用户名: 密码: 验证码:
模拟气候变化条件下太湖地区农田土壤水分和养分的动态变化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全球正经历着显著的气候变化,最近100年(1906-2005)以来全球平均地表温度上升了0.74℃。气候变暖造成了海平面上升、降水带变化以及极端气候事件频发等问题。农业生产中的各环节对自然条件尤其是气候条件(包括温度、降水、风速和大气C02浓度等)和土壤条件(土壤水分及养分状况)具有很强的依赖性。因此,气候变化势必对农业产生重大影响。为了明确未来气候变化的不确定性给农业生产带来的影响,确保气候变化背景下我国的粮食生产安全,本文以太湖地区典型水稻土(乌栅土)为研究对象,分析了研究区土壤的水力学特征和水环境状况,并且利用农田开放式CO2浓度和温度升高系统(T-FACE:Temperature-Free Air Carbon Dioxide Enrichment)系统平台人工模拟了未来50年C02浓度和温度升高的气侯条件,研究不同C02浓度和温度水平下,小麦不同生育期土壤水分含量、全氮、有机碳、铵态氮、硝态氮、速效磷的变化,并采用多种模型对土壤水分进行了模拟与预测,阐明了气候变化情境下土壤水分和养分含量的动态变化趋势,为气候变化下农田水肥管理提供科学依据。
     本论文研究结果如下:
     (1)影响太湖地区典型水稻土水分特征曲线的主要因素是容重和粘粒含量。在低水吸力状况下,耕作层土壤持水量相对较高。乌栅土中有效水含量与容重和粘粒含量呈显著负相关,与孔隙度呈显著正相关。在土壤的各种理化性质中,容重和总孔隙度是影响饱和导水率的主导因素,其它如毛管孔度,pH为次要因素。乌栅土表层(0-14cm)土壤水分总库容达到91.48nm,有效水库容为22.02mm,滞洪库容为20.50mm。因此,乌栅土具有良好的水分状况,能够保证太湖地区粮食作物的稳产高产,缓和气候变化引起的降雨和干旱使土壤水分产生的异常变化,在防治旱、涝灾害方面有着重要意义。
     (2)在大气C02浓度和温度升高的影响下,不同C02浓度和温度处理使各个试验区内0-14cm土壤平均含水量存在显著性差异(p<0.05),其大小顺序为:CT圈(C02浓度和温度升高)     C圈和CK圈内0-14cm土壤水分含量分别为:273.62g·k分1和279.87g·kg-1,各占研究区耕层土壤田间持水量的72.10%和73.75%;而CT和T圈内0-14cm土壤含水量分别为:253.98g·kg-1和259.72g·kg-,占耕层土壤田间持水量的65.93%和67.44%,说明温度升高能显著降低耕作层土壤含水量,而CO2浓度升高对耕作层土壤含水量的影响较小。
     通过对研究区三个土壤层次(0-14cm,14-33cm和33-59cm)土壤水分含量的时间稳定性进行分析比较,得出随着土壤层次的加深土壤水分的时间稳定性越来越好。在CO2浓度和温度升高交互作用处理下,土壤水分的时间稳定性表现更好。运用平均相对偏差的方法找到了各土层中具有时间稳定性的代表性测点,并且能很好地反映该层土壤水分的平均动态变化,均方根误差小于3.52%。
     (3)模拟气候变化条件下,小麦从分蘖期到成熟期,C02浓度升高降低了土壤中NH4+-N含量。因此,在气候变化条件下,增加氮肥用量能保证作物对氮的吸收利用。然而,不同C02浓度和温度处理对土壤中N03-N没有显著影响;C02浓度升高使耕作层土壤速效磷含量增加。在不同CO2浓度和温度处理下,土壤C/N大小依次为:C圈>CT圈>CK圈>T圈。C02浓度升高处理下,土壤水分含量与N03--N含量的相关性达到极显著水平,C圈内土壤水分含量和NH4+-N含量相关性达到显著水平;C02浓度升高和温度升高的交互下,CT圈内土壤水分含量与NH4+-N含量的相关性达到显著水平;温度升高处理下,土壤水分含量与土壤养分含量没有显著影响。
     从分蘖期到成熟期,CO2浓度升高处理降低了土壤中NH4+-N含量,但农田渗漏水中NH4+-N含量的变化与耕作层和犁底层土壤中NH4+-N含量没有表现出相似的变化趋势,说明气候变化对农田渗漏水中NH4+-N的变化影响不大。
     (4)利用BP神经网络对土壤含水量与气象因素进行了敏感性分析,从局部和全局敏感性分析的结果可以看出,土壤水分含量对降水量的敏感性最大,蒸发量、平均气温和平均地表温度次之。运用ARIMA, BP-ANN和LS-SVM三种模型对土壤水分进行模拟,结果表明将气象因素作为输入参数能得到较好的模拟效果,而且LS-SVM模拟精度最高。
     研究区土壤具有良好的水分和养分条件,在模拟气候变化条件下,对小麦生长季的水分和养分变化分析,表明在气候变化条件下,温度升高能够抵消CO2浓度升高增加生物量的正效应;应适当增加氮肥的使用量以保证作物的生长需求;通过三种模型对土壤水分的模拟发现LS-SVM模拟精度最高。由于气候变化对中国农业生产的影响甚为复杂,需要进一步研究温度和CO2浓度升高对N、P转化的影响机制。
The world has been undergoing a significant climate change with temperature rising as main characteristics. Global average surface temperature has increased by0.74℃in the last100years (i.e.,1906to2005). The global warming caused the rising of sea level, precipitation change, the increased occurrence frequencies of extreme weather events etc. Agricultural production closely depends on the natural conditions, especially climatic conditions (including changes of temperature, precipitation, wind speed and atmospheric [CO2](carbon dioxide concentration), etc.), hence climate change has a great influence on it. Soil water and soil nutrients which are indispensable for crop growth would be affected by climate change. For the sake of determining the influence of the uncertainties of climate change on agriculture production, the hydraulics characteristic and water environmental condition in study area were analyzed, and the T-FACE system platform was built to simulate the meteorological conditions (including elevated [CO2] and temperature) in the coming50years and to study the effects of these conditions on the changes of soil total nitrogen (TN), soil organic carbon, ammonium, nitrate, available phosphorus (P) and soil water content at different wheat growth stages in the Taihu Lake region based on the typical paddy soil-wushan soil. The simulation and prediction of soil water were made with three models and the variation trend of soil water and soil nutrients under the future climate changing scenario were clarified, which provided theoretical reference for the management of irrigation and fertilization.
