用户名: 密码: 验证码:
黄土区微型蓄雨设施水体水质变化及对饮水安全影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全球水资源紧张加剧,在中国及世界许多地区,雨水不仅作为生产用水,而且作为生活用水得到广泛应用,但作为饮用水源的水质问题研究薄弱,研究雨水作为饮用水源的水质变化对饮水安全影响具有重要意义。本研究针对黄土区微型蓄雨设施中水体污染物时空分布及对饮水安全影响等方面存在的问题,选取与人体健康密切相关的水体典型污染物作为研究对象,通过理论分析和室内外试验相结合的方法,重点研究了蓄集雨水典型污染物时空变化规律及作用机制,取得主要成果如下:
     1、蓄雨水体水质随时间变化规律。雨水贮存过程中,污染物含量随时间增加呈现逐渐降低,在20~30天内达到稳定的趋势,该变化趋势符合水体自净作用影响规律。分析了贮存过程中沉降、扩散、降解和源汇等作用对污染物迁移转化影响,概化了污染物随时间变化过程,建立了基于降解和源汇的计算公式,验证结果表明浊度和COD模拟结果较理想;含氮化合物影响因素复杂,其模拟结果具有一定偏差,但变化趋势一致,说明该公式在一定程度上反应蓄雨水体污染物随时间变化。计算与实测结果表明,蓄雨设施贮存雨水20~30天后水体污染物含量较低,为适宜取水时段,该结论对饮水安全具有重要实际意义。
     2、蓄雨水体水质的空间变化服从重力与扩散相互作用规律。实测结果表明,贮存雨水污染物含量沿垂线分布呈现两端高、中间低的特征,主要受底层沉积物质和表层水体漂浮物两个主要污染源及水体生物的影响,本质是重力和扩散相互作用的结果。基于重力与扩散的相互作用,根据贮存水体边界条件,给出了污染物沿垂线分布的公式,利用实测的浊度和COD资料验证,发现模拟结果存在一定偏差,但分布趋势一致,表明该公式在一定程度上揭示了水体污染物的空间分布规律,但计算较复杂。为了计算方便,依据实测资料给出了污染物沿垂线方向的经验性关系。上述研究结果表明,在相对水深0.4~0.6h处污染物含量最低,为适宜取水位置。该结论对蓄雨设施饮水安全提供了技术保障。
     3、不同蓄雨材料对蓄雨水体水质影响。试验结果表明,蓄雨水体水质变化的稳定阶段主要受扩散作用影响,微型蓄雨设施材料对水体影响较大。进一步研究表明,采用新型材料MBER(a Material Becoming Earth into Rock)土壤固化剂的蓄水设施水体污染物时空分布与其它常用材料一致,但土壤固化剂对比水泥材料蓄水污染物含量降低15~20%,空间分布上水体中部位置相对浊度和COD含量分别降低15%和8%左右。分析表明,与水泥材料相比,土壤固化剂与土壤及水的相互作用,产生了更多的具有吸附作用的Ca(OH)2等产物,强化了水体的自净作用。上述结果表明MBER土壤固化剂作为蓄雨设施材料具有水质好的优势,作为安全饮水工程材料具有可行性。
     4、安全蓄雨水质的简易评价方法研究。针对饮用水监测指标过多,水质不易评价的问题,研究发现,不同的污染物成分多数具有一定的联系,可以通过统计分析排除内在联系,优化出浊度、COD、易溶离子(如硝酸根)和pH共4个指标作为总体控制指标来评价水体水质状况。利用4个指标建立了以安全饮水为目标的雨水水质评价方法,经过实测资料分析和与其它方法的比较,表明该方法在评价雨水适宜饮用问题上,具有直观、可靠和实用的特点。
     5、安全蓄雨设施对典型地区雨水利用的水质保障作用。在地表水为苦咸水,地下水为高氟水的定边白云山地区,农村庭院以固化土及水泥等为材质的蓄雨设施水体水质监测结果表明,使用期内水质基本符合饮水安全要求,取水拟在水体中上部。而在黄土高原丘陵沟壑区小流域的塘、河、库蓄集雨水监测结果表明,除部分水体浊度和COD含量较高以外,水质基本符合饮水安全要求。蓄雨设施不但有助于解决小流域尺度的饮水安全问题,同时具有防治水土流失的作用。
Under the press of globle water resource shortage, harvested rainwater has beenwidely used to provide not only process water but also domestic water consumption inChina and many other coutries. It is an important issue to investigate water qualityvariation of harvested rainwater as drinking water source in micro-storage facilities and itsinfluence on safety of drinking water. Aiming at a number of problems with water qualityissue during rainwater utilization, the paper took some typical water quality parametersclosely related to human health as researcher object, studied characteristics and mechanismof the spatio-temporal variability of the referred pollutants, by means of indoor andoutdoor experiment and theoretical analysis. The main conclusions are listed as follows:
     1. Simulation and analysis of temporal variation of typical pollutants concentration inharvested rainwater. During storage process, the concentration of pollutants graduallyreduced with time, and reached a stable trend in20~30days, which agreed with effect ofself-purification. According to the measured results of temporal variation in pollutantsconcentration, the temporal migration process changes of pollutants could be dividend intothree stages, viz. the early settlement-dominant period, the transition period and thediffusion-dominant period. A numerical model was established for describing the temporalchanges of pollutants in small and micro-rainwater utilization engineering, validated andevaluated. And turbidity and COD werer verified well by the monitoring results; nitrogencompounds had a certain deviation, but a rational trend.20-30days after storage wasrecommended as suitable time for utilization.
