用户名: 密码: 验证码:
畜禽粪便热解机理和气化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全球能源紧张以及化石能源使用对环境的负面影响推动可再生能源的飞速发展。生物质能源储量大、可再生以及使用过程中温室气体零排放等优点,使得全球对其研究开发力度逐渐加强,现已成为仅次于石油、煤炭和天然气的第四大能源。发展和利用生物质能,对于我国的社会经济发展具有重要意义。生物质利用技术主要包括直接燃烧、生化、压缩成型和热化学转化等。畜禽养殖废弃物是生物质能的特殊形式,同时也是农业发展过程中的污染物之一,对其资源化转化利用具有环境和经济双重效益。
     本文在结合当前国内外生物质热化学转化技术研究的基础上,针对畜禽粪便展开热化学转化技术研究,通过对几种畜禽粪便的物理化学属性、热解特性、热解机理、热解动力学的研究,设计了一套流化床试验装置,并对猪粪展开了空气气化试验。总体研究结论归纳如下。
     (1)针对猪、牛、鸡和羊四种畜禽粪便的工业和化学分析,结合元素和热值分析以及其它项目分析来考察他们热化学转换的可行性。
     研究结果表明畜禽粪便在化学组成、灰分和碱金属含量等方面和农作物秸秆有很大差异,具体包括畜禽粪便的纤维素类物质含量偏低,而小分子中性洗涤剂溶解物含量偏高;灰分和碱金属、氮元素含量偏高;在热值方面则显示具有热化学转换潜力。这些不同特性要求在对畜禽粪便进行热化学转换研究时要区别对待。
     从热化学转化和生化转化的原理出发,理论分析了各自的能量转化效率。分别选择空气气化和厌氧发酵两个转化过程,通过建立化学平衡方程式,理论推导出各自燃气能量产出和能量转换效率,得出热化学处理方法较厌氧发酵过程在能量转化方面更彻底,更有优势。
     (2)利用热重-傅立叶红外光谱联用技术,对畜禽粪便的热解特性展开研究。
     研究结果表明畜禽粪便的热解过程可分为脱水、主要热解和炭化三个阶段。几种样品在各自热解最终残留物、微商热重曲线所体现的失重速率和特征峰等方面有差异性。
     逸出气体红外分析显示,其析出气体主要有H_2O、CO_2、CO、H_2、CH_4、醛、羧酸等。对红外波谱的分析发现每种气体的析出特性都有不同,其中水份的析出曲线呈双峰特性,分别对应于失去游离水和化合结晶水过程;CO和CO_2析出呈现明显双峰特性,分别对应于主要热解阶段和炭化阶段;区别是CO_2炭化阶段析出强度很弱;甲烷析出呈现单峰特性,对应于主要热解阶段末期和炭化阶段初期;其它碳氢化合物呈现单峰特性,对应于主要热解阶段。
     试验还考察了升温速率对猪粪热解过程和气体析出特性的影响,结果表明升温速率对失重过程的影响主要体现在失重速率上,对气体析出影响主要体现在能使各气体逸出峰向高温区移动。
     (3)采用热分析动力学的研究方法,利用热重试验获得的数据,对几种样品的热解过程通过建模和模型的求解,分别获得了各自的机理函数、表观活化能和频率因子,从而获得分解速率(α)对应于温度(T)的数学模型,为后续转化过程的模拟和控制提供数学基础。
     研究结果表明四种样品表观活化能的平均值分别是:猪粪72.89kJ/mol、牛粪75.38kJ/mol、羊粪50.83 kJ/mol、鸡粪74.76 kJ/mol,较一些秸秆类物质要低,说明畜禽粪便更容易受热分解。研究发现采用单组分全局积分模型能很好的表达猪粪的热解过程,而采用单组分分阶段模型计算具有双峰特征的牛粪、鸡粪及羊粪有很好的适用性。
     (4)设计加工了一套气化负荷在1-5kg/h的流化床反应器。
     整套装置主要包括主反应管、螺旋进料装置、旋风分离装置、冷凝装置、过滤装置、加热及控制装置和其它管路等。在主反应管设计方面同时兼顾了其它热化学工艺要求。螺旋进料装置考虑到了细粉物料的流动特性,设置了气力输送位置。采取套管水冷方式,实现了燃气和冷却水分离。加热元件为三个4kw加热丝,单独控制,可根据实际情况调节加热功率。设备和蒸汽发生器及蒸汽加热器联结即可以进行生物质的空气+水蒸汽气化或水蒸汽气化。整套装置各部件间采取法兰连接,容易拆卸,易于设备的改进。
     (5)对整套试验装置进行了冷态启动和热态空床试验。
     试验结果表明螺旋进料器的出料量可由调频器来线性控制,调频器输出频率和螺旋进料器的出料量线性相关性在0.9以上,能满足试验精度要求。在冷态条件下进行反应器的流速和压降试验,从△p-v曲线上获得粒径为0.2-0.5mm的石英沙的临界流化速度为0.035m/s,进而可以确定反应器的操作流化速度。试验流化曲线显示在流化区内床层压降变化幅度比较小,能满足试验流化要求。对反应器的加热元件和控制元件在空床状态下进行了启动试验,结果显示反应器加热和控制元件能在较短的时间内使反应器内温度升到试验要求。
     (6)对猪粪的空气气化过程展开了试验研究,考察了原料粒径、当量比和起始温度三个主要操作参数对反应器内温度场、产物分布、固体产物特性、气体产物成分、所产燃气的热值、碳转化率和气化效率等方面的影响作用,为课题下步试验提供参考的操作条件。
     试验结果表明粒径对反应器内的温度场没有显著影响,对产物分布有影响作用,产气最佳粒径为0.5mm,粒径对其它气化指标的影响也显示猪粪空气气化的最佳粒径为0.5mm。
     当量比ER对气化过程的影响具有利弊双面性,影响规律比较复杂,ER改变直接影响到反应器内温度场的变化和气固停留时间。ER=0.15有利于气体产物生成,结合其它气化指标,猪粪空气气化最佳ER为0.15。
     起始温度越高越有利于气体产物的生成,但从经济性和其它气化指标综合考虑,对于猪粪的空气气化300℃完全可以满足对燃气的使用要求。
     通过以上试验总结出猪粪空气气化的建议操作条件为:粒径0.5mm,ER=0.15,起始温度300℃。
     作为课题的基础性研究部分,作者在总结本身研究不足之处的同时,从热解机理、设备开发、气化工艺等方面为后续研究提出了建议和展望。
Global energy shortages and environmental negative impacts by using fossil rules have caused the fast development of renewable energy. Biomass energy has been given more and more attention for its advantages of large storage capacity, recovery and neutrality of greenhouse gas emission, and it has become the forth energy resources followed by petroleum, coal and natural gas. Development and utilization of biomass energy have the social ,economic, and ecological meaning in China. The utilization technologies of biomass include direct combustion, densification briquetting, biochemical and thermochemical conversion. Animal manure is a special shape of biomass and also a kind of pollutants during agricultural development ,so there have ecocomic and environmental benefits to make them into available resources.
     On the base of current research progress in biomass thermochemical conversion technologies at home and abroad, the author carried out the study on physicochemical characteristics, pyrolytic characteristics and mechanics of animal maure. On the ground of above study, the author designed and developped a lab-scale fluidized bed gasifier and employed this system to carry out air gasification experiments on swine manure. The main conclusions are as follows.
     (1) Proximate and chemical analysis,as well as ultimate and heating value analysis, were carried out to investigate the feasibility of thermochemical conversion of four kinds of manure such as swine, cattle, goat and chicken manure.
     The results showed that animal manure have some obvious differences to some kinds of farm crop residues on chemical consititution, ash and alkali salt metal content. The detailed includes the lower content of cellulosic material, higher content of neutral dissolving solids(NDS), ash, alkali metal and nitrogen. The heat value showed them having thermochemical conversion potential. These varible parameters require special handlings as we go on experimental research on them.
     Theoritical analysis on thermochemical and biochemical conversion efficiency was conducted on every kind of maure. By establishing the chemical equation, every kind of fule gases and total energy output were obtained and energy conversion efficiences were derived according to corresponding conversion processes. From the data we got the conclusion that thermochemical technology converts the raw material more thoroughly and efficiently than that of biochemical technology.
     (2) The pyrolysis characteristics of animal manure were investigated by the thermogravimetric analyzer coupled with the Fourier infrared spectroscopy(TG-FTIR).
     The experimental results showed that animal maure pyrolysis process can be devided into three stages which are dehydration stage, pyrolysis stage and carbonization stage. There were some different features on end residuum, weight loss rate and peak features indicated by TG and DTG curves.