     The results were as follows:
     The bulk density and clay content were the main factors affecting the water characteristics curves. While soil water content in plough layer was relatively higher under a lower water suction, the available water content had a significant negative correlation with bulk density and clay content, and had a significant positive correlation with porosity.
     The bulk density and total porosity were the main impact factors to the saturate hydraulic conductivity, whereas the other factors such as the capillary porosity and pH took the second place. The total reservoir capacity of wushan soil in plough layer (0-14cm) was91.48mm. The available water reservoir capacity was22.02mm, and the flood detention reservoir capacity was20.50mm. Therefore, this soil was in good water condition, which not only guaranteed the realization of stable and high soil productivity but also had a regulatory function of water storage. The data of the water characteristic curve and soil reservoir capacity in this soil will provide the scientific basis for soil water management under the condition of climate change.
     Under elevated atmospheric [CO2] and temperature conditions, there were obvious differences in the average water content at the depth of0-14cm among different experimental plots. Soil water content increased in the following order:CT(elevated [CO2] and temperature), T(elevated temperature), C(elevated [CO2]) and CK. There were significant differences in soil water content among0-14cm,14-33cm and33-59cm soil layers, with the soil water content in0-14cm soil layer higher than that in14-33cm and33-59cm soil layers.
     The soil water content of plough layer in C ring and CK ring was273.62g·kg-1and279.87g·kg-1, respectively, accounting for72.10%and73.75%of water holding capacity in study area, and that in CT ring and T ring was253.98g·kg-1and259.72g·kg-1, being65.93%and67.44%of water holding capacity correspondingly, which showed that elevated temperature could significantly reduce soil water content in plough layer and Elevated [CO2] had a little influence on it.
     The analysis and comparison of temporal stability of soil water content in three soil layers (0-14cm,14-33cm and33-59cm) showed that the temporal stability of soil water increased with the deepening of soil depth. Three measuring points of temporal stability in three soil layers (0-14cm,14-33cm and33-59cm) were determined using the relative mean difference method, which were appropriate to simulate the changes of average soil water in the corresponding soil layers with the RMSE between observed value and simulated value lower than3.52%.
     When the simulation of climate change was performed, the contents of ammonium decreased significantly with rising [CO2] during the wheat growth season (from tillering to ripening stage) in2011to2012; Therefore, under the condition of climate change, increasing nitrogen fertilizer to ensure meet the nitrogen absorption. Soil NO3--N content showed no clear variation under different [CO2] and temperature conditions; elevated [CO2] enhanced available P in0-14cm soil layer. With elevated [CO2] and temperature, C/N ratio decreased as follows:O CT>CK>T. The correlation between soil water content and nitrate in C ring was highly significant, and that between soil water and ammonium was significant in C ring. There was a significant correlation between soil water and ammonium under the interaction of elevated [CO2] and temperature (CT). No significant correlation was observed between soil moisture and soil nutrients under elevated [CO2].
     The three treatments of elevated [CO2], elevated temperature, and their interaction (i.e., C, T and CT ring) all decreased the content of ammonium in plough layer during the wheat growth season (from tillering to ripening stage), but the variation of ammonium in farmland leaching water was not consistent with that of soil in plough layer and in plowpan, indicating that there was no significant influence of elevated [CO2] and temperature on ammonium content in farmland leaching water. Elevated [CO2] and temperature treatments all had no obvious effect on nitrate content either in soil or in farmland leaching water.
     Sensitivity analyses of soil moisture and meteorological factors based on BP neural network were conducted. Models of Auto Regressive Integrated Moving Average (ARIMA), Back Propagation Artificial Neural Network (BP-ANN), and Least Squares Support Vector Machine (LS-SVM) were used to simulate the soil water in soil layers of0-14cm and14-33cm. The results showed that:there were satisfied results when meteorological factors were taken as input variables, and the simulation accuracy of LS-SVM was the highest.
     The analysis of soil water and nutrient during the whole wheat growth period shows that increased temperature could offset the positive effect on biomass increment which was caused by increased [CO2] under the climate change. The application amount of nitrogen fertilizer should be increased properly in order to meet the need of crops. The output of LS-SVM model has the best simulation precision. In addition, the N, P transformation mechanism under climate change need further study.
引文
1. Ainsworth, E.A., Long, S.P. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2 [J]. New Phytol.2005,165,351-372.
    2. Anderson, J. M. Soil and climate change [J]. Advances in Ecological Research,1992,22:188-210.
    3. Andrews J. A., Schlesinger W. H. Soil CO2 dynamics, acidification, and chemical weathering in a temperate forest with experimental CO2 enrichment [J]. Global Biogeochem. Cycles,2001,15(1), 149-162.
