Radix Angelicae Dahuricae extract on the transport of puerarin in Caco-2 cell model, J Ethnopharmacol,2012,144(3):677-682.
    [61]Venkatesh S, Lipper RA, Role of the development scientist in compound lead selection and optimization, J Pharm Sci,2000,89(2):145-154.
    [62]E. H, Kerns,, L, Di, Physicochemical profiling:overview of the screens, Drug Discov Today Technol,2004,1(4):343-348.
    [63]Stuart M, Box K, Chasing equilibrium:measuring the intrinsic solubility of weak acids and bases, Anal Chem,2005,77(4):983-990.
    [64]Alsenz J, Kansy M, High throughput solubility measurement in drug discovery and development, Adv Drug Deliv Rev,2007,59(7):546-567.
    [65]Sugano K, Okazaki A, Sugimoto S, et al, Solubility and dissolution profile assessment in drug discovery. Drug Metab Pharmacokinet,2007,22(4):225-254.
    [66]Lipinski CA, Lombardo F, Dominy BW, et al, Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings, Adv Drug Deliv Rev,2001,46(1-3):3-26.
    [67]Avdeef, pH-metric Solubility,1, Solubility-pH Profiles from Bjerrum Plots, Gibbs Buffer and pKa in the Solid State, Pharm Pharmacol Commun,1998,4(3):165-178.
    [68]Avdeef A, Berger CM, pH-metric solubility,3, Dissolution titration template method for solubility determination. Eur J Pharm Sci,2001,14(4):281-291.
    [69]Avdeef A, Berger CM, Brownell C, pH-metric solubility,2:correlation between the acid-base titration and the saturation shake-flask solubility-pH methods, Pharm Res,2000, 17(1):85-89.
    [70]王雪超,杜美容,盐酸小檗碱溶解度与相分配系数研究[J].河北北方学院学报(自然科学版),2011,27(2):26-29.
    [71]E, Baka, K, Tak a cs-Nov a k, Study on standardization of shake-flask solubility determination method, Eur J Pharm Scis,2007,32(1):S23-S24.
    [72]E, Baka, J. E, Comer, K, Tak d cs-Nov a k, Study of equilibrium solubility measurement by saturation shake-flask method using hydrochlorothiazide as model compound, J Pharm Biomed Anal.2008,46(2):335-341.
    [73]平其能,现代药剂学[M],中国医药科技出版社,北京,1998.10.
    [74]Venkatramana M, Rao, Ritesh Sanghvi and Haijian (Jim) Zhu, Solubility of Pharmaceutical Solids In Developing Solid Oral Dosage Forms:Pharmaceutical Theory& Practice, Academic Press:Burlington, MA,2009:3-23.
    [75]Gerry Steele and Talbir Austin, Preformulation Investigations using Small Amounts of Compound as an Aid to Candidate Drug Selection and Early Development In: Pharmaceutical preformulation and formulation, Informa Healthcare USA, Inc., New York, 2009:50.
    [76]Yu LX, Carlin AS, Amidon GL, et al, Feasibility studies of utilizing disk intrinsic dissolution rate to classify drugs, Int J Pharm,2004,270(1-2):221-227.
    [77]SehiD S, Betz G, Hadzidedi□ S, et al, Investigation of intrinsic dissolution behavior of different carbamazepine samples, Int J Pharm.2010,386(1-2):77-90.
    [78]The United States Pharmacopeia and National Formulary USP36-NF31, The United States Pharmacopeial Convention, Inc.:Rockville, MD,2012.
    [79]Yu LX, Amidon GL, Polli JE, et al, Biopharmaceutics classification system:the scientific basis for biowaiver extensions. Pharm Res,2002,19(7):921-925.
    [80]Zakeri-Milani P, Barzegar-Jalali M, Azimi M, et al, Biopharmaceutical classification of drugs using intrinsic dissolution rate (IDR) and rat intestinal permeability, Eur J Pharm Biopharm,2009,73(1):102-106.
    [81]European Pharmacopoeia,6th, European Directorate for the Quality of Medicines, Council of Europe, Strasbourg, France,2008.
