用户名: 密码: 验证码:
陶瓷和纤维复合材料的动态性能及防护分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文基于目前陶瓷复合装甲防护应用的需要,开展了相关方面的研究工作。包括对一些陶瓷、金属材料在高温高压条件下的状态方程计算、纤维束的动态拉伸试验研究、一些陶瓷材料的动态三点弯曲实验研究、陶瓷片在应力波作用下的破坏研究以及陶瓷纤维复合板的抗侵彻研究等内容。文中相关的实验结果可以作为相应理论分析和数值模拟的实验依据。对陶瓷片及陶瓷复合板的破坏实验研究和数值模拟分析可以为抗弹陶瓷研究和复合靶板设计提供思路,也可用于装甲防护结构的优化。本文主要研究内容和结论如下:
     利用描述晶格热振动贡献特性的Gruneisen状态方程、结合冲击绝热关系,在不考虑电子项及晶格非简谐振动项对压力、内能贡献情况下给出的Walsh求解方法基础上,利用Runge-Kutta数值解法求解了相关微分方程组。研究了金属铝、45钢、钨、钼和陶瓷的内部压力、Gruneisen系数、冷压、冷能与比体积之间的数值关系,得出Gruneisen系数、冷压、冷能及常温下压力随比体积的变化曲线。给出三个压缩状态(比体积分别为V1,V2,V3)下压力随温度变化的曲线,说明温度的变化对压力的影响远小于比体积变化的影响。同时根据求解出的Hugoniot冲击温度,把温度升高引起的热压部分考虑到了状态方程中,并和相关文献中的计算结果进行了比较。利用函数f(γ,V)=0,得到了定容比热Cv和冲击温度T与比容之间的数值关系。
     研究了弹性应力波在T型杆和锥形杆中的传播规律。基于实验结果,给出应变相容假定,通过理论分析和实验验证成功解决了实验中所测入射应力波前后幅值不一致的问题;数值模拟了锥形过渡杆对反射应力波波形和幅值的影响,结果表明在一定条件下,锥形过渡杆对反射应力波的影响近似于阶梯过渡杆。测试了五种纤维束的准静态和动态应力应变关系,并比较了它们对应变率的敏感性。
     利用HOPKINSON压杆实验原理,用改装的HOPKINSON压杆实验装置测试了陶瓷材料三点弯曲动态力学性能,给出了几种陶瓷材料在不同挠度变化率下的挠度-最大拉应力曲线。给出了陶瓷材料的动态抗弯刚度模型和动态抗弯强度模型,并利用试验数据拟合得到了模型中的参数。测试了五组陶瓷的动态断裂韧性,所测断裂韧性的动态结果是静态结果的1.08~2.83倍。
     实验研究了陶瓷/金属复合板在应力波作用下的破坏行为,分析了应力波波头在陶瓷面板中的传播叠加规律。计算了陶瓷面板中的应力分布规律,理论分析得到陶瓷破坏锥的半锥角为41.5°。采用球面应力波的传播理论,求解了距离球腔中心不同远处界面上的应力时间历程,揭示了陶瓷面板中放射状裂纹的形成机制。进一步分析说明了放射状裂纹开始出现时刻早于陶瓷破坏锥形裂纹开始出现时刻。
     利用有限元软件ANSYS/LS-DYNA对应力波作用下陶瓷复合板的破坏进行了数值模拟,研究了陶瓷面板中的应力分布规律,吻合理论计算结果。对陶瓷/金属复合靶板和陶瓷/陶瓷/金属复合靶板进行了侵彻实验和数值模拟计算,模拟所得金属背板中的残余穿深和实验所得基本一致。在一定条件下,把同一厚度的陶瓷面板分为两种不同厚度的陶瓷面板组合,研究了它们的抗弹性能变化规律。
Based on the demand of ceramic composites applied in armor defense, developed a series of relative researches in this work, including the calculation of state equations about ceramic and some metals at high temperature and high pressure, experimental study on dynamic tensile properties of fiber bundles, experimental study on dynamic three-point bending properties of ceramic, researches on breakage of ceramic plate under the effect of stress wave and the penetration resistance of ceramic composite target. Some of experimental results are helpful for theoretical analysis and numerical simulation. The experimental study and numerical simulation on ceramic plate and ceramic composite target can give a guide for the investigation in ballistic resistance ceramics and design of ceramic composite armor; it also can be used for the optimization of armor protection structure. This thesis is mainly concerned with the following studies:
     Ignoring the contribution of electron part and crystal lattice non harmonic vibration part, the Gruneisen state equation described the contribution of crystal lattice thermal vibration was solved and the relationship about P-V-T was obtained with Walsh formula by Walsh numerical method and adiabatic relation. The theory was applied in calculating the relationship of Gruneisen coefficient y and specific volume V of metals of aluminum, steel, tungsten, molybdenum and ceramic. The relations of Cv vs T, T vs V, Pth vs T and P(V,T) were also obtained. Numerical results about f(P, T, V1)=0 f(P,T,V2)=0 and f(P,T,V3)=0 in three compressive states show that the effect of temperature is less than that of specific volume. The predicted results and the relation between P and V are in good agreement with references.
     The propagation of stress wave in T-type bar and conical bar was investigated. Based on the experiment results, the assumptions that strain satisfies coordinative relations were proposed. The variance of incident wave shape measured in experiments can be explained and the solution is also given by theoretical analysis and experimental verification. Numerical simulation about the effect of conical bar on reflected wave show that the formulas of stress amplitude in variable cross-section could be used for approximate calculation at a certain condition. The dynamic tensile properties of five types of high strength fiber bundles were measured and the sensitivity of strain rates was investigated.
     Using the experimental principle of HOPKINSON press bar, the dynamic three-point bending properties of ceramic were tested by the refitted HOPKINSON press bar. The relation between deflection and maximum tensile stress is given. The dynamic flexural rigidity model and dynamic bending strength model of ceramic were also provided and the material parameters used in the model were obtained by fitting the experimental data. The dynamic fracture toughness of five groups ceramic were tested and the obtained results are 1.08-2.83 times of static results.
     The damage behaviors of ceramic/metal composite plate under the effect of stress wave were studied. The propagation and superposition of front stress wave in ceramic were analyzed. The distribution of stress in ceramic was computed. It can be obtained that half cone angle of ceramic smash cone is 41.5°. Adopting the spherical wave propagate law, the course of stress vs time at different distances from the center of spherical cavity was solved and the radial crack formation mechanism in ceramic is revealed. It can be obtained that the radial crack appears earlier than smash cone crake by further analysis.