     The produced gas detected by FTIR consists of H_2O, CO_2, CO, H_2, CH_4, aldehyde, carboxylic acid, and so on. By analyzing the infrared spectrum, the evolving characteristics of each different gas could be found. Water evolving curve has two peaks corresponding to losing free moisture and combined crystal water. Carbon monoxide and carbon dioxide evolving curve have the similar two peaks corresponding to pyrolysis and carbonization stage, but the second peak of carbon dioxide is weaker than that of carbon monoxide. Methane evolving cure appears single peak corresponding to pyrolysis terminal stage and carbonization early stage. Other hydrocarbons evolving curve display single peak corresponding to pyrolysis stage.
     The effluence of heating rate on pyrolysis and gas evolving characteristics of swine manure were also conducted, and its effects mainly appeared on weight loss rate and making each gas evolving peak move to high temperature zone.
     (3) Thermoanalysis dynamics method was employed to get the mathematic model of weight loss rate (a) to temperature (T) so that mathematical foundation could be offered for subsequent thermochemical conversion process simulation and control. By establishing and solving pyrolysis model, the kinetic triplet of mechanics function[f(α)] apparent activation energy(E) and frequency factor(A) were achieved using thermogravimetric experimental data.
     The calculation results showed that the average apparent activation energy of swine, cattle, goat, and chicken manure is 72.89kJ/mol, 75.38kJ/mol, 50.83 kJ/mol, 74.76 kJ/mol separately, and they are lower than those of farm crop residues which indicats these manure are easy to thermal cracking. The research also found single constituent global integration model is adaptive to swine manure and single constituent phased integration model is suitable to other three kinds of manure.
     (4) A fluidized bed gasifier system with the load from 1 to 5kg/h was designed and manufactured which consists of main reacting tube, screw feeder, cyclone separator, condenser, filter, heating and controling elements, and so on.
     The main reactor tube is applicable to different types of thermochemical conversion technological requirements. The screw feeder has a air delivery position to ensure discharge the fine materials easily. Double pipe condenser make fule gas and condensing agent non-contacting. Three 4kw heating elements can be controled by thermostat independently so that the system power can be adjusted according to practical situation. The equipment attached to steam generator and steam heater can be applicable to air-steam or steam gasification technologies. All components assembly are connected by flange which make them to be demounted and the system to be modified easily.
     (5) Cold condition and hot condition start-up experiments were carried out on set of equipments.
     The output of screw feeder could be linearity control by frequency modulator and their linear dependent coeffient was above 0.9 which could meet the test requirements. Pressure drop to fludized flow velocity test was conducted to get theΔp-v curve from which the critical fluidized flow velocity could be found. The experimental results showed that the Vf of silica sand between 0.2-0.5mm particle size was 0.035m/s so that we could determine the operational velocity. The fluidizing curve obtained from the trial showed that amplitude of pressure drop variation was quite small which could satisfy the fluidization demand. The hot empty bed condition experiments were done to test the performance of the heating and controling elements and showed that they can heat the gasifier to demanded temperature in a short time.
     (6) The air gasification experiments on swine manure were conducted to discover the influence of three main operational parameters which are raw material particle size, equivalence ratio and initial temperature on gasification process. Subjects investigated included reactor inner temperature field, products distribution, solid product character, fule gas components and heat value, carbon conversion rate and gasification efficiency. The experimental main goal is to supply suggested operational parameters for actual work conditions
     The experimental results showed that the parameter of particle size had some effects on some gasification indexes except inner reactor temperature field and the size of 0.5mm was benefit to gas production. Combined with other effects the suggested particle size was 0.5mm.
     ER has double-faced and complicated influence on gasification process because it can directly effect reactor inner temperature field and residence time of gas and solid. The experimental results showed ER of 0.15 was favorable to gas formation and connected to other aspects the suggested ER was 0.15.
     The experiment showed higher initial temperature was advantageous to gas production, but integrated with economy and other aspects, temperature of 300℃could meet the application demand of producted fule gas.
     From above experiments the suggested operational parameters of swine manure air gasification was : particle size of 0.5mm, ER of 0.15 and initial temperature of 300℃.
     As the project fundamental research, the author not only generalized the shortages of this paper but put forward some advice on further studies.
引文
[1]钱伯章.世界能源消费现状和可再生能源发展趋势[J].节能与环保,2006,3:8-11
    