    [82]The British Pharmacopoeia, The Stationary Office, London,2009:A310-A311.
    [83]王晓辉,药物溶出度的测定方法及其进展[J],天津药学,2006,18(2):68-71.
    [84]阳长明,侯世祥,药物溶出度研究进展[J],中成药,2000,22(7):511-515.
    [85]Roal Hanson, Vivian Gray,溶出度试验技术[M],第三版,中国医药科技出版社,北京,2007:1-3.
    [86]Papadopoulou V, Valsami G, Dokoumetzidis A, et al, Biopharmaceutics classification systems for new molecular entities (BCS-NMEs) and marketed drugs (BCS-MD): theoretical basis and practical examples, Int J Pharm,2008,361(1-2):70-77.
    [87]Hansch C, Dunn WJ 3rd, Linear relationships between lipophilic character and biological activity of drugs, J Pharm Sci,1972,61(1):1-19.
    [88]何艺兵,赵元慧,王连生,等,有机化合物正辛醇/水分配系数的测定[J],环境化学,1994,13(3):195-197.
    [89]王琪全,刘维屏,李克斌,农药正辛醇/水分配系数的测定及其与其他环境参数的相关性[J],环境污染与防治,1997,19(6):23-39.
    [90]宋桂军,柳菡,冯芳,等,替米沙油水分配系数的测定及其意义[J],药物分析杂志,2007,27(11):1704-1706.
    [91]杨秀丽,孙进,何仲贵,格列吡嗪油水分配系数和平衡溶解度的测定[J],中国药剂学杂志,2009,7(3):121-126.
    [92]Brooke DN, Dobbs AJ, Williams N, Octanol-water partition coefficients (P):measurement, estimation, and interpretation, particularly for chemicals with with P<105, Ecotoxicol Environ Saf,1986,11(3):251-260.
    [93]Brooke D N, Nielsen I, de Bruijn J, et al, J. Aninterlaboratory evaluation of the stir-flask method for the determination of octanol-water partition coefficients, Chemosphere.1990, 21:119-133.
    [94]Fisk A. T., Rosenberg B., Cymbalisty C. D., et al, Octanol/water partition coefficients of toxaphene congeners determined by the "slow-stirring" method, Chemosphere.1999, 39(14):2549-2562.
    [95]Chessells, M., Hawker, D. W., Connell, D. W., Critical evaluation of the measurement of the 1-octanol/water partition coefficient of hydrophobic compounds, Chemosphere,1991, (22)12:1175-1190.
    [96]Hawker D. W., Connell, D. W., Generator columns and high pressure liquid chromatography for determining aqueous solubilities and octanol-water partition coefficients of PCBs congeners, environ Sci Technol,1998,22(4):382-387.
    [97]Jack D B, Frans B, Willen S, et al. determination of octanol-water partition coefficients for hydrophobic organic chemicals with the slow-stirring method, Environ Toxi Chem,1989, 8(6):499-512.
    [98]程锦,狄留庆,在体肠段灌流模型在中药吸收研究中的应用[J],中国中医药信息杂志,2008,15(2):98-100.
    [99]Wilson T H, Wiseman G, The use of sacs of everted small intestine for the study of the transference of substances from the mucosal to the serosal surFace, The Journal of physiology,1954,123(1):116-125.
    [100]潘洪平,葛根素的吸收动力学及对脑缺血损伤的保护作用研究[D],华中科技大学博士学位论文,2010.
    [101]张英丰,李玉洁,杨庆,等,采用离体外翻肠囊模型进行穿心莲内酯的肠吸收特性研究[J],中国实验方剂学杂志,2010,16(9):107-110.
    [102]刘晓颖,苏湲淇,甘晓玲,等,外翻肠囊法评价及比较5种药物大鼠肠透膜能力[J],中国药房,2009,20(22):1704-1706.
    [103]陈晓萌,张迎春,林朔,等,外翻肠囊法发现元胡止痛片吸收成分群的研究[J],中国中药杂志,2012,43(13):2005-2011.
    [104]朱容慧,赵军宁,毕岳琦,等,中药肠吸收动力学的研究进展[J],药物评价研究,2010,33(1):25-29.