     The ceramic damage behaviors under the effect of stress wave were simulated by ANSYS/LS-DYNA. Distributions of stress by the numerical calculation in ceramic plate were in agreement with theoretical calculated results. The obtained depth of penetration of ceramic/metal and ceramic/ceramic/metal composite target by experiments and numerical simulations are almost identical. Finally, anti-bullet properties of ceramic plates were investigated by two ceramic plates with same total thickness instead of one ceramic plate make of a composite target.
引文
[1]胡玉龙,蒋凡.装甲陶瓷的发展现状和趋势[J].兵器材料科学与工程.1996,19(5):37-42.
    [2]张全河,杨秋生,王世林等.陶瓷材料在国防建设中的应用[J].广东建材.2002,(3):38-39.
    [3]孙志杰,吴燕,张佐光等.防弹陶瓷的研究现状与发展趋势[J].宇航材料工艺.2000,30(5):10-14.
    [4]韩辉,李楠.防弹纤维复合材料及其在武器装备中的应用[J].高科技纤维与应用.2005,30(1):40-43.
    [5]邵磊,余新泉,于良.防弹纤维复合材料在装甲防护上的应用[J].高科技纤维与应用.2007,32(2):31-34.
    [6]DELUCA E, PRIFTI J, BETHENEYW, et al. Ballistic impact damage of S2-glass-reinforced plastic structural armor [J]. Composites Science and Technology.1997,58(9):1453-1461.
    [7]黄英,刘晓辉,李郁忠.复合材料在坦克装甲防护中的应用[J].玻璃钢/复合材料.1999,(3):43-45.
    [8]DONALD R, MESSIER, PARIMAL J.High modulus glass fibers [J]. Journal of Non-Crystalline Solids.1995,182(3):271-277.
    [9]冉隆云.装甲战斗车辆的复合材料[J].国外坦克.2001,3:29-35.
    [10]VICKI P, MCCONNELL. Ballistic protection materials a moving target [J]. Reinforced Plastics. 2006,50(11):20-25.
    [11]FRITZ LARSSON, LARS SVENSSON. Carbon, polyethylene and PBO hybrid fibre composites for structural lightweight armour [J]. Composites Part A:Applied Science and Manufacturing.2002, 33(2):221-231.
    [12]郑震,杨年慈,施楣梧,等.硬质防弹纤维复合材料的研究进展[J].材料科学与工程学报.2005,23(6):905-907.
    [13]刘丹丹,周雪松,赵耀明等.PBO纤维的性能及应用[J].合成纤维工业.2005,28(5):43-46.
    [14]Wilkins M.L, Cline C.F, Honodel C.A. Fourth Progress Report of Light Armour Program. UCRL-50694:Lawrence Radiation Laboratory,1969.
    [15]Wilkins M.L, Honodel C.A, Landing ham R.L. Fifth Progress Report of Light Armour Program. UCRL-50980:Lawrence Radiation Laboratory,1971.
    [16]Landing ham R. L, Casey A.W. Final Report of the Light Armor Materials Program. UCRL-51269: Lawrence Livermore Laboratory,1972.
    [17]钱伟长.穿甲力学[M].第一版.国防工业出版社,1984.
    [18]Goodier J N. On the mechanics of indentation and cratering in the solid targets of strain hardening metal by impact of hard and soft spheres [J]. Proceedings of the 7th Symposium on Hypervelocity Impact Ⅲ,1965:215-259.
    [19]Hanagud S, Ross B. Large deformation, deep penetration theory for a compressible strain-hardening target material [J]. AIAA Journal.1971,9(5):905-911.
    [20]Norwood F R. Cylindrical cavity expansion in a locking soil [J]. SLA-74-0201, Sandia National Laboratories,1974.
    [21]Forrestal M J. Penetration into dry porous rock [J]. International Journal of Solids and Structures. 1986,22(12):1485-1500.
    [22]Forrestal M J, Okajima K, Luk V K. Penetration of 6061-T651 aluminum targets with rigid long rods [J]. Journal of applied mechanics.1988,55(4):755-760.
    [23]Forrestal M J, Luk V K. Penetration into soil targets [J]. International Journal of Impact Engineering.1992,12(3):427-444.
    [24]Forrestal M J, Frew D J. Penetration of Grout and Concrete Targets with Ogive-Nose Steel Projectiles [J]. International Journal of Impact Engineering.1996,18(5):465-476.
    [25]Tate A. A theory for the deceleration of long rods after impact [J]. Journal of the Mechanics and Physics of Solids.1967,15(6):387-399.
    [26]Tate A. Further results in the theory of long rod penetration [J]. Journal of the Mechanics and Physics of Solids.1969,17(3):141-150.
    [27]Alekseevskii V P. Penetration of a rod into a target at high velocity [M]. Volume 2, Number 2. Springer New York,1966:63-66.
    [28]Tate A. A simple hydrodynamic model for the strain field produced in a target by the penetration of a high speed long rod projectile [J]. International Journal of Engineering Science.1978, 16(11):845-858.
    [29]Tate A. A comment on a paper by Awerbuch and Bodner concerning the mechanics of plate perforation by a projectile [J].International Journal of Engineering Science.1979,17(3):341-344.
    [30]Tate A. Long rod penetration models-part Ⅰ. A flow field model for high speed long rod penetration [J]. International Journal of Engineering Science.1986,28(8):535-548.
    [31]Anderson C E, Walker J D. An examination of long-rod penetration [J]. International Journal of Impact Engineering.1991,11 (44):481-501.
    [32]Walker J D. Anderson C E. A time-dependent model for long-rod penetration [J]. International Journal of Impact Engineering.1995,16(1):19-48.
    [33]Anderson C E, Walker J D, Bless S J et al. On the L/D effect for long-rod penetration [J]. International Journal of Impact Engineering.1996,18 (3):247-264.
    [34]Anderson C E, Walker J D, Sharron T R. The influence of edge effects on penetration[C]. Proc.17th Int. Symp. Ballistics, Midrand, South Africa,1998,3:33-40.
    [35]Yarin A L, Rubin M B, Roisman I V. Penetration of a rigid projectile into an elastic-plastic target of finite thickness [J]. International Journal of Impact Engineering.1995,16(5-6):801-831.
    [36]Yossifon G, Rubin M B, Yarin A L.Penetration of a rigid projectile into a finite thickness elastic-plastic target-comparison between theory and numerical computations[J]. International Journal of Impact Engineering. 2001, 25(3):265-290.
    [37]Rosenberg Z, Dekel E. A critical examination of modified Bernoulli equation using two-dimensional simulation of long rod penetrators [J]. International Journal of Impact Engineering.1994,15(5):711-720.