     2. Simulation and analysis of vertical distribution of typical pollutants concentrationin rainwater. Turbidity and COD contents are high at two ends and low in the middle alongthe vertical line, due to sediment at the bottom and floating debris at the surface andbiological activities. Sediment and floating debris are two main pollution sources. Alongthe vertical line, the measured relative pollutant content was positively correlated to thepower function of relative distance from the pollution source. Several types of vertical distribution were given based on the measured data. So low pollutant content appears inthe middle, and cleanness of surface and bottom could improve harvested rainwater quality.A numerical model was established for describing the vertical distribution of pollutants insmall and micro-rainwater utilization engineering, validated and evaluated, and wasverified by the monitoring results, which had certain deviation, but credible usage. Arelative depth of0.4-0.6h was was recommended as suitable zone for utilization.
     3. The effect of MBER soil stabilizer, compared with cement material, as constructionmaterials on water quality was studied. With the effect of soil stabilizer, during storagetime, the pollutants concentration decreased about15~20%; as for the vertical distribution,the relative concentration decreased about8~12%. The effect of solidified soil usingMBER soil stabilizer was due to the hydrate reaction of solidified soil and reactionproducts. Soil stabilizer could strengthen self-purification of water to some extent, whichcould reduce the amount of turbidity, COD and some ions such as nitrate and nitrite.Results showed that the water quality did not exceed the standard for drinking water inChina for distribute water supply. Results in this research were valuable for popularizationand application of MBER soil stabilizer in rainwater utilization from point view of waterquality issue.
     4. A suitable water quality assessment method was given. Turbidity, COD, ions (suchas nitrate) and pH were chosen as the main factors or indicators for describing thecharacterization of rainwater quality using statistics analysis method. The rainwater qualityassessment method was presented as a result to security drinking water quality. Throughdata analysis and comparison, the method is intuitive, reliable and targeted.
     5. The suitability of different spatial scales of rainwater utilization was investigated.Harvested rainwater utilization in the rural single family courtyard, small watershed wasinvestigated and evaluated. Results showed that: rainwater utilization had great potentialin solving the rural household in dingbian. Rational utilization of rainwater resources is asuitable strategy to alleviate the problem of drinking water safety in rural area.
引文
[1] United Nations Educational, Scientific and Cultural Organization, The4th edition of the UNWorld Water Development Report (WWDR4)[R],2012.http://www.unesco.org/new/en/natural-sciences/environment/water/wwap/wwdr/wwdr4-2012/.
    [2]中华人民共和国国土资源部,水利部,《国土资源部、水利部关于农村饮水安全工程建设用地管理有关问题的通知》(国土资发〔2012〕10号)[R],2012.
    [3]中华人民共和国国家发改委,水利部,卫生部,环境保护部.《全国农村饮水安全工程“十二五”规划》[R],2012.
    [4] Ghisi, E., D.d.F. Tavares, and V.L. Rocha, Rainwater harvesting in petrol stations in Brasília:Potential for potable water savings and investment feasibility analysis[J]. Resources, Conservationand Recycling,2009.54(2): p.79-85.
    [5] Gleick, P.H. and M. Palaniappan, Peak water limits to freshwater withdrawal and use[J].Proceedings of the National Academy of Sciences,2010.107(25): p.11155-11162.
    [6] Keeler, B.L., et al., Linking water quality and well-being for improved assessment and valuationof ecosystem services[J]. Proceedings of the National Academy of Sciences,2012.109(45): p.18619-18624.
    [7] McDonald, R.I., et al., Urban growth, climate change, and freshwater availability[J].Proceedings of the National Academy of Sciences,2011.108(15): p.6312-6317.
    [8] Naddeo, V., D. Scannapieco, and V. Belgiorno, Enhanced drinking water supply throughharvested rainwater treatment[J]. Journal of Hydrology,2013.498(10): p.287-291.
    [9] Rashidi Mehrabadi, M.H., B. Saghafian, and F. Haghighi Fashi, Assessment of residentialrainwater harvesting efficiency for meeting non-potable water demands in three climateconditions[J]. Resources, Conservation and Recycling,2013.73(0): p.86-93.
    [10] Speak, A.F., et al., Rainwater runoff retention on an aged intensive green roof[J]. Science ofThe Total Environment,2013.461–462(0): p.28-38.
    [11]高传昌,刘兴.城市非常规水资源的应用研究进展[J].灌溉排水学报,2007(S1):68-70.
    [12]李小雁,龚家栋.半干旱区雨水集流研究进展及其现状[J].中国沙漠,2002(1):88-92.
    [13]李云岚,王志发,丁福俊,等.雨水资源集蓄利用研究进展[J].水土保持应用技术,2008(3):29-31.
    [14]刘畅,魏晶,张川,等.国内外干旱半干旱地区集水技术研究进展[J].现代农业科技,2013(1):196-197+202.