    [2]邵强.我国能源现状及可再生能源开发问题[J].西部探矿工程,2005,4:208-209
    
    [3]苏亚欣,毛玉如.等.新能源与可再生能源概论[M].北京,化学工业出版社,2006,3:5-8
    
    [4]史立山.中国能源现状分析和可再生能源发展规划[J].可再生能源,2004,5:1-4
    
    [5]倪健民.国家能源安全报告[M].北京,人民出版社,2005,7:26-31
    
    [6]顾树华,刘鸿鹏.2000~2015年新能源和可再生能源产业发展规划[M].北京:中国经济出 版社,2001.
    
    [7]吴宗鑫,苏明山.在能源-环境-经济链条上的舞蹈——国际能源大事对能源行业提出新要求[J]. 中国石油,2002,3:6-7
    
    [8]王玉庆.中国能源环境战略与对策[J].环境保护,2006,4:24-26
    
    [9]肖江平,肖乾刚.“可再生能源”的法律定义[J].法学评论,2004,2:101-106
    
    [10]《中华人民共和国可再生能源法》[M].北京:化学工业出版社,2005
    
    [11] John A. Turner. A realizable renewable energy future[J]. Energy, 1999,7:687-89
    
    [12]朱成章.可再生能源的若干问题解析[J].节能与环保,2006,9:21-23
    
    [13]石建军.我国可再生能源政策探讨[J].铜陵学院学报,2006,4:31-34
    
    [14]王长贵.新能源和可再生能源安全性和环境问题分析[J].太阳能,2004,3:8-10
    
    [15]李力,曾乐民,李润.循环经济框架下的可再生能源发展回顾与思考[J].能源研究与利 用,2006,1:9-11
    
    [16]刘振武.发展可再生能源和新能源的机遇与挑战[J].国际石油经济,2006,7:17-19
    
    [17]沙汉英.发达国家可再生能源发展经验及其借鉴[J].国际贸易,2006,4::39
    
    [18] Konstantinos D. Patlitzianas, John Psarras. Formulating a modern energy companies' environment in the EU accession member states through a decision support methodology[J]. Energy Policy 2007,35:2231-2238
    
    [19]刘助仁.德国可再生能源发展对中国的启示[J].环境经济杂志,2006,1:74-77
    
    [20]孙玉芳,李景明,刘耕,等,国内外可再生能源产业政策比较分析[J].农业工程学 报,2006,10:45-47
    
    [21]李俊峰,时瞡丽.国内外可再生能源政策综述与进一步促进我国可再生能源发展的建议[J].可 再生能源,2006,1:1-6
    
    [22]吴坚.荷兰可再生能源政策及其实践[J].能源工程,2006,4:1-5
    
    [23]傅津.可再生能源产业化国际比较及对我国的建议[J].国际石油经济,2006,10:23-26
    
    [24]郭祥冰,廖世忠,郭力群,芦红.美国促进可再生能源发展的政策和实践[J].能源与环 境,2004,4:6-9
    
    [25]张干周.美国可再生能源的发展状况分析[J].国际电力,2005.1:28-29
    
    [26]何金祥.美国能源效率与可再生能源局及其战略规划[J].可再生能源开发利用,2005,12:22-25
    
    [27]谢宏文.欧盟成员国促进可再生能源的不同政策.国际电力,2005,4:27-30
    
    [28]胡润清.欧姆可再生能源发展到2010年将达到12%[J].中国能源,2004,11:35-37
    
    [29]Giuseppe Tomassetti.意大利的节能和可再生能源激励机制[J].能源工程,2004,1:17-19
    
    [30]时憬丽,李俊峰.英国可再生能源义务法令介绍及实施效果分析[J].中国能源,2004,11:38-41
    
    [31]何作庥。人类即将迎接可再生能源时代[J].北京联合大学学报(自然科学版),2006,9:5-11
    
    [32]国际能源署,世界能源展望.2001[M],北京:地质出版社,2002:188-196
    
    [33]世界能源理事会编。新的可再生能源-未来发展指南[M].北京:海洋出版社,1998
    
    [34] H.J.Veringa. Advanced techniques for generation of energy from biomass and waste[J]. Energy research center of the Netherlands, 2003
    