    [38]Rosenberg Z, Tsaliah J. Applying Tate's model for the interaction of long rod with ceramic targets [J]. International Journal of Impact Engineering.1990,9(2):247-251.
    [39]Sadanandan S, Hetherington J G.Characterisation of ceramic/steel and ceramic/aluminum armors subjected to oblique impact [J].International Journal of Impact Engineering.1997, 19(9-10):811-819.
    [40]Woodward R L. A simple one-dimension approach to modeling ceramic composite amour defeat [J]. International Journal of Impact Engineering.1990,9(4):455-474.
    [41]I S Chocron Benloulo, V Sanchez-Galvez. A new analytical model to simulation impact onto ceramic/composite armors [J]. International Journal of Impact Engineering.1998; 21(6):461-471.
    [42]Fellows N A, Barton P C. Development of impact model for ceramic-faced semi-infinite armour [J] International Journal of Impact Engineering.1999,22(8):793-811.
    [43]Zaera R. Design of ceramic-metal armors against medium caliber projectiles [A].17th international symposium on ballistic[C]. Midrand, South Africa:International Ballistics Committee,1998:373-381.
    [44]Statapathy S. Application of cavity expansion analysis to penetration problems [D]. Ph. D. thesis. University of Texas at Austin,1997.
    [45]Zaera R, Sanche-Galvez V. Analytical modeling of normal and oblique ballistic impact on ceramic/metal lightweight armors [J]. International Journal of Impact Engineering.1998, 21(3):133-148.
    [46]韩永要,赵国志,杜忠华.长管体斜侵彻有限厚度均质靶板简化模型[J].力学与实践.2007,29(1):53-57.
    [47]杜忠华,赵国志,沈培辉等.小型穿甲弹斜侵彻陶瓷/金属板分析模型[J].兵器材料科学与工程.2006,29.(6):54-56.
    [48]张晓晴,杨桂通,黄小清.陶瓷/金属复合靶板受可变形弹体撞击的理论分析模型[J].应用数学和力学.2006,27(3):260-266.
    [49]Johnson G. R, Holmquist T. J. A computational constitutive model for brittle materials subjected to large strains, high strain rates and high pressure [A]. Proceedings of EXPLOMET conference. San Diego, CA,1990.
    [50]Holmquist T J, Johnson G. R. Response of silicon carbide to high velocity impact [J]. Journal of Applied Physics.2002,91(9):5858-5866.
    [51]Partom Y. Fracture and flow stress for alumina AD-85 as a function of pressure[R]. Technical Report IAT TN006, Institute for advanced Technology of Israel,1993.
    [52]Fahrenthold E P. A continuum damage model for fracture of brittle solids under dynamic loading [J]. Journal of Applied Mechanics.1991,58(4):904-909.
    [53]Rajendren A M. High strain rate behavior of AD-85 ceramic under multi-axial loading [J]. International Journal of Impact Engineering.1994,15(6):749-768.
    [54]Camacho G T, Ortize M. Computational modeling of impact damage in brittle materials [J]. International Journal of Solids and Structures..1996,33(20-22):2899-2938.
    [55]CORTES R, NAVARRO C, MARTINEZ M. A, et al. Numerical modeling of normal impact on ceramic composite armours [J]. International Journal of Impact Engineering.1992,12(4):639-651.
    [56]Curran D R, Seaman L, Cooper T, et al. Micro-mechanical model for comminution and granular flow of brittle material under high strain rate application to penetration of ceramic targets [J]. International Journal of Impact Engineering.1993,13(1):53-83.
    [57]钱伟长.具有对角线化的一致质量矩阵的动力有限元和弹塑性撞击计算[J].应用数学和力学.1982,3(3):281-296.
    [58]Lee M, Yoo Y H. Analysis of ceramic/metal armor systems [J]. International Journal of Impact Engineering.2001,25(5):819-829.
    [59]Simha C H M. Computational modeling of the penetration response of a high-purity ceramic [J]. International Journal of Impact Engineering.2002,27(1):25-86.
    [60]Fawaz Z, Zheng W, Behdinan K. Numerical simulation of Normal and oblique ballistic impact on ceramic composite armors [J].Composite Structure.2004,63(2):387-395.
    [61]Mahfuz H,Zhu Y, Haque A, et al.Investigation of high-velocity impact on integral armor using finite element method [J]. International Journal of Impact Engineering.2000,24(2):203-217.
    [62]Johnson G R, Holmquist T J. Response of boron carbide subjected to large strain high strain rates and high pressures [J]. Journal of Applied Physics.1999,85(12):8060-8073.
    [63]李平.陶瓷材料的动态力学响应及其抗长杆弹侵彻机理[D].北京理工大学博士学位论文.2002.
    [64]李永池,王道荣,姚磊等.陶瓷材料的抗侵彻机理和陶瓷锥演化的数值模拟[J].弹道学报.2004,16(4):12-17.
    [65]李英雷.装甲陶瓷的本构关系和抗弹机理研究[D].中国科学技术大学博士学位论文.2003.
    [66]段卓平,朱艳丽,张连生.爆炸成型弹丸对Al2O3装甲陶瓷材料的侵彻实验研究[J].爆炸与冲击.2006,26(6):505-509.
    [67]Holmquist T J, Johnson G R. Modeling prestressed ceramic and its effect on ballistic performance [J]. International Journal of Impact Engineering.2005,31(2):113-127.
    [68]刘宝国.穿甲子弹斜侵彻金属靶板机理的数值模拟研究[D].国防科学技术大学硕士学位论文.2006.
    [69]张跃东.弹性支承靶板抗弹机理的数值模拟研究[D].国防科学技术大学硕士学位论文.2006.
    [70]申志强.穿甲子弹偏心入射陶瓷复合靶板的侵彻机理研究[D].国防科学技术大学硕士论文.2006:30-31.
    [71]韩永要,赵国志,方清等.动能弹侵彻多层陶瓷靶板数值模拟研究[J].工程力学.2006,23(8):182-186.
    [72]李裕春,程克明,沈蔚等.高速长杆弹对陶瓷装甲侵彻的数值模拟[J].材料科学与工程学报.2008,26(5):728-730.
    [73]朱建生,赵国志,杜忠华等.着靶速度对PELE横向效应的影响[J].力学与实践.2007,29(5):12-16.
    [74]彭刚,冯家臣,曲英章等.组合间隙对纤维/陶瓷复合板抗弹性能的影响[J].弹道学报.2004,16(1):60-64.
    [75]Hauver G, Netherwood P.H, Benck R F, et al. Variation of target resistance during long rod penetration into ceramic [C]. In:13th international symposium ballistics, Stockholm, Sweden,1992.