    [15]吴普特,冯浩,中国雨水利用[M].郑州:黄河水利出版社,2009.
    [16]王健,蔡焕杰,林性粹.雨水集蓄利用研究进展[J].西北农林科技大学学报(自然科学版),2001(S1):89-93.
    [17]王艳锦,岳建芝,张全国,等.城市雨水资源化利用技术研究进展[J].安徽农业科学,2008(28):12358-12359.
    [18]吴普特,高建恩.黄土高原水土保持与雨水资源化[J].中国水土保持科学,2008(1):107-111.
    [19]肖国举,王静.黄土高原集水农业研究进展[J].生态学报,2003(5):1003-1011.
    [20]翟晓燕,叶琰.城市雨水利用发展现状与展望[J].水资源与水工程学报,2009(3):160-163.
    [21]张建新,郑大玮.国内外集雨农业研究进展与展望[J].干旱地区农业研究,2005(2):223-229.
    [22]张新燕,蔡焕杰.雨水集蓄利用研究进展[J].干旱区资源与环境,2001(3):87-92.
    [23]赵西宁,冯浩,吴普特,等.现代雨水利用技术研究进展与研发重点[J].灌溉排水学报,2009(4):1-5.
    [24]赵西宁,吴普特,冯浩,汪有科.黄土高原半干旱区集雨补灌生态农业研究进展[J].中国农业科学,2009,09:3187-3194.
    [25]左建兵,刘昌明,郑红星,等.北京市城区雨水利用及对策[J].资源科学,2008(7):990-998.
    [26]安熙兰,张晓惠.“121”雨水集流工程水质状况分析[J].中国初级卫生保健,2002(3):53.
    [27]刘志华,宋秉仁.定西地区“121”雨水集流工程水泥窖水质卫生学调查分析[J].中国公共卫生,2001(3):72.
    [28]卢晓岩,朱琨,梁莹,等.西北黄土高原地区雨水集流的水质特点[J].兰州交通大学学报,2004(6):15-18.
    [29]滕家喜.西北村镇窖水水质影响因素的实验研究[J].兰州交通大学学报,2012(6):134-138.
    [30]张丽娟,王德永,陈明.西北农村雨水资源的利用研究[J].中国西部科技,2010(28):4-5+71.
    [31]房学文.集雨水窖在陕北黄土高原的运用[J].江西水利科技,2009,02:106-108.
    [32]高甲荣.黄土高原水资源面临的问题与对策[J].地理学与国土研究,1998,04:35-38.
    [33]何永涛,郎海玲.植被建设在黄土高原水土保持中的意义及其对策[J].水土保持研究,2009,04:30-33+38.
    [34]花永辉,赵西宁.黄土高原小流域雨水资源可持续利用指标体系及评价方法研究[J].南水北调与水利科技,2008,05:41-44.
    [35]贾劝宝.关于庆阳市开发雨水资源的思考[J].中国水土保持,2008,10:50-52.
    [36]李元红,胡想全,金彦兆,孙栋元,王军德,邓建伟.甘肃黄土高原区城市雨洪利用途径[J].中国水利,2011,11:10-11.
    [37]潘学标,龙步菊,魏玉蓉.内蒙古黄土高原区降水规律与集雨利用潜力分析[J].干旱区资源与环境,2007,04:65-71.
    [38]杨启良,张富仓,刘小刚.黄土高原路面雨水的农业资源化利用技术[J].干旱地区农业研究,2007,04:134-140.
    [39]姚文波.硬化地面与黄土高原水土流失[J].地理研究,2007,06:1097-1108.
    [40]余海龙,黄菊莹,肖国举.黄土高原半干旱区雨水资源化研究综述[J].人民黄河,2010,01:46-47+49.
    [41]余汉章.黄土高原水资源特征与利用对策[J].干旱区地理,1992,03:59-64.
    [42]赵西宁,吴普特,冯浩,汪有科.浅论黄土高原集雨补灌农业的地位与作用[J].武汉大学学报(工学版),2009,05:649-652..
    [43]高建恩,吴普特,樊恒辉.一种拼接式活动集雨面[P].中国:CN03262756.4,2003.9.10.
    [44] Abdulla, F.A. and A.W. Al-Shareef, Roof rainwater harvesting systems for household watersupply in Jordan[J]. Desalination,2009.243(1–3): p.195-207.
    [45] Berndtsson, J.C., L. Bengtsson, and K. Jinno, Runoff water quality from intensive andextensive vegetated roofs[J]. Ecological Engineering,2009.35(3): p.369-380.
    [46] Blocken, B., D. Derome, and J. Carmeliet, Rainwater runoff from building facades: Areview[J]. Building and Environment,2013.60(0): p.339-361.
    [47] Czemiel Berndtsson, J., Green roof performance towards management of runoff water quantityand quality: A review[J]. Ecological Engineering,2010.36(4): p.351-360.
    [48] de Mello, W.Z. and M.D. de Almeida, Rainwater chemistry at the summit and southern flankof the Itatiaia massif, Southeastern Brazil[J]. Environmental Pollution,2004.129(1): p.63-68.