    4. Asefa T, Kemblowski M, McKee M, et al. Multi-time scale stream flow predictions:The support vector machines approach [J]. J. Hydrol.2006,318(1-4):7-16.
    5. Bassirirad H., Griffin K.L., Reynolds J.F. Changes in root NH4+ and NO3-absorption rates of loblolly and ponderosapine in response to CO2 enrichment [J]. Plant Soil,1997,190:1-9.
    6. Barrett, D.J., Richardson, A.E., Gifford, R.M. Elevated atmospheric CO2 concentrations increase wheat root phosphatase activity when growth is limited by phosphorus [J]. Aust. J. Plant Physiol. 1998,25,87-93.
    7. Behzad M, Asghari K, Eazi M, Palhang M. Generalization performance of support vector machines and neural networks in runoff modeling [J]. Expert Systems with Applications,2009,36(4): 7624-7629.
    8. Bouman A.M., Castaneda A.R. Bhuiyan S.I. Nitrate and pesticide Contamination of groundwater under rice-based cropping systems:Past and Current evidence from the Philippines [J]. Agriculture, Ecosyst. Environ.2002(92):185-199.
    9. Barrett, D.J., Richardson, A.E., Gifford R.M. Elevated atmospheric CO2 concentrations increase wheat root phosphatase activity when growth is limited by phosphorus [J]. Aust. J. Plant Physiol. 1998,25,87-93.
    10. Burns R.C., Hardy R.W. F. Nitrogen fixation in bacteria and higher plants [M]. Springre-Verlag, NewYork.1975.
    11. Cardoso Vilhena. Does nitrogen supply affect the response of wheat (Triticum aestivum cv. Hanno) to the combination of elevated CO2 and O3? [J]. J Exp. Bot.2001,52:1901-1911.
    12. Centritto M., Lucas M.E., Jarvis P.G. Gas exchange, biomass, whole-plant water-use efficiency and water uptake of peach (Prunus persica) seedlings in response to elevated carbon dioxide concentration and water availability [J]. Tree Physiol.2002,22:699-706.
    13. Chavas D.R., Izaurralde R.C., Thomson A.M. Long-term climate change impacts on agricultural productivity in eastern China [J]. Agr. Forest Meteorol.2009,149:1118-1128.
    14. Chen J. L., Islam S., Biswas P. Nonlinear dynamics of hourly ozone concentrations:nonparametric short term prediction [J]. Atmos. Enviro.1998,32(11):1839-1848.
    15. Chen, L.J., Wu, Z.J., Huang, G.H., Zhou, L.K., Effect of elevated atmospheric CO2 on soil urease and phosphatase activities [J]. Agr. Forest Meteorol.2002,13,1356-1357.
    16. Cichota R, Hurtado A. L. B., de Jong Van Lier Q. Spatio-temporal variability of soil water tension in a tropical soil in Brazil [J]. Geoderma,2006,133:231-243.
    17. Comegna V, Vitale C. Space-time analysis of water status in a volcanic Vesuvian soil [J]. Geoderma, 1993,60(1-4):135-158.
    18. Cole C. V., Heil R. D. Phosphorus effects on terrestrial nitrogen cycling, nitrogen Cycling in terrestrial ecosystems:processe, ecosystem strategies, and management implications. Ecological Bulletin, Swedish Natural Science Research Council, Stockholm, Sweden,1981:363-374.
    19. Delworth T, Manabe S. The Influence of Potential evaporation on the variability simulated siol wetness and climate [J]. Climate,1988,1:523-547.
    20. Diaz S., Grime J.P., Harris J. Mepherson E. Evidence of a feedback mechanism limiting plant response to elevated carbon dioxide [J]. Nature,1993.364,616-617.
    21. Eagleson P S. Climate, Soil, and Vegetation. Dynamics of the Annual Water Balance [J]. Water Resour Res,1978,14(5):749-764.
    22. Eliasson P.E., McMurtrie R.E., Pepper D.A. The response of heterotrophic CO2 flux to soil warming [J]. Glob. Chang. Biol.2005,11:167-181.
    23. Elmalogou S. T., Malamos N. Simulation of soil moisture content of a prairie field with SWAP93 [J]. Agr. Water Manage.2000 (43):139-149.
    24. Entin J.K., Robock A., Vinnikov K.Y. Temporal and spatial scales of observed soil moisture variations in the extra tropics [J]. Geophys. Res.2000,105(D9),11865-11877.
    25. Fang C, Smith P, Moncrieff J. B., Smith J.U. Similar response of labile and resistant soil organic matter pools to changes in temperature [J]. Nature,2005,433:57-59;
    26. Forman R.T.T.1995. Some general principles of landscape and regional ecology [J]. Landscape Ecol.10(3):133-142.
    27. Frate F D, Ferrazzaoli P, Schiavon G. Retrieving soil moisture and agricultural variables by microwave radiometry using neural net works [J]. Remote Sens. Environ.2003,84(2):174-183.
    28. Gardner L.R. The role of rock weathering in the phosphorus budget of terrestrial watersheds [J]. Biogeochemistry.1990,11:97-110.
    29. Gifford R.M., Barrett D.J., Lutze J.L. The effects of elevated [CO2] on the C:N and C:P mass ratios of Plant tissues [J]. Plant Soil,2000,224:1-14.
    30. Ginkel J.H., Gorissen A., van Veen J.A.. Carbon and nitrogen allocation in Lolium perenne in response to elevated atmospheric CO2 with emphasis on soil carbon dynamics [J]. Plant Soil,1997, 188:299-308.