    [35]王贤华,陈汉平,等.国外生物质能发展战略对我国的启示[M].2004中国生物质能技术与可 持续发展研讨会论文集:1-6
    
    [36]袁振宏,吴创之,等.生物质能利用原理与技术[M].北京,化学工业出版社,2005
    
    [37]刘荣厚,牛卫生,等.生物质热化学转换技术[M].北京:化学工业出版社,2005,7
    
    [38] Peter McKendry. Energy production from biomass (part 3): gasification technologies[J]. Bioresource Technology, 2002, 83:55-63
    
    [39]姚向君,田宜水.生物质能资源清洁转化利用技术[M].北京:化学工业出版社,2005
    
    [40]马隆龙,吴创之,等.生物质气化技术及其应用[M].北京:化学工业出版社,2005
    
    [41] Ragnar Warnecke. Gasification of biomass: comparison of fixed bed and fluidized bed gasifer[J]. Biomass and Bioenergy, 2000,18:489-497
    
    [42]崔天,李亮,龙恩深.生物质热解液化的回顾与展望[J].林业机械与木工设备,2006,9:4-6
    
    [43]朱聪玲,王述洋,等.生物质裂解旋转锥式热解反应器的设计研究[J].佳木斯大学学报,2006,1:48
    
    [44]王洪志,陈攀峰,等.生物质热解研究进展(综述)[J].河北科技师范学院学报,2006,9:75-80
    
    [45]苗真勇,厉伟,顾永琴.生物质快速热解技术研究进展[J].节能与环保,2005,2:13-15
    
    [46]佳仲.日本新阳光计划课题介绍[J].全球科技经济瞭望,1994,5:25-29
    
    [47]何季民.日本的新阳光计划简介[J].华北电力技术,2002,1:52-54
    
    [48]刘培良.从国家“能源安全”的战略高度认识发展我国的燃料酒精的重要性和必要性[J].广西 轻工业,2005,2:15-17
    
    [49]何芳,易维明,拍雪源.国外利用生物质热解生产生物油的装置[J].山东工程学院学报,??1999,9:61-64
    
    [50]董良杰.生物质热解技术及其反应动力学研究[D].沈阳:沈阳农业大学,1997
    
    [51]刘荣厚.生物质热解特性及闪速热解试验研究[D].沈阳:沈阳农业大学,1997
    
    [52]何芳,易维明,孔容峰,等.小麦和玉米秸秆热解反应与热解动力学分析[J].农业工程学 报,2002,18:10-13
    
    [53]何芳,蔡均猛,徐梁,等.几种生物质热解过程的TG-DSC分析[J].农机化研究,2005,3:163-166
    
    [54]何芳,易维明,柏雪源,等.几种生物质热解反应动力学模型的比较[J].太阳能学 报,2003,12:771-775
    
    [55]修双宁,易维明,何芳.几种生物质热重曲线的分析[J].淄博学院学报,2002,6:82-85
    
    [56] Babu .B.V, Chaurasia .A.S. Modeling, simulation and estimation of optimum parameters inpyrolysis of biomass[J]. Energy Conversion and Management,2003,44:2135-2158
    
    [57] Babu .B.V, Chaurasia .A.S. Heat transfer and kinetics in the pyrolysis of shrinking biomassparticle[J]. Chemical Engineering Science.2004,59:1999-2012
    
    [58] Babu .B.V, Chaurasia.A.S. Pyrolysis of biomass: improved models for simultaneous kinetics andtransport of heat, mass and momentum[J]. Energy Conversion and Management,2004,45:1297-1327
    
    [59] Vlaev.L.T, Markovska.I.G, Lyubchev.L.A. Non-isothermal kinetics of pyrolysis of rice husk[J].Thermochimica Acta,2003,406:1 -7
    
    [60] Asri Gania, Ichiro Naruse. Effect of cellulose and lignin content on pyrolysis and combustioncharacteristics for several types of biomass[J]. Renewable Energy, 2007,32:649-661
    
    [61] Capucine Dupont,Guillaume Boissonnet, et al. Study about the kinetic processes of biomass steamgasification[J]. Fuel, 2007,86:32-40
    
    [62] Dong Ho Lee, Haiping Yang, et al. Prediction of gaseous products from biomass pyrolysisthrough combined kinetic and thermodynamic simulations[J]. Fuel, 2007,86:410-417
    
    [63] Osvalda Senneca, Riccardo Chirone, et al. Patterns and kinetics of pyrolysis of tobacco underinert and oxidative conditions[J]. Journal of Analytical and Applied Pyrolysis, 2007. Article in Press
    
    [64] Maiti.S, Purakayastha.S, Ghosh. B. Thermal characterization of mustard straw and stalk in nitrogenat different heating rates[J]. Fuel,2007. Article in Press
    