    [76]Bless S J, Benayami M, Apgar L S, et al. Impenetrable ceramic targets struck by high velocity tungsten long rods [C]. In:. Bulsou P S, editor. Proceedings of the conference structures under shock and impact, Computational Mechanics Publications,1992.
    [77]Tranchet J Y, Collombet F, Malaise F. A numerical investigation of high velocity impact onto a ceramic block [J]. Journal de physique.2000,10(9):689-694.
    [78]Renstrom R, Lundberg P, Lundberg B. Stationary contact between a cylindrical metallic projectile and a flat target surface under conditions of dwell [J]. International Journal of Impact Engineering. 2004,30(10):1265-1282.
    [79]Charles E A, Jr, James D W. An analytical model for dwell and interface defeat [J]. International Journal of Impact Engineering.2005,31 (9):1119-1132.
    [80]Lundberg P, Lundberg B. Transition between interface defeat and penetration for tungsten projectile and four silicon carbide materials [J]. International Journal of Impact Engineering.2005,31(5): 781-792.
    [81]Lee T D, Yang C N. Many-Body Problem in Quantum Statistical Mechanics. III. Zero-Temperature Limit for Dilute Hard Spheres [J]. Phys.Rev..1960,117(1):12-21.
    [82]Slater J C, Krutter H M.The Thomas-Fermi Method for Metals [J]. Phys. Rev.,1935, 47(7):559-568.
    [83]Fermi E. Un metodo statistico par la determinazione dialcune proprieta dell'atoma [J]. Accad.Naz. Lincei.1927,6 (6):602-607.
    [84]Cowan R D, Ashkin J. Extension of the Thomas-Fermi-Dirac Statistical Theory of the Atom to Finite Temperatures [J]. Phys.Rev..1957,105 (1):144-157.
    [85]Hohenberg P.Kohn W. Inhomogeneous Electron Gas [J]. Phys.Rev..1964,136 (3B):B864-B871.
    [86]Kohn W, Sham L J. Self-Consistent Equations Including Exchange and Correlation Effects [J]. Phys.Rev..1965,140 (4A):A1133-A1138.
    [87]谢希德,陆栋.固体能带理论[M].复旦大学出版社.1998.
    [88]Bridgeman P W. The physics of high pressure [M]. G. Bell and Sons Press. London,1931.
    [89]Pack D C, Evant W M, James H J. The Propagation of Shock Waves in Steel and Lead [J].Proc.Phys.Soc..1948,60 (1).1-7.
    [90]张启仁.统计力学[M].第一版.科学出版社,2004.7:3-133.
    [91]王竹溪.统计物理学导论[M].第二版.人民教育出版社,1965.
    [92]Pathria R K. Statistical Mechanics [M]. Pergamon Press. Oxford.1972.
    [93]Landsberg P T. Thermo dynamic and Statiscal Mechanics [M]. Oxford University Press. Oxford. 1978.
    [94]钱学森.物理力学讲义[M].上海交通大学出版社.新世纪版.2007.8.
    [95]FERNANDEZ G E. A DEBYE-GRUNEISEN THERMAL CORRECTION TO THE MURNAGHAN EQUATION OF STATE OF SOLIDS [J]. Journal of Physics and Chemistry of Solids.1998,59(6-7):867-870.
    [96]Shanker J, Sharma M P, Kushwah S S. Analysis of melting of ionic solids based on the thermal equation of state [J]. Journal of Physics and Chemistry of Solids.1999,60(5):603-606.
    [97]Nellis W J. Shock compression of a free-election gas [J]. Journal of Applied Physics.2003,94 (1):272-275.
    [98]Papiya Bose Roy, Sushil Bose Roy. Temperature effects on a new equation of state of solids [J]. Journal of Physics and Chemistry of Solids.2003,64(8):1305-1316.
    [99]Kushwah S S, Sharma M P,Tomar Y S. An equation of state for molybdenum and tungsten [J]. Physica B.2003,339(4):193-197.
    [100]Munish Kumar. Theory of thermal expansivity and bulk modulus [J]. Physica B.2005, 365(1-4):1-4.
    [101]Love A E H. A treatise on the mathematical theory of elasticity 4th ed [M]. Cambridge University Press. Cambridge,1927:643.
    [102]Murnaghan F D. Finite Deformation of an Elastic Solid [J]. American Journal of Mathematics. 1937,49(2):235-260.
    [103]Murnaghan F D. The Compressibility of Media under Extreme Pressures [J]. Proc. Natl. Acad.Sci. USA,1944,30(9):244-247.
    [104]Birch F. Elasticity and constitution of the Earth's interior [J]. Journal Geophysical Research.1952; 57(2):227-286.
    [105]MacDonald J R, Powell D R. Discrimination between equations of state [J]. Journal of research of the National Bureau of Standards/A (Physics and Chemistry).1971,75A (5):441-453.
    [106]Vaidya S N, Getting I C, Kennedy G C. The compression of the alkali metals to 45 kbar [J]. J PHYSICS CHEM SOLIDS.1971,32(11):2545-2556.
    [107]Birch F. Finite strain isotherm and velocities for single-crystal and poly-crystalline NaCI at high pressure and 300K [J]. Journal of Geophysical Research.1978; 83(B3):1257-1268.
    [108]Birch F. Finite elastic strain of cubic crystals [J]. Physical Review.1947,71(11):809-824.
    [109]Shanker J, Kushwah S S, P Kumar. Equation of state and pressure derivatives of bulk modulus for NaCl crystal [J]. Physica B.1997,239(3-4):337-344.
    [110]Kushwah S S, Shanker J. A comparative study of equations of state for MgO [J]. Physica B.1998, 203(1-2):90-95.
    [111]Davis R O. Modelling stability and surging in accumulation slides [J]. Engineering Geology.1992, 33(1):1-9;
    [112]MacDolald, J Ross. Review of Some Experimental and Analytical Equations of State [J]. Reviews of Modern Physics.1969,41(2):316-349.
    [113]Kumari M, Dass N. An equation of state applied to liquids [J]. Journal of Physics:Condensed Matter.1991,3(22):4099-4103.
    [114]Kumar M, Bedi S S. Analysis of phenomenological equations of state for alkali halides [J]. Journal of Physics and Chemistry of Solids.1996,57(1):133-135.
    [115]Kumari M, Dass N. An equation of state applied to 50 solids:Ⅱ[J]. Journal of Physics:Condensed Matter.1990,2(39):7891-7895.
    [116]Freund J, Ingalls R. Inverted isothermal equations of state and determination of B0, B'0 and B0[J]. Journal of Physics and Chemistry of Solids.1989,50 (3):263-268.