    31. Gorissen A., Cotrufo M. F. Elevated carbon dioxide effects on nitrogen dynamics in grasses, with emphasis on rhiszosphere processes [J]. Soil Sci. Soc. Am. J.1999,63:1695-1702.
    32. Houghton J.T., Callander B.A., Varney S. K. Intergovernmental Panel on Climate Change, Climate Change Supplement to the IPCC Scientific Assessment. Cambridge:Cambridge University Press,1992.
    33. Huenneke L. F., Hamburg S. R., Koide R., et al., Effects of soil resources on plant invasion and community structure in California serpentine grassland [J]. Ecology,1990:71:478-491.
    34. Hungate B.A., Chpin F.S., Zhong H. Stimulation of grassland nitrogen cycling under carbon dioxide enrichment [J]. Oecologia 1997 109:149-153.
    35. Hupet F, Vanclooster M. Intraseasonal dynamics of soil moisture variability within a small agricultural maize cropped field [J]. Hydrol.2002,261:86-101.
    36. Hu S, Chapin F. S., Firestone M. K. Nitrogen limitation of microbial decomposition in a grassland under elevated CO2 [J]. Nature,2001,409:188-191.
    37. IPCC Third Assessment Report—Climate Change. The Scientific Basis Technical Summary, Geneva, Cambridge University Press, Cambridge, UK,2005, pp 173-175.
    38. IPCC. Climate Change. Synthesis Report. Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press,2007.
    39. Lucie A.V., Gullett D.W. Canadian historical and homogeneous temperature datasets for climate change analyses [J]. Int. J. Climatol.1999,19:1375-1388.
    40. Luo Y, Lei Z, Zheng L, et al. A stochastic model of soil water regime in the crop root zone [J]. J. Hydrol.2007,335(1-2):89-97.
    41. Luseher A, Hartwig U.A., Suter D, et al. Direct evidence that symbiotic N2 fixation in fertile grassland is an important trait for a strong response of Plants to elevated atmospheric CO2 [J]. Global Change Biol.,2000,6:655-662.
    42. Johnson M.G, Kern J.S., Levine E.R. Soil Organic Matter:Distribution, Genesis, and Management to Reduce Greenhouse Gas Emissions [J]. Water Air and soil Poll.1995,82:593-615.
    43. Jtha K, Scklesinger W.H. The biogeochemistry of phosphorus cycling and phosphorus availability along a desert ehronosequence [J]. Ecology,1988,69:24-39.
    44. Kelly P.M., Wigley T.M.L. Solar cycle length, greenhouse forcing and global climate [J]. Nature, 1992,360:328-330.
    45. Ketellapper, H.J. Stomatal Physiology [J]. Annual Review Plant Physiology.1963,14:249-270.
    46. Kimball, B. A., Kobayashi, K., Bindi M. Responses of agricultural crops to free-air CO2 enrichment [J]. Adv. Agron.2002,77,293-368.
    47. Laio F., PorproatoA., Fernandez-lllescas C. P. Plants in water-controlled ecosystems:active role in hydrologic processes and response to water stress. IV. Discussion of real cases [J]. Adv. Water Resour.2001,24(7):745-762.
    48. Legros Y, Lafon C and Soussi T. Linear antigenic sites defined by the B-cell response to human p53 are localized predominantly in the amino and carboxy-termini of the protein [J]. Oncogene,1994a, 9:2071-2076.
    49. Lellogg L.E., Bridgham S.D. Phosphorus retention and movement across an ombmtrophic-minemtl-ophic peat land gradient [J]. Biogeochemistry.2003,63:299-315.
    50. Lefroy R.D., B. Blair G.J., Strong W.M. Changes in soil organic matter with cropping as measured by organic carbon fractions and I3C natural isotope abundance [J]. Plant Soil,1993:155/156: 399-402.
    51. Lutze J. L,Gifford R M. Nitrogen accumulation and distribution in Danthonia richardsonii swards in response to CO2 and nitrogen supply over four years of growth [J]. Global Change Biol.2000,6: 1-12.
    52. Machler et al, F, Nosberger J. Influence of inorganic phosphate on photosynthesis of wheat chloroplast II. Ribulose bisphosphate carboxylase activity [J]. J. Exp. Bot.1984,35:488-494.
    53. Ma H., Zhu J., Liu G. Availability of soil nitrogen and phosphorous in typical rice-wheat rotation system under elevated atmospheric [CO2] [J]. Field Crop Res.2007,100:44-51.
    54. Marschner H.1995. Mineral Nutrition of Higher Plants,2nd ed. Academic Press, San Diego, USA..
    55. Mather J.R., Sdasyuk G.V. Global Change:Geographical approaches [M]. University of Arizona Press,1991.
    56. Matson P.A., Vitousek P.M. Cross-system comparisons of soil transformations and nitrous oxide flux in tropical nitrogen forest ecosystems [J]. Global Biogeochem. Cyc,1987,1:163-170.
    57. Martinez-Fernandez J, Ceballos A. Temporal stability of soil moisture in a large-field experiment in Spain [J]. Soil Sci. Soc. Am. J.2003,67 (6):1647-1656.
    58. Matson P.A., Vitousek P.M., Livingston G.P., et al. Sources of variation in nitrous oxide flux from Amazonian ecosystems [J]. J. Geophys. Res.1990,95:16789-16798.
    59. Mcguire D.A., Melillo J.M., Joyce L.A. The role of nitrogen in the response of forest net Primary Production to elevated atmospheric carbon dioxide [J]. Ann. Review Ecol. Sys.1995,26:473-503.