    [49] Evans, C.A., et al., Identifying the major influences on the microbial composition of roofharvested rainwater and the implications for water quality[J]. Water Science and Technology,2007.55(4): p.245-253
    [50] Evans, C.A., P.J. Coombes, and R.H. Dunstan, Wind, rain and bacteria: The effect of weatheron the microbial composition of roof-harvested rainwater[J]. Water Research,2006.40(1): p.37-44.
    [51] Farreny, R., et al., Roof selection for rainwater harvesting: Quantity and quality assessments inSpain[J]. Water Research,2011.45(10): p.3245-3254.
    [52] Ghisi, E. and D.F. Ferreira, Potential for potable water savings by using rainwater andgreywater in a multi-storey residential building in southern Brazil[J]. Building and Environment,2007.42(7): p.2512-2522.
    [53] Ghisi, E. and S. Mengotti de Oliveira, Potential for potable water savings by combining theuse of rainwater and greywater in houses in southern Brazil[J]. Building and Environment,2007.42(4): p.1731-1742.
    [54] Ghisi, E., A. Montibeller, and R.W. Schmidt, Potential for potable water savings by usingrainwater: An analysis over62cities in southern Brazil[J]. Building and Environment,2006.41(2):p.204-210.
    [55] Ghisi, E., D.L. Bressan, and M. Martini, Rainwater tank capacity and potential for potablewater savings by using rainwater in the residential sector of southeastern Brazil[J]. Building andEnvironment,2007.42(4): p.1654-1666.
    [56] Ghisi, E., Potential for potable water savings by using rainwater in the residential sector ofBrazil[J]. Building and Environment,2006.41(11): p.1544-1550.
    [57] Helmreich, B. and H. Horn, Opportunities in rainwater harvesting[J]. Desalination,2009.248(1–3): p.118-124.
    [58] Huston, R., et al., Source apportionment of heavy metals and ionic contaminants in rainwatertanks in a subtropical urban area in Australia[J]. Water Research,2012.46(4): p.1121-1132.
    [59] Khastagir, A. and L.N.N. Jayasuriya, Impacts of using rainwater tanks on stormwaterharvesting and runoff quality[J]. Water Science and Technology,2010.62(2): p.324-329.
    [60] Kus, B., et al., Analysis of first flush to improve the water quality in rainwater tanks[J]. WaterScience and Technology,2010.61(2): p.421-428.
    [61] Kus, B., et al., Water quality characterisation of rainwater in tanks at different times andlocations[J]. Water Science and Technology,2010.61(2): p.429-439.
    [62] Lee, J.Y., G. Bak, and M. Han, Quality of roof-harvested rainwater–Comparison of differentroofing materials[J]. Environmental Pollution,2012.162(0): p.422-429.
    [63] Magyar, M.I., et al., An investigation of rainwater tanks quality and sediment dynamics[J].Water Science and Technology,2007.56(9): p.21-28.
    [64] Quik, J.T.K., et al., Heteroaggregation and sedimentation rates for nanomaterials in naturalwaters[J]. Water Research,2013.
    [65] Simmons, G., et al., Contamination of potable roof-collected rainwater in Auckland, NewZealand[J]. Water Research,2001.35(6): p.1518-1524.
    [66]Sun, X., et al., Seasonal and vertical variations in aerosol distribution over Shijiazhuang,China[J]. Atmospheric Environment,2013.81: p.245-252.
    [67] Sung, M., et al., Rainwater harvesting in schools in Taiwan: system characteristics and waterquality[J]. Water Science and Technology,2010.61(7): p.1767-1778.
    [68] Teemusk, A. and ü. Mander, Rainwater runoff quantity and quality performance from agreenroof: The effects of short-term events[J]. Ecological Engineering,2007.30(3): p.271-277.
    [69] Thomas, P.R. and G.R. Greene, Rainwater Quality from Different Roof Catchments[J]. WaterScience and Technology,1993.28(3-5): p.291-299.
    [70] Van den Brande, T., B. Blocken, and S. Roels, Rain water runoff from porous building facades:Implementation and application of a first-order runoff model coupled to a HAM model[J]. Buildingand Environment,2013.64(0): p.177-186.
    [71] Villarreal, E.L. and A. Dixon, Analysis of a rainwater collection system for domestic watersupply in Ringdansen, Norrk ping, Sweden[J]. Building and Environment,2005.40(9): p.1174-1184.
    [72] Ward, S., F.A. Memon, and D. Butler, Harvested rainwater quality: the importance ofappropriate design[J]. Water Science and Technology,2010.61(7): p.1707-1714.
    [73]白月华,李怀正,傅威.雨水就地处置方式的环境风险评价[J].上海环境科学,2003(8):552-555+587.
    [74]陈水平,付国楷,喻晓琴,等.城市雨水径流水质特征及应对方法[J].三峡环境与生态,2013(4):48-51.
    [75]丁昆仑,程先军,孙文海.集雨水窖一体化慢滤净化处理[J].中国农村水利水电,2009(4):71-73.
    [76]郝连安,高建恩,张元星,等.基于土壤水分动态的梯田苹果园水窖配置[J].中国水土保持科学,2012(3):57-63.
    [77]李海燕,车伍,黄延.基于雨水水质的径流污染控制设计雨量计算方法[J].中国给水排水,2012(19):45-48.
    [78]李小雁,高前兆.干旱半干旱过渡带雨水集流试验与微型生态集雨模式(英文)[J].中国科学院研究生院学报,2004(2):282-287.