    [117]Akella J, Ganguly J, Grover R, et al. Melting of lead and zinc to 60 kbar [J]. Journal of Physics and Chemistry of Solids.1973,34(4):631-636.
    [118]Gaurav S, Sharma B S, Sharm S B a, et al. Analysis of equations of state for solids under high compressions [J]. Physica B:Condensed Matter.2002,322(3-4):328-339.
    [119]Mao H K, Wu Y, Shu J F, et al. High-pressure phase transition and equation of state of lead to 238 GPa [J]. Solid State Communications.1990,74(9):1027-1029.
    [120]Tallon J L, Wolfenden A. Temperature dependence of the elastic constants of aluminum [J].Journal of Physics and Chemistry of Solids.1979,40(11):831-837.
    [121]Kumari M,Dass N. An equation of state applied to sodium chloride and caesium chloride at high pressures and high temperatures [J]. Journal of Physics:Condensed Matter.1990,2(14):3219-3229.
    [122]Prieto F E, Renero C, et al. A mixing rule for the shock parameters during phase transitions at high pressures [J].Physica.B+C.1986,139-140:571-574.
    [123]Prieto F E, Renero C. Test of a high pressure equation of state [J]. Journal of Physics and Chemistry of Solids.1982,43(2):147-154.
    [124]Shanker J, Kushwah S S, Sharma M P.On the universality of phenomenological isothermal equations of state for solids [J].1999,271(1-4):158-164.
    [125]Vinet P, Ferrante J, Smith J R, et al. A universal equation of state for solids [J]. J.Phys. C:Solid State Phys..1986,19(20):467-473.
    [126]Vinet P, Smith J R, Ferrante J, et al. Temperature effects on the universal equation of state of solids [J].Phys.Rev.B.1987,35(4):1945-1953.
    [127]Vinet P, Rose J H, Ferrante J, Smith J R. Universal features of the equation of state of solids [J]. J.Phys.:Condens. Matter.1989,1(11):1941-1963.
    [128]Stacey F D,Davis P M. High pressure equations of state with applications to the lower mantle and core [J]. Physics of The Earth and Planetary Interiors.2004,142(3-4):137-184.
    [129]Sushil K, Arunesh K, Singh P K. Analysis of finite-strain equations of state for solids under high pressures [J]. Physica B:Condensed Matter.2004,352(1-4):134-146.
    [130]Barton M A, Stacey F D. Calculation of a high-pressure equation of state from low-pressure properties [J].1989,56(3-4):311-315.
    [131]Sushil Kumar, D Sarangi, P N Dixit, et al.Diamond-like carbon films with extremely low stress [J]. Thin Solid Films.1999,346 (1-2):130-137.
    [132]Yagi T, Uchiyama Y, Akaogi M, et al. Isothermal compression curve of MgSiO3 tetragonal garnet [J]. Physics of the Earth and Planetary Interiors.1992,74 (1-2):1-7.
    [133]Fei Y, Saxena S K. A thermochemical data base for phase equilibria in the system Fe-Mg-Si-O at high pressure and temperature [J]. Physics and Chemistry of Minerals.1986,13(5):311-324.
    [134]Guillermet A F, Gustafson P, Hillert M. The representation of thermodynamic properties at high pressures [J]. Journal of Physics and Chemistry of Solids.1985,46(12):1427-1429.
    [135]Kumar M. High pressure equation of state for solids [J]. Physica B:Condensed Matter.1995, 212(4):391-394.
    [136]Kumar R, Pandey. Temperature dependence of volume thermal expansion and interatomic separation for NaCl crystal [J]. Journal of Physics and Chemistry of Solids.1998,59(6-7): 989-992.
    [137]Xiao-qing Deng, Zu-tong Yan. Analysis of P-V-T relationships and thermodynamic properties for some alkali halides [J]. Journal of Physics and Chemistry of Solids.2002,63(9):1737-1744.
    [138]Zhenhua Sun, Mo Song, Zutong Yan. A new isothermal equation of state for polymers [J]. Polymer. 1992,3(2):328-331.
    [139]Kumar M, Bedi S S. Analysis of phenomenological equations of state for alkali halides [J]. Journal of Physics and Chemistry of Solids.1996,57(1):133-135.
    [140]Akaogi M, A Navrotsky. The quartz-coesite-stishovite transformations:new calorimetric measurements and calculation of phase diagrams [J]. Physics of the Earth and Planetary Interiors. 1984,36(2):124-134.
    [141]Thomas G, Plymate, J H Stout, Mark E, etc. Pressure-volume-temperature behavior and heterogeneous equilibria of the non-quenchable body-centered tetragonal polymorph of metallic tin [J]. Journal of Physics and Chemistry of Solids.1988,49(11):1339-1348.
    [142]经福谦.实验物态方程导引[M].(第二版).北京:科学出版社,1999.
    [143]汤文辉,张若棋.物态方程理论及计算概论[M].长沙:国防科技大学出版社,1999.
    [144]Migault A. Determination semi-analytique de l'equation d'etat des metaux. Application a la determination de proprietes elastiques et thermodynamiques des metaux sous haute pression [J]. Le Journal De PhysiQue,1971,32(5-6):437-445; Determination semi-analytique de l'equation d'etat des metaux. modele a deux coefficients de Gruneisen[J] 1972,33(7):707-713.
    [145]Anderson O L. The Gruneisen ratio for the last 30 years [J]. Geophysical Journal International.2000, 143(2):279-294.
    [146]Anderson O L. Equation for thermal expansivity in planetary interiors [J]. Journal of Geophysical Research.1967,72(14):3661-3668.
    [147]Anderson O L. Evidence supporting the approximation γp=const for the Gruneisen parameter of the Earth's lower mantle[J]. Journal of Geophysical Research.1979,84(B7):3537-3542.
    [148]Tang W, Zhang R. A new approximation formula volume dependence of Gruneisen parameter. 4th International symposium on Behaviour of Dense Media under High Dynamic Pressure,1995, 6:245-247.
    [149]王庭辉,宋顺成.Gruneisen状态方程的数值解及其应用[J].计算物理.2007,24(3):361-366.
    [150]徐锡申,张万箱等.实用物态方程理论导引[M].第一版.科学出版社.1986:528—534.
    [151]Duvall G E, Fowles G R. High pressure physics and chemistry [M]. Academic press. New Yorw and London.1963, Vol.2, Chap.9.
    [152]赵峰.炸药强爆轰驱动高速金属飞片的实验和理论研究[D].中国工程物理研究院博士学位论文. 2005:125—128.
    [153]李大红,王悟.陶瓷物态方程实验研究[J].高压物理学报.1993,7(3):226-231.
    [154]Green R G, Luo H, Ruoff A L. Al as a Simple Solid:High Pressure Study to 220 GPa [J]. Phys Rev Lett.1994,73 (15):2075-2078.