    60. Miller A.J., Sohuur E.AG, Chadwick O.A. Redox control of phosphorus pools in Hawaiian montane forest soils [J]. Geoderma,2001,102:219-237.
    61. Milly P. C. D. An Analytic Solution of the Stochastic Storage Problem Applicable to Soil Water [J]. Water Resour Res,1993,29(11):3755-3758.
    62. Moore, T.R. Litter decomposition in a sub-arctic, spruce-lichen woodland in eastern Canada [J]. Ecology,1984,65,199-308.
    63. Morecroft M.D., Marrs R.H., Woodward F.I. Altitudinal and seasonal trends in soil nitrogen mineralization rate in the Scottish High lands [J]. J. Ecol.1992,80:49-56.
    64. Morison JIL. Intercellular CO2 concentration and stomatal response to CO2. Zeiger E, Farquhar G D. Cowaneds IR. Stomatal functioning [M]. Stanford:Stanford University Press,1987,229-251.
    65. Mpelasoka F.S., Mullan A.B., Heerdegen R.G. New Zealand climate change information derived by multivariate statistical and artificial neural networks approaches [J]. International Journal of Climatology.2001,21:1415-1433.
    66. Muriel G, Ioannis D., Sovan L. Two-way interaction of input variables in the sensitivity analysis of neural network models [J]. Ecological Modelling 2006,195:43-54.
    67. Neitsch S. L., Arnold J. G, Kiniry J. R. Soil and water assessment tool theoretical documentation, version 2000. [M]. Temple, Texas:Grassland, Soil and Water Research Laboratory, Agricultural Research Service 2002a.
    68. Neitsch S L, Arnold J G. Kiniry J R, et al. Soil and water assessment tool (SWAT), theoretical documentation [M]. Temple, Texas:Blackland Research Center, Grassland,Soil and Water Research Laboratory, Agricultural Research Service 2005.
    69. Neufeldt H, Da Silva J.E., Ayama M.A., Zech W. Land-use effects on phosphorus fractions in Cerrado oxisols [J]. Biology Fertility of Soils,2000,31:30-37.
    70. Neuman S P. Finite Element Computer Programs for Flow in Saturated-Unsaturated Porous Media. 2nd Annu. Rep. Project A10-SWC-77 [M]. Technion, Haifa, Israel:Hydraulic Eng. Lab.1972.
    71. Niklaus P.A., Alphei J., Ebersberger D. Six years of in situ CO2 enrichment evoke changes in soil structure and soil biota of nutrient-poor grassland [J]. Global Change Biology,2003.9:585-900.
    72. Norby R.J., Cotrufo M.F., Ineson P, et al. Elevated CO2 litter chemistry, and decomposition:a synthesis [J]. Oeeologia,2001,127(2):153-165.
    73. Onthong J, Osaki M, Nilnond C. Phosphorus status of some highly weathered soils in peninsular Thailand and availability in rehfion to citrate and oxalate application [J]. Soil Sci. Plant Nutr.,1999. 45:627-637.
    74. Oren R., Ellsworth D.S., Johnsen K H., Phillips N. Soil fertility limits carbon sequestration by forest ecosystems in a CO2-enriched atmosphere [J]. Nature,2001,411,469-472.
    75. Prior, S.A., Rogers, H.H., Rrunion, G.B., Hendrey, G.R. Free-air enrichment of cotton:vertical and lateral root distribution patterns [J]. Plant Soil.1994:165,33-44.
    76. Porporato A., Laio F., Ridolfi L., Rodiguez-iturbe Ⅰ. Plants in water-controlled ecosystems:active role in hydrologic processes and response to water stress. Ⅲ. Vegetation water stress [J]. Adv. Water Resour.2001,24,725-744.
    77. Porporato A, Daly E. Soil water balance and ecosystem response to climate change [J]. The American Naturalist,2004,164(5):625-632.
    78. Raven JA, Handley LL, Andrews M. Global aspects of C/N interactions determining plant-environment interactions [J]. J. Exp. Bot.2004,55(394):11-25.
    79. Reid G C. Solar forcing of global climate change since the mid-17th century [J]. Climatic Change, 1997,37:391-405.
    80. Rekolainen S; Salt C. A; Barlund I., Tattari S. Impacts of the management of radioactively contaminated land on soil and phosphorus losses in Finland and Scotland [J]. Water Air Soil Poll. 2002.139:115-136.
    81. Richter R, Roelcke M. The N-cycle as determined by intensive agriculture-example from central Europe and China [J]. Nutr. Cycl. Agroecosys.2000,57:33-46.
    82. Richter D. D. Bubbar L. I. Soil diversity in the tropics [J]. Advances Ecol. Res.1991,21:315-389.
    83. Ridolfi L., Dodorico P., Porporato A. Impact of climate variability on the vegetation water stresss [J]. Adv. Water Resour.2000,105 (D14),18013-18025.
    84. Rieu, M. And Sposito, G. Fragmentation, soil porosity and soil water properties:1. Theory[J]. Soil Sci. Soc. Am.J.,1991.55:1231-1238.
    85. Robinson D A, Campbell C S, Hopmans J W, Hornbuckle B.K., JONES S.B., Knight R., Ogden F. Soil moisture measurement for ecological and hydrological watershed-scale observatories:a review [J]. Vadose Zone J,2008,7(1):358-389.
    86. Rodriguez-Iturbe I, Porporato A, Ridolfi L., Isham V., coxi D. R. Probabilistic modelling of water balance at a point:the role of climate, soil and vegetation [J]. Proceedings of the Royal Society. 1999,455(3):3789-3805.