    [79]梁改革,高建恩,韩浩,等.基于作物需水与降雨径流调控的隔坡梯田结构优化[J].中国水土保持科学,2011(1):24-32.
    [80]吕玲,吴普特,赵西宁,等.城市雨水利用研究进展与发展趋势[J].中国水土保持科学,2009(1):118-123.
    [81]孟岩,高建恩,杨世伟,等.基于径流调控的集雨补灌苹果利用模式研究[J].节水灌溉,2010(6):21-25.
    [82]唐小娟,金彦兆,高建恩.复合坡度下雨水高效集蓄利用模式研究[J].灌溉排水学报,2008(6):74-76.
    [83]武福学.庭院雨水集蓄工程的水质化验与评价[J].中国农村水利水电,2005(5):3-5.
    [84]薛英文,文倩倩,李璐,等.雨水管网水质过程线模拟研究[J].中国农村水利水电,2011(6):70-72+76.
    [85]杨玉龙,崔佃贞,张学美.雨水收集利用工艺及安全饮用的观察研究[J].中国初级卫生保健,2007(1):41-43.
    [86]张国珍,杨浩,武福平,等.黄土塬地区村镇集蓄雨水的水质特性分析[J].中国给水排水,2009(17):85-87.
    [87]戴树桂.环境化学[M].北京:高等教育出版社,1997.66~69.
    [88]唐孝炎.大气环境化学[M].北京高:等教育出版社,1990:228~241.
    [89]张宁.兰州市降水化学特征研究[J].甘肃环境研究与监测.1996.9(4);1~4.
    [90] Feng Z, Huang Y, Feng Y, et al. Chemical composition of precipitation in Beijing area,Northern China [J]. Water Air and Soil Pollution,2001,125(1-4):345~356.
    [91] Khwaja H A, Husain L. Chemical characterization of acid precipitation in Albany, New York[J]. Atmospheric Environment,1990,24(7):1869~1882.
    [92] Tuncera B, Bayar B, Yesilyurt C, et al. Ionic composition of precipitation at the CentralAnatolia (Turkey)[J]. Atmospheric Environment,2001,35(34):5989~6002.
    [93]杨复沫,贺克斌,雷宇,等.2001~2003年间北京大气降水的化学特征[J].中国环境科学,2004,24(5):538~541.
    [94]魏虹,王建力,李旭光,等.重庆缙云山降水化学组成的季节变化特征分析[J].西南师范大学学报(自然科学版)2005,30(4):725~729.
    [95]谢薇,秦克丽,丁昆仑,孙文海.不同集雨面及水窖形式下的窖水水质分析[J].灌溉排水学报,2011,01:11-14.
    [96] Handia, L.Comparative study of rainwater quality in urban Zambia[J].Aqua-Journal ofWater Supply: Research and Technology [Aqua J. Water Supp. Res. Technol.]2005,54(1):55-64.
    [97] Uba, BN; Aghogho, O.Rainwater quality from different roof catchments in the Port Harcourtdistrict, Rivers State, Nigeria[J].Aqua-Journal of Water Supply: Research and Technology [AquaJ. Water Supp. Res. Technol.].2000,49(5):281-290.
    [98] Wirojanagud W., Hovichitr V. Evaluation of rainwater quality: heavy metals andpathogens[M].Ottawa: IDRC,1989.
    [99] J. ZOBRIST*, S. R. MUè LLER, A. AMMANNM,et al.QUALITY OF ROOF RUNOFF FORGROUNDWATER INFILTRATION[J].Water Research.2000,34(5):1455~1462.
    [100] Al-Khashman, Omar Ali.Study of chemical composition in wet atmospheric precipitation inEshidiya area, Jordan[J].Atmospheric Environment [Atmos. Environ.].2005,39(33):6175-6183.
    [101]张克峰,刘金栋,王永磊,等.二次供水水质污染的现状及防治措施分析[J].山东建筑工程学院学报,2005,20(3):49~51.
    [102]王向会.天津市输配水管网水质变化的研究[D].天津:天津大学,2005.
    [103]刘静.济南市二次供水系统水质防护现状与对策.[D].西安:西安建筑科技大学,2005.
    [104]王广周,高建恩.雨水集蓄利用中的水质问题及对策[J].灌溉排水学报,2008,04:119-121..
    [105]赵文君,高建恩,许秀泉,等.不同材质水窖贮存雨水水质变化特征[J].水土保持学报,2010,01:20-23+44.
    [106]谢朝新,龙腾锐,方振东.原水直接贮存中的水质变化规律[J].重庆建筑大学学报,2004,26(5):64~67.
    [107] Kun Zhu,Linus Zhang,William Hart,et al.Quality issues in harvested rainwater in arid andsemi-rid Loess Plateau of northern China[J].Journal of Arid Environments,2004(57):487~505.
    [108]谢朝新.水长期贮存对水质的影响及超声—电凝聚水处理技术研究[D].重庆:重庆大学,2004.
    [109]吴卿.饮用水管网微生物学水质研究及模拟.[D].天津:天津大学,2005.
    [110]陈小红,刘美南,林艳珊.水库垂向二维水质分布研究[J].水利学报,1997,04:10-17.