    [155]McQueen R G, Marsh S P. Equation of State for Nineteen. Metallic Elements from Shock Wave Measurements to Two Megabars [J].JOURNAL OF APPLIES PHYSICS.1960,31 (7):1253-1269.
    [156]张佐光,李岩,殷立新等.防弹芳纶复合材料实验研究[J].北京航天航空大学学报.1995,21(3):1-5.
    [157]张自强,赵宝荣等.装甲防护技术基础[M].北京:兵器工业出版社.2000.
    [158]吕生华,周志威,李芳等.UHMWPE纤维/碳纤维混杂复合材料性能研究[J].材料导报.2006,20(7):135-137.
    [159]蔡长庚,朱立新,贾德民.动态力学分析在复合材料界面中的应用[J].纤维复合材料.2004,46(1):46-49.
    [160]蒋邦海,张若棋.一种碳纤维织物增强复合材料的层间冲击拉伸力学性能实验研究[J].复合材料学报.2005,22(5):107-112.
    [161]董立民,夏源明,杨报昌.纤维束的冲击拉伸试验研究[J].复合材料学报.1990,7(4):9-15.
    [162]Xia Y M, Yuan J M, Yang B C. A statistical model and experimental study of the strain rate dependence of the strength of fibers [J]. Composite Science and Technology.1994,52(4):499-504.
    [163]陈思颖,黄晨光,段祝平.几种高性能纤维束的冲击动态力学性能实验研究[J].爆炸与冲击.2003,23(4):356-359.
    [164]WANG Yang, XIA Yuanming. Experimental and theoretical study on the strain rate and temperature dependence of mechanical behaviour of Kevlar fibre [J]. Composites:1999, Part A 30(11):1251-1257.
    [165]CHOCRON BENLOULOI..S, RODRIGUZE J, MARTINEZ M.A., et al. DYNAMIC TENSILE TESTING OF ARAMID AND POLYETHYLENE FIBER COMPOSITES [J]. Int.J.Impact Engng, 1997,19(2):135-146.
    [166]宋顺成,王庭辉,刘筱玲.缸、杆分离式气动直接动态拉伸实验装:中国,CN1971244A[P].2007-05-30.
    [167]Hopkinson B. A method of measuring the pressure produced in the detonation of high explosives or by the impact of bullets [J]. Philosophical Transactions of the Royal Society of London.1914, A213:437-456.
    [168]Kolsky H. An Investigation of the Mechanical Properties of Materials at Very High Rates of loading [J]. Proceedings of physical Society.1949, B62 (11),676-700.
    [169]Wingrove A L. A device for measuring strain-time relationships in compression at quasi-static and dynamic strain Rates [J]. J.Phys.E:Sci.Instrum,1971,4(11):873-875.
    [170]Forquin P,Gary G, Gatuing F.A testing technique for concrete under confinement at high rates of strain [J]. International Journal of Impact Engineering.2008,35 (6):425-446.
    [171]Yang L M, Shim V P W. An analysis of stress uniformity in split Hopkinson bar test specimens [J]. International Journal of Impact Engineering.2005,31 (2):129-150.
    [172]Hartley R S, Cloete T J, Nurick G. N. An experimental assessment of friction effects in the split Hopkinson pressure bar using the ring compression test [J]. International Journal of Impact Engineering.2007,34 (10):1705-1728.
    [173]李玉龙,郭伟国,徐绯,等.Hopkinson压杆技术的推广应用[J].爆炸与冲击,2006,26(5):385-394.
    [174]胡时胜.Hopkinson压杆实验技术的应用进展[J].实验力学,2005,20(4):589-594.
    [175]宋顺成,田时雨.Hopkinson冲击拉伸的改进及应用[J].爆炸与冲击.1992,12(1):62-67.
    [176]宋力,胡时胜.SHPB测试中的均匀性问题及恒应变率[J].爆炸与冲击.2005,25(3):207-216.
    [177]王礼立.应力波基础[M].(第二版).北京:国防工业出版社,2005:47-50.
    [178]李玉龙,索涛,郭伟国等.确定材料在高温高应变率下动态性能的杆系统[J].实验力学.2001,16(3):283-290.
    [179]张晓晴,姚小虎,杨桂通等.用于高强度材料的SHPB实验添加垫块法[J].实验力学.2005,20(2):276-280.
    [180]刘剑飞,胡时胜,王道荣.用于脆性材料的Hopkinson压杆动态实验新方法[J].实验力学.2001,16(3):283-290.
    [181]刘孝敏,胡时胜.应力脉冲在变截面SHPB锥杆中的传播特性[J].爆炸与冲击.2000,20(2):110-114.
    [182]王礼立,胡时胜.锥杆中应力波传播的放大特性[J].宁波大学学报.1988,1(1):70-78
    [183]Brown J R, Egglestone G T. Ballistic properties of composite materials for personal protection[R]. AD2A215 100,1989.
    [184]Ward J.E, Koza W. Hrtech fibers for improved ballistic protection [A].Science Symposium Proceedings[C].Paris, France:Natick Reseach, Development and Engineering Center, 1986:279-305.
    [185]周元鑫,江大志,夏源明.碳纤维静、动态加载下拉伸力学性能的实验研究[J].材料科学与工艺.2000,8(1):12-15.
    [186]熊杰,王家俊,施楣梧等.高聚物纤维材料的高应变率响应行为研究[J].高分子材料科学与工程.2002,18(5):143-147.
    [187]熊杰,顾伯洪,周国泰等.高强PVA纤维束冲击拉伸性能的实验研究[J].中国纺织大学学报.2000,26(3):91-94.
    [188]夏源明,袁建明,杨报昌.纤维应变率相关的统计本构模型的理论与实验研究[J].复合材料学报.1993,10(2):17-24.
    [189]ZHEN WANG, YUANMING XIA. Experimental evaluation of the strength distribution of fibers under high strain rates by bimodal weibull distribution [J]. Composite Science and Technology.1997,57(12):1599-1607.
    [190]YANG WANG, YUANMING XIA. The effects of strain rate on the mechanical behaviour of Kevlar fibre bundles [J]. Composites Part A.1998,29(11):1411-1415.
    [191]Coleman B D. On the strength of classical fibres and fibre bundles [J]. Journal of the Mechanics and Physics of Solids.1958,7(l):60-70.
    [192]Phani K K. Evaluation of single-fiber strength distribution from fiber bundle strength [J]. Journal of Materials Science.1988,23(3):941-945.
    [193]王礼立,董新龙,孙紫建.高应变率下计及损伤演化的材料动态本构行为[J].爆炸与冲击.2006,26(3):193-198.