    87. Rodriguez-Iurbe I., Porporato A., Laio F., Ridolfi L. Intensive or extensive use of soil moisture: plant strategies to cope with stochastic water availability [J]. Geophys. Res. Lett.2001.28(23): 4495-4497.
    88. Rounsevell M D A, Evans S P and Bulloek P. Climate change and agricultural soils:impacts and adaptation [J]. Climatic Change,1999,43,683-709.
    89. Rowntree P.R., Bolton J. R. Simulation of the atmospheric response to soil moisture anomlies over Europe [J]. Q. J. R. Met. Soc.,1983,109:501-526.
    90. Prior S A, Torbert H A, Runion G B, Mullins G. L. Rogers H. H. Mauney J.R.. Effects of free-air CO2 enrichment on cotton nutrient dynamics [J]. J. Plant Nutr.1998,21:1407-1426.
    91. Sabey B R, Frederick L R, Bartholomew W V. The formation of nitrate from ammonium nitrogen in s oils Ⅲ. Influence of temperature and initial population of nitrifying organisms on the maximum rate and delay period [J]. Soil Sci. Soc. Am. Proc,1959,23:462-465.
    92. Schlesinger M E, Ramankutty N. Implications for global warming of inter cycle solar irradiance variations [J]. Nature,1992,360:330-333.
    93. Shao Y. P, Henderson-sellers A. Validation of soil moisture simulation in land surface parameterization schemes with HAPEX data [J]. Global Planet. Change.1996,13:11-16.
    94. Silvina A.S., Mario N. Local estimates of global climate change:a statistical downscaling approach [J]. Int. J. Climatol,1999,19:835-861.
    95. Shukla J, Mintz Y. The influence of land-surface evapotranspiration on Earth's climate [J]. Science, 1982,215:1498-1501.
    96. Simunek J, van Genuchten M T. Modeling Nonequilibrium Flow and Transport Processes Using HYDRUS [J]. Vadose Zone J,2008,7(2):782-797.
    97. Soderlund R., Svensson B.H. "The Global Nitrogen Cycle" in R.H. Svensson and R.Soderlund, eds., Nitrogen, Phosphorus and Sulphur-Global Cycles, Scope Report7, Ecol. Bull.1976.22 (Stoekholm).
    98. Srinivasan G, Robock A, Entin J.K., et al. Soil moisture simulations in revised AMIP models [J]. Geophys. Res.2000,105 (D21):26635-26644.
    99. Stevenson F.J., M. A. Cole. Cycles of Soil:carbon, nitrogen, phosphorus, sulfur, micronutrients 2nd [M]. New York:John wiley & Sons Inc.1999.139-278.
    100.Suykens and Vandewalle,1999 Suykens J A K, Vandewalle J. Least Squares Support Vector Machine Classifiers [J]. Neural Process. Lett.1999,9(3):293-300.
    101. Turner, B.L., Moss, R H., Skole, D L. Relating land use and global land cover change [R]. IGBP Report.1993. (24):8-15.
    102. Vachaud G.A., Silans P.D., Balabans P., Vauclin M. Temporal stability of spatially measured soil water probability density function [J]. Soil Sci Soc Am J,1985,49:822-828.
    103. Vitousek P. M. Litterfall, nutrient cycling, and nutrient limitation in tropical forest [J]. Ecology, 1984,65:285-298.
    104. Vitousek P.M., Senford R.L. Nutrient cycling in moist tropical forest [J]. Annu Rev Eeol Syst,1986, 17:137-167.
    105.Vitousek P.M., Walker L.R. Colonization, succession and resource availability:Ecosystem-level interactions. Colonization, Succession and Stability [J]. Oxford:Blsekwell SCI.1987:207-223.
    106. Vitousek P.M. and Howarth R.W. Nitrogen limitation on land and in the sea-how can it occur [J]. Biogeochem.1991,13,87-115.
    107. Walker T.W., Syers J.K. The fate of P during pedogenesm [J]. Geaderma,1976,14:1-19.
    108. Walker J.M., Rowntree P.R. The effect of soil moisture on circulation and rainfall in a tropical model [J]. Quarterly Journal of Royal Meteorological Society.,1978,103:29-46.
    109. Watson, R.T. Climate Change. Impacts adaptations and mitigation of climate change. Scientific-Technical Analyses Published for the IPCC [M]. Cambridge University Press. New York: 1996,3-10.
    110.Williams E L, Walter L M, Ku C W, King G W and Zak D R. Effects of CO2 and nutrient availability on mineral weathering in controlled tree growth experiments [J]. Global BiogeoChem. Cycles.2003.17(2),1001-1011.
    111. Wu, D.X., Wang, G.X., Bai, Y.F., Liao, J.X., Effects of elevated CO2 concentration on growth, water use, yield and grain quality of wheat under two soil water levels [J]. Agric. Ecosyst. Environ. 2004:104,493-507.
    112.Xie Z., Zhu J., Zhan Y. Responses of rice (Oryza sativa) growth and its C, N and P composition to FACE (free-air carbon dioxide enrichment) and N, P fertilization. Chin. J. Appl. Ecol [J].2002,13, 1223-1230.
    113.Xue Y., Sellers P. J., Kinte J. L., Shukla J. A simplified biosphere model for global climate studies [J]. Climate,1991,4:345-364.
    114. Zhao M, Zeng X.M. A theoretical analysis on the local climate change induced by the change of landuse [J]. Advanced in Atmos. Sci.2002,19(1):45-63.
    115. Zhang C, Tian H. Q., liu J. Y., Wang S. Pools and distributions of soil phosphorus in China [J]. Global Biogeochem Cyc.2005,19(GB 1020):1-8.