    [65] Puchong Thipkhunthod, Vissanu Meeyoo, et al. Describing sewage sludge pyrolysis kinetics by acombination of biomass fractions decomposition[J]. Journal of Analytical and Applied Pyrolysis,2007. Article in Press
    
    [66] Alberto J. Tsamb, Weihong Yang, Wlodzimierz Blasiak. Pyrolysis characteristics and globalkinetics of coconut and cashew nut shells[J]. Fuel Processing Technology, 2006,87:523-530
    
    [67]钟浩,谢建等,生物质热解气化技术的研究现状及其发展[J].云南师范大学学报,2001,21(1): 41-45
    
    [68]刘圣勇,张杰.生物质气化技术现状及应用前景展望[J].资源节约与综合利用,1999,6 (2):24-27
    
    [69]南方,杜延红,李瑜,等.综合利用是秸秆气化长期运行的经济保障[J].2004中国生物质能技术 与可持续发展研讨会论文集:18-20
    
    [70]夏祖璋,张百良,余泳昌.农业生物质热解试验研究[J].农业工程学报,1995,11:145-149
    
    [71]王智微,唐松涛,苏学泳,等.流化床中生物质热解气化的模型研究[J].燃料化学学 报,2002,30:342-346
    
    [72]戴先文,周肇秋,吴创之,等.循环流化床作为生物质热解液化反应器的实验研究[J].化学反 应工程与工艺,2000,16:263-269
    
    [73]李延吉,李爱民,李润东,等.有机固体废弃物在固定床内热解的实验研究[J].可再生能源, 2004,3:25-28
    
    [74]苏学泳,王智微,程从明,等.生物质在流化床中的热解和气化研究[J].燃料化学学 报.2000,28:298-305
    
    [75]姚福生,易维明,柏雪源,等.生物质快速热解液化技术[J].中国工程科学,2001,3:63-67
    
    [76]易维明,柏雪源,李志合,等.玉米秸秆粉末闪速加热挥发特性的研究[J].农业工程学报, 2004,20:246250
    
    [77]柏雪源,易维明,王丽红,等.玉米秸秆在等离子体加热流化床上的快速热解液化研究[J].农 业工程学报,2005,21:127-130
    
    [78]孔凡霞,李志合,柏雪源,等.生物质闪速热解挥发与温度的关系[J].山东理工大学学 报,2005,19:14-17
    
    [79]易维明,柏雪源,李志合,等.利用层流炉研究玉米秸秆粉末的快速热解特性[J].可再生能源, 2003,5:7-11
    
    [80]吕鹏梅,熊祖鸿,等.生物质流化床气化制取富氢燃气的研究[J].太阳能学报.2003,24(6):758-764
    
    [81]吕鹏梅,熊祖鸿,等.生物质催化气化制取富氢燃气的研究[J].环境污染治理技术与设备,2003, 4(11):31-34
    
    [82] Pengmei Lv, Zhenhong Yuan, Chuangzhi Wu, et al. Bio-syngas production from biomass catalytic gasification[J]. Energy Conversion and Management.2007,48: 1132-1139
    
    [83]刘国喜,庄新姝,等.国外生物质气化技术的应用[J].农村能源,2000,4:12-14
    
    [84] Giltrap. D.L, McKibbin. R, Barnes.G.R.G. A steady state model of gas-char reactions in a downdraftbiomass gasifier[J]. Solar Energy . 2003 ,74:85-91
    
    [85] Andrea Corti, Lidia Lombardi. Biomass integrated gasification combined cycle with reduced CO2emissions: Performance analysis and life cycle assessment (LCA)[J]. Energy. 2004,29:2109-2124
    
    [86] Chen.G, Andries. J , Luo. Z, et al. Biomass pyrolysis/gasification for product gas production: theoverall investigation of parametric effects[J]. Energy Conversion and Management.2003,44:1875-1884
    
    [87] Schuster.G, Weigl. K, Hofbauer. H. Biomass steam gasification-an extensive parametric modelingstudy[J]. Bioresource Technology. 2001,77:71-79
    
    [88] Catharina Erlich, Emilia Bjornbom, David Bolado, et al. Pyrolysis and gasification of pellets fromsugar cane bagasse and wood[J]. Fuel. 2006,85:1535-1540
    
    [89] Yan Cao,Yang Wang, John T. Riley, et al. A novel biomass air gasification process for producingtar-free higher heating value fuel gas[J]. Fuel Processing Technology. 2006,87:343-353
    
    [90] Yin Wang, Kunio Yoshikawa, Tomoaki Namioka. Performance optimization of two-stagedgasification system for woody biomass[J]. Fuel Processing Technology.2007,88:243-250
    
    [91] Samy S. Sadaka, Ghaly. A.E, Sabbah. M.A.Two phase biomass air-steam gasification model forfluidized bed reactors: Part Ⅰ-model development[J].Biomass and Bioenergy.2002,22:439-462
    
    [92] Samy S. Sadaka, Ghaly. A.E, Sabbah. M.A.Two phase biomass air-steam gasification model forfluidized bed reactors: Part Ⅱ-model sensitivity [J]. Biomass and Bioenergy. 2002,22:463-477
    
    [93] Samy S. Sadaka, Ghaly. A.E, Sabbah. M.A.Two phase biomass air-steam gasification model forfluidized bed reactors: Part Ⅲ-model validation[J]. Biomass and Bioenergy. 2002,22:479-487
    