    [111]彭勤文,随机扩散水质模型研究[J].水科学进展,2006(01): p.113-115.
    [112]陈丽娜,韩龙喜,扩散作用对静水湖泊水质浓度空间分布的影响[J].水资源保护,2008(01): p.20-22.
    [113]倪晋仁;王光谦.论悬移质浓度垂线分布的两种类型及其产生的原因[J].水利学报:1987(1):60-68.
    [114]王光谦,傅旭东,挟沙水流颗粒垂向扩散机理.科学通报,2004(04).
    [115]徐国锋;俞海波;朱志清.2006年夏、冬季浙东海域浊度变化特征探讨[J].海洋湖沼通报.2011:144-150.
    [116]王勇智,江文胜,渤、黄、东海悬浮物质量浓度冬、夏季变化的数值模拟[J].海洋科学进展,2007(01):28-33.
    [117]许盈松;黄振杰.台湾集集堰沉沙池泥沙浓度与浊度率定关系研究[J].泥沙研究2009:37-44;.
    [118]王广周,高建恩,肖克飙,樊恒辉,杨世伟.一种新型橡塑水窖的水质变化监测分析[J].干旱地区农业研究,2008,02:150-153+183.
    [119]李剑超,褚君达,丰华丽.河流底泥冲刷悬浮对水质影响途径的实验研究[J].长江流域资源与环境,2002,02:137-140.
    [120]何用,李义天.重金属迁移转化模型研究[J].水科学进展,2004,05:576-583.
    [121]何用,李义天,郜会彩,王家生.泥沙污染水质模型研究[J].四川大学学报(工程科学版),2004,06:12-17.
    [122]范庆涛,顾理莉,姚晓青.青岛市二次供水水质检测结果及影响因素分析[J].中国人兽共患病杂志,1999(4):110.
    [123]王广周.窖水水质影响因素的初步研究[D].中国科学院研究生院(教育部水土保持与生态环境研究中心),2008.
    [124]高建恩,孙胜利,吴普特.一种新型土壤固化剂, CN1632055[P/OL].2005-06-29.
    [125]高建恩,孙胜利.一种黑色土壤固化剂, CN101486913[P/OL].2009-07-22.
    [126]高建恩,孙胜利.一种红色土壤固化剂, CN101486914[P/OL].2009-07-22.
    [127]高建恩,孙胜利.一种绿色土壤固化剂, CN101481238[P/OL].2009-07-15.
    [128]高建恩,孙胜利.一种黄色土壤固化剂, CN101486552[P/OL].2009-07-22.
    [129]高建恩,孙胜利.一种蓝色土壤固化剂, CN101486553[P/OL].2009-07-22.
    [130]高建恩,吴普特,岳宝蓉.一种固化黄土集流面增流减糙施工方法, CN1546797[P/OL].2004-11-17.
    [131]高建恩,吴普特,樊恒辉.一种拼接式活动集雨面, CN2679251[P/OL].2005-02-16.
    [132]高建恩,张芳海,朱德兰,等.一种柔性环保橡塑水窖及其制备方法, CN1749492[P/OL].2006-03-22].
    [133]高建恩,樊恒辉,孙胜利,等.一种利用土壤固化材料修建蓄水设施的施工方法,CN101319580[P/OL].2008-12-10.
    [134]樊恒辉,高建恩,吴普特,等.利用土壤固化材料修建蓄水设施的施工方法, CN101302749
    [P/OL].2008-11-12.
    [135]樊恒辉,高建恩,娄宗科,等.一种利用土壤固化剂加固土的塑性施工及其养护方法,CN101575850[P/OL].2009-11-11.
    [136]樊恒辉,娄宗科,高建恩,等.一种利用土壤固化剂修建防渗渠道的施工方法,CN101446082[P/OL].2009-06-03.
    [137]樊恒辉,高建恩,娄宗科,等.一种水泥基土壤固化剂及其制备与应用, CN101597496
    [P/OL].2009-12-09.
    [138]樊恒辉,高建恩,吴普特,等.MBER土壤固化剂集流场的施工工艺[J].中国水土保持科学,2005(3):56-59.
    [139]樊恒辉,高建恩,吴普特,等.基于黄土物理化学性质变化的固化土强度影响因素分析[J].岩土力学,2011(7):1996-2000.
    [140]樊恒辉,高建恩,吴普特,等.水泥基土壤固化剂固化土的物理化学作用[J].岩土力学,2010(12):3741-3745.
    [141]樊恒辉,高建恩,吴普特,等.土壤固化剂集流面不同施工工艺比较[J].农业工程学报,2006(10):73-77.
    [142]樊恒辉,高建恩,吴普特.土壤固化剂研究现状与展望[J].西北农林科技大学学报(自然科学版),2006(2):141-146+152.
    [143]樊恒辉,吴普特,高建恩,等.固化土集流面无侧限抗压强度影响因素研究[J].农业工程学报,2006(9):11-15.
    [144]樊恒辉,吴普特,高建恩,等.密度和含水率对固化土无侧限抗压强度的影响[J].中国水土保持科学,2006(3):54-58.
    [145]樊恒辉,吴普特,高建恩,等.水泥基土壤固化剂固化土的微观结构特征[J].建筑材料学报,2010(5):669-674.