    [194]袁辉,温卫东,崔海涛.纤维单丝及纤维束强度统计学分析[J].纺织学报.2008,29(1):29-33.
    [195]Fan J L, Zhang W R, Zhai W, etal. Anti-Perforation Experimental Study of Silicon-Nitride Ceramics [J]. Journal of Ballistics.2000,12(4):77-81.
    [196]Rosenberg Z. On the Relation between the Hugoniot Elastic limit and the Yield Strength of Brittle materials [J]. Journal of Applied Physics.1993,74(1):752-
    [197]李平,李大红,宁建国等.冲击载荷下A1203陶瓷的动态响应[J].高压物理学报.2002,16(1):22-27.
    [198]Kennedy G, Zhai J, Russell R, et al. Dynamic Mechanical Properties of Microstructurally-biased Two Phase TiBz+A1203 ceramics[A]. Proceedings of International Conference on Fundamental Issues and Applications of Shock-wave and High-strain-rate Phenomena (EXPLOMET 2000) [C]. Albuquerque, USA:[s.n.],2000. No.17.
    [199]黄良钊,张安平.Al2O3陶瓷动态力学性能研究[J].中国陶瓷.1999,35(1):13-15.
    [200]张晓晴,姚小虎,杨桂通等.Al2O3陶瓷陶瓷材料高应变率下的动态力学性能[J].太原理工大学学报.2006.1,37(1):22-25.
    [201]李玉龙,刘元镛.用裂纹张开位移计算三点弯曲试样的动态应力强度因子[J].爆炸与冲击.1993.7,13(3):249-256.
    [202]刘瑞堂,张晓欣,姜风春等.用Hopkinson压杆技术测试材料动态断裂韧性的方法研究[J].哈尔滨工程大学学报.2000.12,21(6):18-25.
    [203]刘瑞堂,姜风春,刘殿魁.三点弯曲试样应力强度因子的动态响应[J].应用力学学报.2001.9,18(3):116-121.
    [204]夏源明,饶世国,杨报昌.平面应力型动态断裂韧度的一种测试方法[J].固体力学学报.1993.9,14(3):241-246.
    [205]杜中华,赵国志,钟延光.冲击载荷作用下陶瓷面板破碎机理的研究[J].弹箭与制导学报.2006,26(4):140-142.
    [206]Meyers MA.材料的动力学行为[M].张庆明,刘彦,黄风雷等译.第一版.国防工业出版社,2006:400-402.
    [207]Vemuri Madhu, K Ramanjaneyulu, T Balakrishna Bhat, etal. An experimental study of penetration resistance of ceramic armour subjected to projectile impact [J].International Journal of Impact Engineering.2005,32(1-4):337-350.
    [208]Goncalves D P, F C L de Melo, Kleint A N, et al. Analysis and investigation of ballistic impact on ceramic/metal composite armour [J]. International Journal of Machine Tools and Manufacture.2004, 44(2-3):307-316.
    [209]Lundberg P, Renstroem R., Lundberg B. Impact of conical tungsten projectiles on flat silicon carbide targets:Transition from interface defeat to penetration [J]. International Journal of Impact Engineering.2006,32(11):1842-1856.
    [210]Timothy J, Holmquist, Gordon R, Johnson. Modeling prestressed ceramic and its effect on ballistic performance [J]. International Journal of Impact Engineering.2003,31(2):113-127.
    [211]Rosenberg Z, Yeshurun Y. The relation between ballistic efficiency and compressive strength of ceramic tiles [J]. International Journal of Impact Engineering.1988,7(3):357-362.
    [212]Woodward RL. A simple one-dimensional approach to modeling ceramic composite armor defeat [J]. International Journal of Impact Engineering.1990,9(4):455-474.
    [213]Sternberg J. Material properties determining the resistance of ceramics to high velocity penetration [J]. Journal of Applied Physics.1989,65:3417-3424.
    [214]Crupi V, Montanini R. Aluminium foam sandwiches collapse modes under static and dynamic three-point bending [J]. International Journal of Impact Engineering.2007,34(3):509-521.
    [215]李玉龙,刘元镛.用弹簧质量模型求解三点弯曲试样的动态应力强度因子[J].固体力学学报.1994,15(1):75-79.
    [216]Williams J G. The analysis of dynamic fracture using lumped mass-spring models [J]. International Journal of Fracture.1987,33(1):47-59.
    [217]KALTHOFF J F. On the measurement of dynamic fracture toughness-a review of recent work [J]. International Journal of Fracture.1985,27(3-4):277-298.
    [218]DALLEY J W, BARKER D B. Dynamic measurements of initiation toughness at high loading rates [J]. Experimental Mechanics.1988,28(3):298-303.
    [219]KAL THOFF J F. Fracture behavior under high rates of loading [J]. Engineering fracture mechanics.1986,23 (1):289-298.
    [220]BASSIM M N. Investigation of dynamic Jld for alloy steel weldments using the split Hopkinson bar [J].Journal of Testing and Evaluation.1986,14(5):229-235.
    [221]BAYOUMI M R, KL EPACZKO J,BASSIM M N.Determination of fracture toughness Jlc under quasistatic and dynamic loading conditions using wedge loaded specimen [J].Journal of Testing and Evaluation.1984,12 (5):316-323.
    [222]XIA YUAN-MING. A novel method for measure plane stress dynamic fracture toughness [J]. Engineering fracture mechanics.1994,48(1):17-24.
    [223]孙洪涛,刘元镛.用Hopkinson压杆技术研究试样几何对动态起裂韧性的影响[J].实验力学.1996,11(2):141-146.
    [224]YOKOYAMA T. Determination of dynamic fracture-initiation toughness using a novel impact bend test procedure [J]. Journal of Pressure Vessel Technology,1993,115(4):389-397.
    [225]钟卫洲,罗景润,徐伟芳等.三点弯曲试样动态应力强度因子计算研究[J].实验力学.2005,20(4):601-604.
    [226]宋顺成,王明超,刘筱玲等.陶瓷材料动态抗弯性能测试[J].爆炸与冲击.2009,29(2):167-171.
    [227]施明泽,黄克强,吕荣坤.单向拉伸损伤因子D1c与纯剪切损伤因子D2c之间关系的探讨[J].浙江大学学报.1988,22(6):20-23.
    [228]Yaziv D, Rosenberg G, Partom Y. Differential ballistic efficiency of applique armor [A].9th International Symposium on Ballistics[C]. Shriven, U K,1986:315-319.
    [229]Bless S J, Rosenberg Z, Yoon B. Hypervelocity penetration of ceramic [J]. International Journal of Impact Engineering,1987,5(1-4):165-171.