    [94] Behdad Moghtaderi. Effects of controlling parameters on production of hydrogen by catalytic steamgasification of biomass at low temperatures[J].Fuel .2007.Article in Press
    
    [95] Keiichi Tomishige, Mohammad Asadullah, Kimio Kunimori. Novel catalysts for gasification ofbiomass with high conversion efficiency[J]. Catalysis Surveys from Asia.2003,7:219-233
    
    [96] Rapagna S, Provendier H, Petite C, et al. Development of catalysts suitable for hydrogen or syn-gasproduction from biomass gasification[J]. Biomass and Bioenergy. 2002,22:377 - 388
    
    [97]中国畜牧业年鉴[M].2004:186-326
    
    [98]张仲秋,陈伟生,等.中国畜牧业统计-2004[M]:121-26
    
    [99]李庆康.我国集约化畜禽养殖场的粪便处理利用现状及展望[J].农业环境保护,2000,19 (4):251-254]
    
    [100] 殷丽萍,韩晓梅.畜禽养殖对环境的污染及防治对策[J].云南环境科学.2006,25:70-71
    
    [101] He B.J, Zhang Y, et al. Thermochemical conversion of swine manure :an alternative processfor waste treatment and renewable energy production [J], transaction of theASAE,2000,43(6): 1827-1833
    
    [102] He B J, Y. Zhang Y, et al. Operating temperature and retention time effects on thethermochemical conversion process of swine manure[J] .Transactions of theASAE,2000,43(6):1821-1825
    
    [103] He B, Zhang Y, et al. Effects of feedstock pH,initial CO addition ,and total solids content onthe thermochemical conversion process of swine manure [J].Transactions of the ASAE, 2001,44(3):697-701
    
    [104] He B J, Y Zhang. Y, et al. Effects of alternative process gases on the thermochemicalconversion of swine manure[J]. Transactions of the ASAE,2001,44(6):1873-1880
    
    [105] He B.J, Zhang Y, et al. Preliminary characterization of raw oil products from thethermochemical conversion of swine manure[J]. Transactions of the ASAE,2001,44(6): 1865-1871
    
    [106] Ocfemia K.S, Zhang Y, et al. ,Hydrothermal processing of swine manure into oil using acontinuous reactor system: development and testing[J]. Transactions of theASAE,2006,49(2):533-541
    
    [1]姚向君,田宜水.生物质能资源清洁转化利用技术[M].北京:化学工业出版社,2005
    
    [2]袁振宏,吴创之,等.生物质能利用原理与技术[M].北京:化学工业出版社,2005
    
    [3]刘荣厚,牛卫生等.生物质热化学转换技术[M].北京:化学工业出版社,2005
    
    [4]范志林,张军等.关于生物质基本性质分析的问题[J].东南大学学报(自然科学版), 2004,34(3):352-355
    
    [5]GB/T212-2001,煤的工业分析方法(S).北京:中国标准出版社,2001
    
    [6]GB6434-86,饲料粗纤维测定方法(S).北京:中国标准出版社,1986
    
    [7]赵青玲,杨继涛,等.畜禽粪便资源化利用技术的现状及展望[J].河南农业大学学 报,2003,37(2):1 84-1 87
    
    [8] Reed, Gaur.S. A survey of biomass gasification 2001[J]. The National Renewable EnergyLaboratory :l-10
    
    [9] Francis H Chang . Energy and sustainability comparisons of anaerobic digestion and thermaltechnologies for processing animal waste[A]. ASAE/CSAE annual international meeting, 2004,8:1-11
    
    [10]严家騄,王永青.工程热力学[M].北京:中国电力出版社,2004
    
    [11] Preston Burnette. "Re-Cycle "the production of liquid fuels from swine wsate ,North Carolina State University, prepared for North Carolina Department of Administration State Energy Office,2004,Aug. 27
    
    [1]刘荣厚,牛卫生等.生物质热化学转换技术[M].北京:化学工业出版社,2005,
    
    [2]徐朝芬,胡松等.热重-红外联用技术在煤燃烧特性研究中的应用[J].热力发电,2005,3:39-42.
    
    [3]王树荣,刘倩等.基于热重红外联用分析的纤维素热解机理研究[J].浙江大学学报(工学 版),2006,40(7):1 154-1158
    
    [4] Fisher T, Hajaligol M, et al. Pyrolysis behavior and kinetics of biomass derived materials [J]. Journal of analytical and applied pyrolysis, 2002, 62(2):331 -349
    
    [5]宋春财,胡浩权等.生物质秸秆热重分析及几种动力学模型结果比较[J].燃料化学学报,2003, 31(4):311-316
    
    [6] Bassilakis R, Carangelo R M, et al. TG-FTIR analysis of biomass pyrolysis[J]. Fuel, 2001,80:1765-1786
    
    [7]修双宁,易维明等.几种生物质热重曲线的分析[J].淄博学院学报,2002,4(2):82-85
    
    [8]何芳,易维明等.几种生物质热解反应动力学模型的比较[J].太阳能学报,2003,24(6):771-775
    
    [9] Jalan R K, Strivastava V K. Studies on pyrolysis of a single biomass cylindrical prllet-kinetic and heat transfer effects[J]. Energy conversion & Management, 1999,40:467-494
    
    [10]赖艳华,吕明新等.秸秆类生物质热解特性及其动力学研究[J].太阳能学报,2002, 23(2):203-206
    
    [11]刘乃安,范维澄等.一种新的生物质热分解失重动力学模型[J].科学通报,2001,46(10):876-880
    
    [12]赵明,吴文权等.稻草热解动力学研究[J].农业工程学报,2002,18(1):107-110
    
    [13] Kim Carlo S. Ocfemia, Yuanhui Zhang. Continuous thermochemical conversion process to produceoil from swine manure [A]. ASAE Annual international meeting , 2003:1-10
    
    [14] He B J, Zhang Y, et al. Effects of alternative process gases on the thermochemical conversion ofswine manure [J]. Transactions of the ASAE,2001,44(6): 1873-1880
    
    [15] Chang h. Energy and sustainability comparisons of anaerobic digestion and thermal technologiesfor processing animal waste. ASAE/CSAE annual international meeting, 2004: 1-11.
    