    [105]张晓雷,周明眉,贾伟,等,在体肠灌流模型及其在中药研究中的应用[J],上海中医药大学学报,2010,24(3):87-92.
    [106]黄沛,杨中林,等,不同纯度葛根素提取物的大鼠小肠吸收动力学研究[J],海峡药 学,2008,20(3):43-45.
    [107]王利胜,涂星,陈豆,等,在体肠循环法研究黄芪提取物对川芎嗪大鼠肠吸收的影响[J],中国医院药学杂志,2012,32(9):661-664.
    [108]高宏伟,匡海学,阁雪莹,胡黄连苦苷II大鼠在体肠吸收特征研究[J],现代药物与临床,2011,26(4):284-286.
    [109]张艳,王平,王进荣,等,在体单向肠灌流模型研究大黄素的大鼠肠吸收特性[J],中药新药与临床药理,2012,23(3):286-290.
    [110]初阳,杨倩,陈大为,等,竹叶黄酮在大鼠肠道的吸收动力学[J],中国医院药学杂志,2013,33(5):345-349.
    [111]杨本坤,王素军,曾洁,等,大鼠在体单向肠灌流模型研究肉桂酸肠道吸收特性[J],广东药学院学报,2013,29(1):69-72.
    [112]王大为,张基,李沛,等,在体肠灌流模型研究灵仙新苷的大鼠肠吸收特性[J],中国新药杂志,2012,21(7):800-803.
    [113]马燕,林宝琴,李卫中,等,柚皮素大鼠在体肠吸收动力学的研究[J],中成药,2012,34(8):1487-1491.
    [114]聂淑芳,潘卫三,杨星钢,等,对大鼠在体肠单向灌流技术中重量法的评价[J],中国新药杂志,2005,14(10):56-59.
    [115]黄嗣航,龙晓英,袁飞,等,酚红法和改良重量法分别研究葛根素的大鼠在体肠吸收机制[J],广东药学院学报,2012,28(6):1-4.
    [116]吴迪,张岩,姚慧敏,等,单向灌流法研究磷酸川芎嗪的大鼠在体肠吸收[J],沈阳药科大学学报,2008,25(9):695-698.
    [117]盛莉,谭玮,扈金萍,等,CYP3A和P-糖蛋白对布格呋喃在大鼠小肠吸收的影响[J],药学学报,2010,45(1):43-48.
    [118]龙丽辉,马朝,曹永孝,等,蒙脱石对大鼠肠、血管循环灌流液中肌酐的吸附作用[J],西安交通大学学报(医学版),2008,(04):386-390.
    [119]杨芳,人和鼠肝微粒体药物代谢检测平台的建立及初步应用研究[D],西北大学硕士论文,2008.
    [120]邓婧婷,庄笑梅,李桦,小肠首过代谢的研究进展[J],国际药学研究杂志,2010,37(4):269-272.
    [121]范艳芳,马潜,唐澜,等,野黄芩素FVB/NCrlVr小鼠磺酸化代谢特征研究[J],中国药学杂志,2012,47(18):1493-1497.
    [122]何黎黎,杨立开,邓黎,S9代谢活化酶系统制备及蛋白含量的测定[J],西南民族大学学报·自然科学版,2010,36(2):243-245.
    [123]颜小锋,周权,姚彤炜,普萘洛尔在人肝细胞色素P450转基因细胞中的立体选择性测定[J],浙江大学学报(医学版),2003,32(2):117-120.
    [124]高凌波,扁桃酸的立体选择性代谢和手性转化机制研究[D],浙江大学硕士论文,2009.
    [125]唐婧,江坤,李坤杰,等,柱前衍生化HPLC法测定大鼠肝S9组分中川丁特罗对映体[J],中国药师,2011,14(3):339-342.
    [126]廖沙,阿德福韦酯及其结构类似物的体外药代动力学性质比较研究[D],军事医学科学院毒物药物研究所硕士论文,2005.
    [127]刘东,张程亮,向道春,大鼠肝脏和肠道羧酸酯酶CES2对伊立替康的部位特异性代谢作用[J]..,医学导报,2011,30(2):166-170.