    [230]Fellows N A, Barton P C. Development of impact model for ceramic-faced semi-infinite armour [J]. International Journal of Impact Engineering,1999,22(8):793-811.
    [231]B.R.劳恩,T.R.威尔肖.脆性固体断裂力学[M].陈颙,尹祥础译.第一版.地震出版社.1985.
    [232]Sherman D. Ben-Shushan T. Quasi-static impact damage in confined ceramic tiles [J]. International Journal of Impact Engineering,1998,21(4):245-265.
    [233]Y Partom. Modeling failure waves in glass [J]. International Journal of Impact Engineering.1998, 21(9):791-799.
    [234]Clifton R J. Analysis of failure waves in glasses [J]. Applied Mechanics Review.1993,46(12), Part 1:540-546.
    [235]白以龙,柯孚久,夏蒙棼.固体中微裂纹系统统计演化的基本描述[J].力学学报.1991,23(3):290-298.
    [236]YL Bai, J Bai, HL Li, FJ Ke, etc. Damage evolution localization and failure of solids subjected to impact loading [J].International Journal of Impact Engineering.2000,24(6-7):685-701.
    [237]Bai Yilong, Xia Mengfen, KeFu jiu, etc. Closed trans-scale statistical micro damage mechanics [J]. Acta Mechanica Sinica.2002,18(1):1-17.
    [238]Л.М.布列霍夫斯基赫.分层介质中的波[M].杨训仁译.第二版.科学出版社,1985.146-194.
    [239]Johnson K L.接触力学[M].徐秉业,罗学富,刘信声等译.第一版.高等教育出版社,1992.51-60.
    [240]李守巨.用拉氏变换方法研究球面波的传播规律[J].阜新矿业学院学报.1988,7(2):57-64.
    [241]Seaman L, Curran D R, Murri W J. A Continuum Model for Dynamic Tensile Micro fracture and Fragmentation [J]. Journal of Applied Mechanics.1985,52(3):593-600.
    [242]Curran D R. Computer Models of Dynamic Fracture and Fragmentation [J]. American Institute of Physics.1994,309 (1):1149-1151.
    [243]Mott N F. Fragmentation of Shell Case [J]. Proceedings of the Royal Society of London.1947, 189(1018):300-308.
    [244]Mott N F.A Theory of the Fragmentation of Shells and Bombs [J]. Ministry of Supply.1943, A.C.4035.
    [245]Grady D E, Kipp M E. Continuum modelling of explosive fracture in oil shale [J]. International Journal of Rock Mechanic Ministry Science.1980,17(3):147-157.
    [246]Grady D E, Kipp M E. Geometric Statistics and Dynamic Fragmentation [J].Journal of Applied Physics.1985,58(3):1210-1222.
    [247]Grady D E. Fragmentation of Solids under Impulsive Stress Loading [J]. Journal of Geophysics Research.1981.86(B2):1047-1054.
    [248]Louro L H L, Meyers M A. Stress Wave Induced Damage in Alumina [J]. Journal de Physique Colloques 49.1988,C3:333-338.
    [249]Chokshi A H, Meyers M A. The prospects for superplasticity at high strain rates:Preliminary considerations and an example [J]. Scripta Metallurgica et Materialia.1990,24(4):605-610.
    [250]Lienau C C. Random fracture of a brittle solid [J]. Journal of Franklin Institute.1936, 221(6):769-787.
    [251]Mott N F. Fragmentation of H.E. Shells:A Theoretical Formula for the Distribution of Weights of Fragments [M]. Part Ⅱ.Springer Berlin Heidelberg,2006:227-241.
    [252]李树奎,王福耻,郭启雯等.钨合金圆筒爆破试验破片分布的统计分析[J].兵器材料科学与工程.2002,25(4):24-27.
    [253]侯海量,朱锡,阚于龙.陶瓷材料抗冲击响应特性研究进展[J].兵工学报.2008,29(1):94-99.
    [254]Johnson G R, Cook W H. A constitutive model and data for metals subject to large strains, high strain rate and high temperature [A]. Proceedings of 7th international Symposium on Ballistics, The Hague, Netherlands.1983:541-547.
    [255]Holmquist T J, Templeton D W, Bishnoi K D. Constitutive modeling of aluminum nitride for large strain, high-strain rate, and high-pressure applications [J]. International Journal of Impact Engineering.2001,25(3):211-231.
    [256]Anderson C E, Johnson G R, Colloquist T J:Ballistic experiments and computations of confined 99.5% Al2O3 ceramic tiles [A]. Proceedings of the 15th International Symposium on Ballistics, Jerusalem, Israel,1995, (2):65-72.
    [257]Johnson G R, Holmquist T J. An improved computational constitutive model for brittle materials [A]. In:AIP Conference Proceedings.1994,309(1):981-984.
    [258]Johnson G R, Cook W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures [J]. Engineering Fracture Mechanics.1985; 21(1):31-48.
    [259]张晓晴.陶瓷/金属复合靶板受变形弹体撞击问题的研究[D].太原理工大学博士学位论文.2003:79-81.
    [260]任会兰,树学锋,李平.强冲击载荷下氧化铝陶瓷破坏特征的数值模拟及实验研究[J].中国科学G辑.2009,39(9):1221-1230.
    [261]吴克刚.AL2O3陶瓷板和装甲钢板抗长杆动能弹侵彻效应的实验与数值模拟研究[D].国防科学技术大学硕士论文.2004:20-21.
    [262]王政.弹靶侵彻动态响应的理论与数值分析[D].复旦大学博士论文.2005:74-75.
    [263]汪维,何煌,曾首义.30mm口径半穿甲模拟弹侵彻陶瓷复合靶板SPH数值模拟[J].先进制造与管理-兵工自动化.2007,26(5):47-49.
    [264]陈忠福,梁斌,陈刚等.钢球撞击双层带间隙保护板炸药柱的爆炸分析[J].绵阳师范学院学 报.2007,26(8):1-5.
    [265]宋顺成,王军,王建军.钨合金长杆弹侵彻陶瓷层合板的数值模拟[J].爆炸与冲击.2005,25(2):102-106.
    [266]龚自明,方秦,张亚栋等.钢制长杆弹斜侵彻中厚靶板数值模拟[J].解放军理工大学学报(自然科学版).2001,2(4):66-70.
    [267]Von Neumann, RD Richtmyer. A Method for the Numerical Calculation of Hydrodynamic Shocks [J]. Journal of Applied Physics.1950,21(3):232.
    [268]王元博.纤维增强层合材料的抗弹性能和破坏机理研究[D].中国科学技术大学博士论文.2006:87-89.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700