    [16] He B , Zhang Y, et al. Operating temperature and retention time effects on the thermochemicalconversion process of swine manure [J]. Transactions of the ASAE, 2000, 43(6):1821-1825.
    
    [17] He B, Zhang Y, et al. Effects of feedstock pH, initial CO addition ,and total solids content on thethermochemical conversion process of swine manure [J].Transactions of the ASAE, 2001,44(3):697-701
    
    [18]王洪志,陈攀峰,等.生物质热解研究进展(综述)[J].河北科技师范学院学报,2006,9:75-80
    
    [19]袁振宏,吴创之,等.生物质能利用原理与技术[M].北京,化学工业出版社,2005
    
    [20]刘振海.热分析导论[M].北京:化学工业出版社,1991
    
    [21]吴瑾光.近代傅立叶变换红外光谱技术及应用[M].北京:科学技术文献出版社,1994
    
    [22]高志农,牛菲.傅立叶变换红外光谱联用技术在化石燃料分析中的应用[J].岩矿测 试,1998,17:58-63
    
    [23]徐朝芬,胡松,孙学信,等.热重红外联用技术在煤燃烧特性研究中的应用[J].热力发 电,2005,3:39-42
    
    [24]何铭,吴茜微.FTIR及联用技术在复合材料领域中的应用[J].材料工程,1996,6:13-14
    
    [25]严衍禄.现代仪器分析[M].北京:北京农业大学出版社2004
    
    [26] Rajeswara.T,Atul.Sharma.Pyrolysis rates of biomass materials[J]. Energy, 1998.23(11):973-978
    
    [27] Hastaogli M A, Berruti.F A. gas-solid reaction model for flash wood pyrolysis[J]. Fuel,1989,68:1408-1415
    
    [28] Liu N A., kinetic modeling of thermal decomposition of natural cellusic materials in airatmosphere[J]. journal of analytical and applied pyrolysis, 2002,63:303-325
    
    [29]廖艳芳.纤维素热解机理试验研究[D].浙江大学博士学位论文,2003.6
    
    [30]谭洪.生物质热解机理试验研究[D].浙江大学博士学位论文,2005.6
    
    [31]文丽华.生物质多组分的热解动力学研究[D].浙江大学硕士学位论文,2005.6
    
    [32]陈森.生物质的热解特性和热解动力学研究[D].南京理工大学硕士学位论文,2005.6
    
    [33]胡荣祖、史启祯,热分析动力学[M].北京:科学出版社1998
    
    [34]刘振海.热分析导论[M].北京,化学工业出版社,1991
    
    [35] Flymn J H. The temperature integral -its use and abuse[J].Thermochemica Acta. 1997.300:83-92
    
    [36] Coaat A W. Redfern J P. Kinetic parameters from thermogravimetric data[J]. Nature. 1964,201:58-69
    
    [37]潘云祥,管翔颖等.全国热分析动力学和热动力学秋季研讨会论文摘要集[M],南京:林化研 究所出版社,1997
    
    [38]潘云祥,吴衍荪等.中国化学会第八届化学热力学和热分析学术论文报告会论文集[M],上海: 化学世界出版社,1996
    
    [1]刘荣厚,牛卫生等.生物质热化学转换技术[M].北京:化学工业出版社,2005
    
    [2]邱钟明,陈砺.生物质气化技术研究现状及发展前景[J].可再生能源,2002.4:16-19
    
    [3]马隆龙,肖艳京,任永志,等.生物质气化发电[J].能源工程,2000.2:4-6
    
    [4]袁振宏,吴创之,等.生物质能利用原理与技术[M].北京:化学工业出版社,2005
    
    [5]姚向军,田宜水.生物质能资源清洁转化利用技术[M].北京:化学工业出版社,2004
    
    [6]吴创之,徐冰,罗曾凡,等.生物质中热值气化装置设计与运行[J].太阳能学报,1997.18:1-6
    
    [7]金涌,祝京旭等。流态化工程原理[M].北京:清华大学出版社,2001
    
    [8]郑津洋,董其伍等,过程设备设计[M].北京:化学工业出版社,2001
    
    [9]杨昌炎,姚建中,林伟刚.生物质细粉加料技术的改进[J].化学工程,2006.34:42-45
    
    [10] John W. Carson, Greg Petro. How to design efficient and reliable feeders for bulk solids[J]. Jenike &Johanson. 1998,6:1-16
    
    [11]刘靖,殷小荣.热磨机螺旋进料器的设计[J].林产工业,1990,18(5):30-33
    
    [12]夏宜顺.对稳流螺旋输送机的分析及改进意见[J].水泥,1996,(12):35-37.
    