    [128]吕鹏,甘草苷及其苷元的透膜转运特征及初步药代动力学评价[D],军事医学科学院辐射与放射医学研究所硕士论文,2008.
    [129]王琼,郝海平,余果,等,丹参酮IIA醌还原级联葡萄糖醛酸结合代谢种属差异研究[C],第九届全国药物和化学异物代谢学术会议青年优秀论文,2009.
    [130]吴潇,浙贝乙素大鼠体内药代动力学研究[D],华中科技大学博士论文,2010.
    [131]廖作庄,梁钢,欧冰凝,表没食子儿茶素没食子酸酯体外代谢的方法研究[J],广西医学,2011,33(1):5-7.
    [132]吴曦,罗碧容,袁文杰,代谢指纹谱用于丹参活性成分的分析与筛选[J],世界科学技术-中医药现代化,2011,13(1):170-179.
    [133]Rajesh Krishna, Lawrence Yu, Biopharmaceutics applications in drug development[M], 2008:26-27
    [134]US Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER). Guidance for industry:waiver of in vivo bioavailability and bioequivalence studies for immediate-release solid p roducts, based on a biopharmaceutics classification system[EB/OL], (2007-12-17). http://www, fda, gov/ cder/guidance/3618fnl, htm.
    [135]刘西京,杨大坚,罗杰英,等,紫外分光光度法测定葛根素的解离常数.时珍国医国药,2006,17(11):2206-2207
    [136]de Levie, Robert, The Henderson-Hasselbalch Equation:Its History and Limitations, J, Chem, Educ,2003,80,146]
    [137]Matheron G, The intrinsic random functions and their applications, Advances in Applied Probability,1973,5(3):439-468.
    [138]Journel A G, Huijbregts C J, Mining geostatistics[M], NewYork:Academic Press,1978: 387-396.
    [139]Whittle P, Prediction and regulation by linear least-square methods[M], London:English Universities Press,1963:5-31
    [140]安叡,张华,张艺竹,等.采用在体单向肠灌流模型研究葛根芩连汤不同配伍组主 要指标成分的肠吸收特性.药学学报,2012,47(12):p,1696-1702.
    [141]张岩峰,葛根素及其三种增溶制剂口服吸收评价的研究,2009,北京中医药大学.
    [142]崔升淼,葛根素体内药动学及葛根黄酮自微乳化软胶囊的研究[D],2003,沈阳药科大学
    [143]郭友立,谭晓梅,盐酸小檗碱与葛根素配伍肠吸收变化的研究.中药药理与临床,2011,27(2):p,27-29.
    [144]Narawane L, Lee VHL. Absorption barriers, Drug target deliv,1994,3:1-66.
    [145]Lennernas H. Human intestinal permeability. J pharm sci,1998.87:403-410.
    [146]Zhou, R., et al., pH-dependent dissolution in vitro and absorption in vivo of weakly basic drugs:development of a canine model, Pharm Res,2005,22(2):188-92.
    [147]Yu, L. X., et al., Transport approaches to the biopharmaceutical design of oral drug delivery systems:prediction of intestinal absorption, Adv Drug Deliv Rev,1996,19(3):p, 359-76.
    [148]Zhou, R., et al., pH-dependent dissolution in vitro and absorption in vivo of weakly basic drugs:development of a canine model, Pharm Res,2005,22(2):188-92.
    [149]Yu, L, X., and Amidon, G, L., Analytical solutions to mass transfer, Transport processes in pharmaceutical systems,1999,102:23-54.
    [150]Yu, L. X., An integrated model for determining causes of poor oral drug absorption, Pharm Res,1999,16(12):1883-7.
    [151]Curatolo, W., Physical chemical properties of oral drug candidates in the discovery and exploratory development settings, Pharmaceutical Science & Technology Today,1998,1(9): p,387-393.
    [152]Johnson, K. C, and A. C, Swindell, Guidance in the setting of drug particle size specifications to minimize variability in absorption. Pharm Res,1996,13(12):,1795-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700