    116. Zhang X. C., Nearing M.A. Impact of climate change on soil erosion, runoff and wheat productivity in central Oklahoma [J]. Catena,2005,61:185-195.
    117. Zhou L C. Method and Model of Back-Propagation Neural Network on Predict ion of Soil Water Content [J], ACTA Agriculture Boreali-occidentalis Sinica,2004,13(4):130-133.
    118.鲍士旦.土壤农化分析[M].中国农业出版社.1999.
    119.蔡毅,邢岩,胡丹.敏感性分析综述[J].北京师范大学学报(自然科学版),2008,44(1):9-16.
    120.陈效民,潘根兴,沈其荣,康燕.太湖地区农田土壤中硝态氮垂直运移的规律[J].中国环境科 学,2000,21(6):481-484.
    121.陈效民,吴华山,孙静红.太湖地区农田土壤中铵态氮和硝态氮的时空变异[J].环境科学.2006,27(6):1217-1222.
    122.陈峪,任国玉,王凌,邹旭恺,张强.近56年我国暖冬气候事件变化[J].应用气象学报,2009,20(5):539-545.
    123.陈育峰.气候—森林响应过程敏感性的初步研究—以四川西部紫果云杉群落为例[J].地理学报,1996,(S1):58-65.
    124.丁一汇,张锦,徐影.气候系统的演变及其预测[M].气象出版社,2003.
    125.丁一汇,郭彩丽,刘颖.气候变化40问[M].气象出版社.2008.
    126.董桂春,王余龙,杨洪建,朱建国,杨连新.开放式空气CO2浓度增高对水稻N素吸收利用的影响[J].应用生态学报,2002,23(10):1219-122.
    127.韩俊杰,高永刚,南瑞.1984-2005年黑龙江省主要农区土壤湿度的变化特征[J].中国农业气象,2009,30(1):41-44.
    128.韩耀宗,黄亮亮,宋新山,曹家枞.基于小波神经网络的芦苇潜流人工湿地水质预测[J].环境科学研究,2009,22(12):1460-1465.
    129.黄昌勇.土壤学[M].中国农业出版社.1999:98-99.
    130.胡必彬.太湖流域水污染对太湖水质的影响分析[J].上海环境科学,2003,22(12):1017-1021.
    131.姜冬梅,张孟衡,陆根法.应对气候变化[M].中国环境科学出版社,2007,3.
    132.荆恩春,费瑾,张孝和.土壤水分通量法实验研究[M].地震出版社,1994.
    133.康绍忠.我国黄土高原地区农业水资源合理利用途径的探讨[J].自然资源,1988,(2):42-48.
    134.廖建雄,王根轩.C02和温度升高及干早对小麦叶片化学成分的影响[J].植物生态学报,2000,24(6):744-747.
    135.粟容前,康绍忠,贾云茂.农田土壤墒情预报研究现状及不同预报方法的对比分析[J].干旱地区农业研究,2005,23(6):194-199.
    136.李伏生,康绍忠.不同氮和水分条件下C02浓度升高对小麦碳氮比和碳磷比的影响[J].植物生态学报,2002,26(3):295-302.
    137.李伏生,康绍忠.C02浓度升高下氮和水分对春小麦养分吸收和土壤养分的效应[J].植物营养与肥料学报,2002b,8(3):303-300.
    138.李国平,符淙斌,叶笃正.大尺度降雨异常对地面过程的影响—一类气候反馈机制的初步研究[J].大气科学,1991,15(2):23-31.
    139.李英能.对节水灌溉工程规划若干问题的探讨[J].水利规划与设计,2005(3):1-5.
    140.李韵珠,李保国.土壤溶质运移[M].北京:科学出版社,1998:302-304.
    141.李志鹏,潘根兴,张旭辉.改中玉米连续3年后稻田土壤有机碳分布和13C自然丰度变化[J]. 土壤学报,2007,44(2):244-251.
    142.李子忠,龚元石.农田土壤水分和电导率空间变异性及确定其采样数的方法[J].中国农业大学学报,2000,5(5):59-66.
    143.刘钢,韩勇,朱建国,冈田益己,中村浩史,吉本真由美.稻麦轮作FACE系统平台Ⅰ.系统结构与控制[J].应用生态学报,2002,13(10):1253-1258.
    144.刘国东,丁晶.BP网络用于水文预测的几个问题探讨[J].水利学报,1999,(1):65-70.
    145.刘洪斌,武伟,魏朝富.AR模型在土壤水分动态模拟中的应用[J].山地学报,2004,22(1):121-125.
    146.刘永强.土壤湿度和植被对气候影响的研究[D].中国科学院大气物理研究所,1990.
    147.陆景陵.植物营养学[M].北京农业大学出版社.2000.
    148.鲁如坤.植物营养与施肥原理[M].北京:农业出版社,2000:201-202.
    149.吕俊梅,琚建华,江剑民.近一百年中国东部区域降水的年代际跃变[J].大气科学,2009,33(3):524-535.
    150.马红亮,朱建国,谢祖彬.大气CO2浓度升高对植物土壤系统地下过程影响的研究[J].土壤:2003,35(6):465-472.
    151.马红亮,朱建国,谢祖彬.不同氮水平下CO2浓度升高对小麦士壤可溶性C、N和P的影响[J].土壤,2005,37(3):284-289.
    152.马柱国,符淙斌,谢力.土壤湿度和气候变化关系研究中的某些问题[J].地球科学进展,2001,16(4):563-568.