    [146]韩信来,高建恩,樊恒辉,等.黄土高原不同地区固化土强度变化规律研究[J].人民长江,2009(22):76-78.
    [147]冀璐,高建恩,郝连安,等.MBER固化土弹性模量的试验研究[J].水土保持通报,2012(5):261-264.
    [148]张通,高建恩,李兴华,等.影响MBER固化土劈裂抗拉强度的因素试验[J].水土保持通报,2013(1):49-52.
    [149]赵文君.雨水安全集蓄水窖水质变化规律的初步研究[D].中国科学院研究生院(教育部水土保持与生态环境研究中心),2010.
    [150]中华人民共和国环境保护部,《2012年中国环境质量公报》[R],2012.
    [151]吴普特,黄占斌,高建恩,等.人工汇集雨水利用技术研究[M].郑州:黄河水利出版社,2002.99~100,130~131,216~219.
    [152]刘静.济南市二次供水系统水质防护现状与对策:[硕士学位论文][D].西安:西安建筑科技大学,2005.
    [153]马颖.贮存饮用水水质及其影响因素研究:[博士学位论文][D].重庆:重庆大学,2004.
    [154]孟秀花,李永青,吴恬.不同材质水箱贮存水微生物学指标变化规律的研究[J].西南给排水,2004,26(6):36~38.
    [155]袁晶、李晓燕、陈秀娜.高位铁皮水箱供水质量及其影响因素[J].环境污染与防治,1996,18(3):22~24.
    [156]李宏,马颖,方振东.坑道工程贮存水水质变化规律研究[J].后勤工程学院学报,2003.2:1~4.
    [157]乔英杰,张宝杰,韩洪军,等.塑料给水管中化学成分对水质的影响[J].哈尔滨理工大学学报,2000,5(2):41~43.
    [158]杨瑞强,朱琨,金星龙,等.窖水的水质分析及水质特点[J].甘肃环境研究与监测,2001,14(2):70~71.
    [159]武福学.庭院雨水集蓄工程的水质化验与评价[J].中国农村水利水电,2005.5:3~5.
    [160]卢晓岩,朱琨,梁莹,等.西北黄土高原地区雨水集流的水质特点[J].兰州交通大学学报(自然科学版),2004,23(6):15~18.
    [161]郑涛,穆环珍,黄衍初,等.降雨促渗对地表径流污染物负荷影响模拟试验研究[J].环境污染治理技术与设备,2006,7(2):84~88.
    [162] C.A. Evans, P.J. Coombes, R.H. Dunstan. Wind, rain and bacteria: The effect of weather onthe microbial composition of roof-harvested rainwater[J].Water research,2006(40):37~44.
    [163]代莎莎,张春阳,刘建广,等.饮用水消毒副产物的去除途径及进展[J].水资源与水工程学报,2006.2:72~75.
    [164]张国珍,何春生,武福平.西北村镇集雨饮用水源地水质评价体系研究[J].干旱区资源与环境,2009(11):119-123.
    [165]侯培强,任玉芬,王效科,等.北京市城市降雨径流水质评价研究[J].环境科学,2012(1):71-75.
    [166]武金慧,李占斌,武福学,等.基于改进水质指数法的庭院雨水集蓄工程水质评价[J].水资源与水工程学报,2007(5):104-107.
    [167]冯慧芳,贺秋芳,谢世友,等.重庆岩溶山区农村饮用水水质评价及分析——以南川区南平镇石庆村为例[J].地球与环境,2010(1):54-58.
    [168] Zou, H., M. Macleod, and M.S. McLachlan, Evaluation of the potential of benchmarking tofacilitate the measurement of chemical persistence in lakes[J]. Chemosphere,2013.
    [169] Zhou, N., et al., A coupling simulation based on a hydrodynamics and water quality model ofthe Pearl River Delta[J], China. Journal of Hydrology,2011.396(3-4): p.267-276.
    [170] Zhao, L., et al., A three-dimensional water quality modeling approach for exploring theeutrophication responses to load reduction scenarios in Lake Yilong (China)[J]. Environ Pollut,2013.177: p.13-21.
    [171] Zhan, T.L., et al., Vertical migration of leachate pollutants in clayey soils beneath anuncontrolled landfill at Huainan, China: A field and theoretical investigation[J]. Sci Total Environ,2013.470-471C: p.290-298.
    [172] Zeng, Y. and W. Huai, Estimation of longitudinal dispersion coefficient in rivers[J]. Journal ofHydro-environment Research,2013.
    [173] Xu, X., et al., Simultaneous removal of sulfide, nitrate and acetate under denitrifying sulfideremoval condition: Modeling and experimental validation[J]. Journal of Hazardous Materials,2013.
    [174] Xie, Y.L., et al., An inexact chance-constrained programming model for water qualitymanagement in Binhai New Area of Tianjin, China[J]. Sci Total Environ,2011.409(10): p.1757-73.
    [175] Wang, Y., et al.,3-D hydro-environmental simulation of Miyun reservoir, Beijin[J]. Journal ofHydro-environment Research,2013.
    [176] Stephansen, D.A., et al., Distribution of metals in fauna, flora and sediments of wet detentionponds and natural shallow lakes[J]. Ecological Engineering,2013.