    [13]机械工程手册(第13篇.物料搬运设备卷)[M].电机工程手册编辑委员会.北京:机械工业出版 社,1997
    
    [14]朱斌昕.粮食装卸运输机械[M].北京:中国财政经济出版社,1984:236-256
    
    [15]梁庚煌.运输机械手册[M].北京:化学工业出版社,1983:460-520)
    
    [16]化学工程手册(第五册)[M].北京:化学工业出版社,1989:238-365
    
    [17]谭天恩,麦本熙,丁忠华.化工原理(下册)[M].北京:化学工业出版社,1998
    
    [18]郭庆杰,吕俊复,王昕,徐猛.高温鼓泡流化床的流化行为[J].热能动力工 程,2002,17:481-484
    
    [19]刘阳,刘文铁,何玉荣,陆慧林.流化床内非等密度双组分颗粒流动特性的研究[J].热能动力 工程,2005,20:615-618
    
    [20] Formisani B, Girimonte R, Mancuso L. Analysis of the fluidization process of particle beds at hightemperature [J ]. Chemical Engineering Science, 1998,53(6) :951 - 961
    
    [21] Hilliigaret K, Werther J. Influence of temperature and properties of solids on the size and growth ofbubbles in gas fluidized beds[J ]. Chem. Eng .Technol. 1987,10 :272 - 283
    
    [22]郭庆杰,吕俊复,岳光溪,等.高温鼓泡流化床流体动力学特性[J].化学工程,2003,3:31-36
    
    [23] Mathur A , Saxena S C , Zhang Z F. Hydrodynamic characteristics of gas fluidized beds over abroad temperature range [J ]. Powder Technology. 1986 ,47 :247 -256
    
    [1]刘荣厚,牛卫生等.生物质热化学转换技术[M].北京:化学工业出版社,2005
    
    [2]姚建中,陈洪章,张均荣,等.玉米秸秆快速热解[J].化工冶金,2000,21(4):434-437
    
    [3]苏学泳,王智微,程从明,等.生物质在流化床中的热解和气化研究[J].燃料化学学 报,2000,28(4):298-305
    
    [4]王树荣,骆仲泱,董良杰,等.生物质闪速热解制取生物油的试验研究[J].太阳能学??报,2002,23(1):4-10
    
    [5]陈冠益,李强.生物质热解气化制取氢气[J].太阳能学报,2004,25(6):776-78 1
    
    [6]陈冠益,方梦祥,骆仲泱.生物质固定床热解特性的试验研究与分析[J].太阳能学 报,1999,20(2):122-129
    
    [7]张瑞芹.生物质焦油的催化脱除及气化气制氢[J].郑州大学学报(理学版),2003,35(4):71-73
    
    [8]马静.生物质在下行流化床中快速热解试验研究[D].南京:南京理工大学,2005
    
    [9]朱慧.生物质在落下床中热解和气化制富氢气体[D].大连:大连理工大学,2005
    
    [10]洪军.生物质热解制油机理试验研究及流化床闪速热解装置设计[D].杭州:浙江大学,2002
    
    [11] Toshiaki Hanaoka, Takahiro Yoshida, Shinji Fujimoto,et al. Hydrogen production from woodybiomass by steam gasification using a CO2 sorbent[J]. Biomass and Bioenergy,2005,28:63-68
    
    [12] Keith Cummer, Robert C. Brown. Indirectly heated biomass gasification using a latent-heatballast-part 3: refinement of the heat transfer model[J]. Biomass and Bioenergy, 2005,28:321-330
    
    [13] Garcia-Garcia A,Gregorio.A, Franco.C,et al. Unconverted chars obtained during biomassgasification on a pilot-scale gasifier as a source of activated carbon production[J]. BioresourceTechnology, 2003,88:27-32
    
    [14] Bramme J.G , Bridgwater. A.V. The influence of feedstock drying on the performance andeconomics of a biomass gasier-engine CHP system[J]. Biomass and Bioenergy, 2002,22:271 - 281
    
    [15]李爱民,李延吉.固体废物在固定床式热解炉内热解产气特性的实验研究[J].环境污染治理技 术与设备,2003,4(4):4-10
    
    [16]王智敏,安大伟,郑非,等.城市生活有机垃圾外热式固定床低温热解技术[J].煤气与热 力,2004,24(12):675-678
    
    [17]马隆龙,吴创之,.生物质气化技术及其利用[M].北京.化学工业出版社,2003
    
    [18]吕鹏梅,常杰,熊祖鸿,等.生物质在流化床中的空气-水蒸汽气化研究[J].燃料化学学 报,2003,32(4):305-310
    
    [19] Lia.X.T, Grace.J.R, Lima.C.J,et al. Biomass gasification in a circulating fluidized bed[J]. Biomass and Bioenergy.2004,26:171 -193
    
    [20]王方,周义德,李在峰,等.影响生物质气化指标的主要因素分析[J].河南科 学,2004,22(1):100-102
    
    [21]农业部肥料质量监督检验测试中心.NY 525-2002中华人民共和国农业行业标准:有机肥料[S]. 北京:中国标准出版社,2002
    
    [22]中国农业科学院土壤肥料研究所.GB 8172-87.中华人民共和国国家标准-城镇垃圾农用控制标 准[S].北京:中国标准出版社,1988
    
    [23] Isabel Lima, Wayne E. Marshall. Utilization of turkey manure as granular activated carbon:physical, chemical and adsorptive properties[J]. Waste Management,2005,25 :726-732
    
    [24] Colomba Di Blasi. Kinetic and hea transfer control in the slow and flash pyrolysis of solids[J]. Ind Eng Chem Res, 1996,35:37-46

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700