    153.马柱国,魏和林,符涂斌.中国东部区域土壤湿度的变化及其与气候变率的关系[J].气象学报,2000,58(3):278-287
    154.马柱国,魏和林,符淙斌.土壤湿度与气候变化关系的进展与研究.地球科学与进展[J].1999,14(3):299-305.
    155.蒙桂云,喻彦.1961—2005年西双版纳浅层地温对气候变化的响应[J].气象科技,2010,38(3):316-320.
    156.潘根兴.气候变化对中国农业生产的影响[M].中国农业出版社,2010.
    157.蒲金涌,姚小英,邓振镛,张存杰,张谋草,王位泰.气候变化对甘肃黄土高原土壤贮水量的影响[J].士壤通报,2006,37(6):1086-1089.
    158.屈鹏,郭东林.2009.祁连山东部近50年气候特征变化分析[J].干旱区资源与环境,23(12):66-70.
    159.冉炜,沈其荣,郑金伟.土壤硝化作用过程中亚硝态氮的累积研究[J].土壤学报,2000,37(4):474-48.
    160.尚松浩,毛晓敏,雷志栋,杨诗秀.冬小麦田间墒情预报的BP神经网络模型[J].水利学报, 2002,(4):60-63.
    161.沈宏.土壤活性碳的特征及其生态效应[J].生态学杂志,1999,18:32-38.
    162.申慧娟,严昌荣,戴亚平.农田土壤水分预测模型的研究进展及应用[J].生态科学,2003,22(4):366-370.
    163.孙凤华,杨素英,陈鹏狮.东北地区近44年的气候暖干化趋势分析及可能影响[J].生态学杂志,2005,24(7):751-755.
    164.汤懋苍,孙淑华,钟强.下垫面能量储放与天气变化[J].高原气象,1982,1(1):24-23.
    165.谭方颖王建林.华北平原近45年气候变化特征分析[J].气象,(5):40-45.
    166.王芳,陈胜可,冯国生.SAS统计分析与应用[M].北京,电子工业出版社,2009:309-310.
    167.王其兵,李若浩,白永飞,等.气候变化对草甸草原土壤氮素矿化作用影响的实验研究[J].植物生态学报,2009,24(6):687-692.
    168.王淑平.土壤有机碳和氮的分布及其对气候变化的响应[R].中国科学院植物所博士后研究工作报告.2003.
    169.汪涛,杨元合,马文红.中国土壤磷库的大小、分布及其影响因素[J].北京大学学报(自然科学版),2008,44(6):945-952.
    170.王彦平,孟军,宋卫士.呼伦贝尔市土壤水分与气候变化的关系[J].水土保持研究,2009,16(4):255-263.
    171.谢祖彬,朱建国,张雅丽,马红亮,刘钢,韩勇,曾青.水稻生长及其体内C、N、P组成对开放式空气CO2浓度增高和N、P施肥的响应[J].应用生态学报,2002,13(20):1223-1230.
    172.许后效.环境中的亚硝基化合物[M].北京:科学出版社,1988
    173.杨晴,韩金玲,李雁鸣,肖凯,刘艳芳.不同施磷量对小麦旗叶光合性能和产量性状的影响[J].植物营养与肥料学报[J],2006,12(6):816-821.
    174.杨绍辉,王一鸣,郭正琴.ARIMA模型预测土壤墒情研究[J].干旱区农业研究,2006,24(2):114-118.
    175.杨永兴.三江平原沼泽形成和发育的若干问题探讨.中国沼泽研究[C].2005.北京:科学出版社.
    176.姚贤良.红壤水问题及其管理[J].土壤学报,1996,33(1):13-20.
    177.信秀丽,张佳宝,朱安宁.土壤水吸力空间分布规律的时间稳定性研究[J].农业工程学报.2008,(24)5:15-20.
    178.叶笃正,符淙斌,董文杰,温刚,延晓冬.全球变化科学领域的若干研究进展[J].大气科学,2003,27(4):435-450.
    179.张宝军.河西地区出山径流和土壤湿度与气候变化的关系研究—以黑河流域为例[D].兰州大学硕士论文,2007.
    180.张普,刘卫国.黄土高原中部黄土沉积有机质记录特征及C/N指示意义[J].海洋地质与第四纪地质,2008,28(6):120-124.
    181.张文纲,李述训,庞强强.近45年青藏高原土壤温度的变化特征分析[J].地理学报,2008,63(11):1152-1159.
    182.张彦军,郭胜利,南雅芳.黄土丘陵区小流域士壤碳氮比的变化及其影响因素[J].自然资源学报.2012,27(7):1214-1223.
    183.张学礼,胡振琪,初士立.土壤含水量测定方法研究进展[J].土壤通报,2005,36(1):119-123
    184.赵西宁,王万忠,吴普特,冯浩,吴发启.坡面入渗的人工神经网络模型研究[J].农业工程学报,2004,20(3):48-50.
    185.左余宝,Hosen Y,褚海燕.不同水分含量对潮土和火山士硝化动态的影响[J].土壤肥料,2004,(5):21-24.
    186.朱乾根.土壤湿度和地表反射率变化对中国北方气候影响的数值研究[J].气象学报,1996,54(4):493-500.
    187.朱凯,王正林.精通MATLAB神经网络[M].北京:电子工业出版社,2010,193-198.
    188.朱首军,丁艳芳,薛泰谦.农林复合生态系统土壤水分空间变异性和时间稳定性研究[J].水土保持研究,2000,7(1):46-48.
    189.朱星明,卢长娜,王如云,白婧怡.基于人工神经网络的洪水水位预报模型[J].水利学报,2005,36(7):806-811.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700