    [177] S nderup, M.J., et al., Modeling phosphorus removal in wet ponds with filter zonescontaining sand or crushed concrete[J]. Ecological Engineering,2013.
    [178] Sharma, P.K. and U. Dixit, Contaminant transport through fractured-porous media: Anexperimental study[J]. Journal of Hydro-environment Research,2013.
    [179] Pu, J.H., S. Shao, and Y. Huang, Turbulence studies of shallow open channel flows usingnumerical and experimental approaches[J]. Journal of Hydro-environment Research,2013.
    [180] Herrmann, I., et al., Modeling phosphate transport and removal in a compact bed filled with amineral-based sorbent for domestic wastewater treatment[J]. J Contam Hydrol,2013.154: p.70-7.
    [181] Erturk, A., et al., Water quality assessment and meta model development in Melen watershed-Turkey[J]. J Environ Manage,2010.91(7): p.1526-45.
    [182] Chang, Y.S., J.H. Hwang, and Y.-G. Park, Numerical simulation of sediment particles releasedat the edge of the viscous sublayer in steady and oscillating turbulent boundary layer[J]s. Journal ofHydro-environment Research,2013.
    [183] Chan, S.N., W. Thoe, and J.H. Lee, Real-time forecasting of Hong Kong beach water qualityby3D deterministic model[J]. Water Res,2013.47(4): p.1631-47.
    [184]赵西宁,冯浩,吴普特,王万忠.黄土高原小流域雨水资源化综合效益评价体系研究[J].自然资源学报,2005(3):354-360.
    [185]余海龙,吴普特,李巧珍,等.黄土高原小流域雨水资源化技术途径及其效益分析[J].灌溉排水学报,2004(2):77-80.
    [186]余海龙.内蒙古准格尔旗雨水利用的环境效应分析[J].人民黄河,2004(5):28-29+32.
    [187]孔刚,陈建刚,王全九,等.雨水利用环境效益评价指标体系研究[J].人民黄河,2009(12):67-68.
    [188]宋进喜,李怀恩,李琦.城市雨水资源化及其生态环境效应[J].生态学杂志,2003(2):32-35.
    [189]张志山,魏兴琥,李新荣,等.黄土高原西北部集雨水利用的投资与效益分析[J].水科学进展,2004(6):813-818.
    [190]王志坚.雨水集蓄方式和利用研究[J].水土保持通报,2008(5):176-179+191.
    [191]赵世伟,李壁成,苏静,等.宁南半干旱山区雨水资源潜力研究[J].水土保持研究,2005(3):10-12.
    [192]赵世伟,刘耀宏,李壁成,等.宁南半干旱山区雨水资源高效利用技术研究[J].水土保持研究,2005(3):15-18.
    [193]刘小勇,吴普特.雨水资源集蓄利用研究综述[J].自然资源学报,2000(2):189-193.
    [194]张自杰等.排水工程[M].北京:中国工业出版社,1999.
    [195]傅国伟.河流水质数学模型及其模拟计算[M].北京:中国环境科学出版社,1987
    [196]王建华,肖伟华,王浩,等.变化环境下河流水量水质联合模拟与评价[J].科学通报,2013,12:1101-1108.
    [197] Murakami, T., et al., Tracing the source of difficult to settle fine particles which causeturbidity in the Hitotsuse reservoir, Japan[J]. Journal of Environmental Management,2013.120(0):p.37-47.
    [198]钱宁,万兆惠,泥沙运动力学[M].北京:科学出版社,1983.
    [199] Sun, X., et al., Seasonal and vertical variations in aerosol distribution over Shijiazhuang,China[J]. Atmospheric Environment,2013.81: p.245-252.
    [200]丁国安,陈尊裕,高志球,姚文清,李毓湘,程兴宏,孟昭阳,于海青,黄锦恒,王淑凤,苗秋菊.北京城区低层大气PM_(10)和PM_(2.5)垂直结构及其动力特征[J].中国科学(D辑:地球科学),2005,S1:31-44.
    [201]武汉水利电力学院,河流泥沙工程学教研室,河流泥沙工程学[M].北京:水利出版社,1982.
    [202]高忠信,张东.水库水环境数值模拟[M].北京:地震出版社,2005.
    [203] Erik I. Anderson. The method of images for leaky boundaries[J]. Advances in WaterResources.2000,23(5):461–474.
    [204] B. Dewandel, B. Aunay, J.C. Maréchal, C. Roques, et al. Analytical solutions for analysingpumping tests in a sub-vertical and anisotropic fault zone draining shallow aquifers [J].2014,209(13):287-291.
    [205]金秀中,鲍元恺.用镜像法计算再生磁头线圈中的输出电压[J].华中理工大学学报,1989,06:139-144.
    [206]朱仁龙.镜像法及其应用[J].上海师范大学学报(自然科学版),1994,03:112-119.
    [207]王赟,陈永光,王庆国,范丽思.用镜像法计算冲击脉冲辐射天线辐射电场[J].高电压技术,2012,09:2308-2313.
    [208]胡良明,高丹盈.雨水综合利用理论与实践[M],郑州:黄河水利出版社,2009.
    [209] Matthew Jones,Rainwater Harvester2.0[Z]. http://www.bae.ncsu.edu/stormwater.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700