用户名: 密码: 验证码:
川西甘孜—理塘结合带阿加隆洼类卡林型金成矿作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文从区域地质背景和矿床地质特征入手,通过流体包裹体地球化学、岩矿石和黄铁矿主微量元素、稳定同位素及铅同位素研究,判别成矿流体和成矿物质来源,并类比同产于结合带的丘洛金矿带,总结结合带内类卡林型金矿形成机理。流体包裹体仅发育H2O-NaCl体系的水溶液包裹体,低温(Th=120~215℃)、低盐度(0.18~5.26 wNaCl %);包裹体成分气相以H2O为主(91.80%~97.63%),其次为CO2(2.015%~7.297%),液相以Na+、K+和SO42-为主;流体氧同位素组成(δ18O水)-0.36‰~1.91‰,氢同位素组成(δD)-124.243‰~-114.968‰,变化范围窄。表明成矿流体为浅部循环后的大气降水。岩矿石和2类黄铁矿(成岩黄铁矿和矿化期黄铁矿)的稀土配分曲线一致(微右倾,弱Eu负异常),只是黄铁矿的总稀土(ΣREE)略低;2类黄铁矿微量元素组成一致;岩矿石硫化物硫同位素组成(δ34S)一致,均具有较大负值(-13.249‰~-8.091‰);铅同位素组成靠近Zartman图解的上地壳增长曲线。表明成矿物质来源于围岩,S来自形成于开放火山-沉积体系的早期成岩硫化物和围岩有机物还原。流体碳同位素组成(δ14C=-4.693‰~8.644‰)及烯烃气体的存在指示碳来源于海相碳酸盐岩去碳酸盐化,并部分为围岩有机碳。流体密度(ρ)0.859~0.968 g/cm3,包裹体捕获压力(p)2.21~19.62 bar。研究认为印支末期洋壳俯冲形成具高金背景值的矿源层,燕山期弧—陆碰撞及喜山期陆内转换作用为成矿提供热动力,促使大气降水在浅部萃取围岩中的有用物质并发生同位素交换形成含矿热液,之后沿日则—萨马隆洼壳层断裂运移上升并在形成于喜山期的孔隙度及渗透率高的阿加隆洼次级断裂破碎带与早期成岩黄铁矿或其他含铁矿物反应卸载沉淀,形成元素组合为Au、As、Sb、W、B、Hg的浅成低温低盐度微细浸染状类卡林型金矿床。同丘洛金矿带,早期成岩硫化物非喷流沉积成因,低的硫化物含量不足以形成同生沉积矿床,热液期成矿流体也低H2S含量,导致金的搬运介质以硫砷络合物为主,而区别于以硫氢络合物为主的盆地(类)卡林型金矿。
In order to realize origins of ore-forming fluids and materials of Ajialongwa gold deposit, based on regional geology settings and characteristics of the deoposit, this thesis made research on: geochemistry of fluid inclusions; major and trace elements of host/ore rocks and pyrites; stable and Pb isotope compositions. In addition, comparing it with Qiuluo gold belt, which deposited in suture zone as well, this article summa- rized the metallogenic mechanism of Carlin-like gold deposits located in suture zones. There were only H2O-NaCl aqueous ore-forming fluid inclusions, which were low in homogenous temperature (Th=120~215℃) and salinity (0.18~5.26 wNaCl%); the gas phase composition of fluid inclusions gave priority to H2O (91.80%~97.63%), and CO2 (2.015%~7.297%) secondaryly, while Na+, K+ and SO42- as the main liquid phase composition; theδ18O values of ore-forming fluid ranged from -0.36‰to 1.91‰, and theδD from -124.243‰to -114.968‰, which variation ranges were narrow. It showed that ore-forming fluids were meteoric water, having taken circulation at shallow depth. Except pyrites’ΣREEs were lower, chondrite normalized rare earth element patterns for host/ore rocks and pyrites of two types (pyrites of mineralization period and diagenetic pyrites) were consistent, which were right deviation slightly and had weakly negative anomaly for Eu; there were consistant trace element composition,δ34S and Pb isotope composition for pyrites of the two types, that theδ34S values ranged from -13.249‰to -8.091‰and the composi- tion of Pb isotope was near to the growth curve of upper crust in Zartman graphic. It proved that ore materials were sourced from host rocks, while the sulfur derived from diagenetic sulfides which formed in an open volcanic-sedimentary system and the reduction of organic compounds. That theδ14C values were -4.693‰~8.644‰and the existence of olefin gas for ore fluid inclusions, indicated the carbon derived mainly from marine carbonate dissolution and partly organic matter. Fluids density (ρ) was 0.859~0.968 g/cm3, and trapping pressure of inclusions (p) 2.21~19.62 bar. The study holded that oceanic crust subduction at late Indosinian epoch produced gold rich ore source bed, then arc-continent collision at early Yanshan stage and inner continent conversion at Himalayan stage provided the tectonic thermal dynamic condition for the deposit, which precipitated meteoric water to leach ore materials from the surrounding rocks and exchange isotopes with them to form ore-forming fluids at shallow depth, then fluids raised through Rize-Samalongwa basement fault, and via interact with diagenetic sulfides or other ferroan minerals, deposited in secondary fracture zone of Ajialongwa that developed at Himalayan stage and had high degree of porosity and permeability, hence Au, As, Sb, W, B, Hg assembled, low temperature and salinity, disseminated Carlin-like gold deposit formed. In common with Qiuluo gold belt, diagenetic sulfides were not generated in exhalative sedimentary condition, low sulfide content was not enough to form syngenetic deposit, and also very limited H2S in ore fluids of the later hydrothermal system. As a result, it’s sulfur-arsenic complexes that transported gold rather than sulfhydryl complexes, which differred from Carlin-type/like gold deposits located in basins.
引文
Akhmedzhanova G M, Nekrasov I Ya, Tikhomirova V I, et al. Solubility of gold in sulfide-arsenide solutions at 200-300 degrees C. Doklady. Earth Science Sections, 1988, 300(3): 189-191.
    Arehart G B. Characteristics and origin of sediment-hosted disseminated gold deposits: A review. Ore Geology Reviews, 1996, 11: 383-403.
    Benedetti M, Boulěgue J. Mechanism of gold transfer and deposition in a supergene environment. Geochimica et Cosmochimica Acta, 1991, 55: 1539-1547.
    Blatter P. Oxygen isotope composition of fissure-grown quartz, adularia, and calcite from Broad- lands geothermal field, New Zealand, with an appendix on quartz-K-feldspar-calcite-mus- covite oxygen isotope geothermometers. American Journal of Science, 1975, 275: 785-850.
    Dewey J F, Shackleton R M, Chang C, et al. The Tectonic Evolution of the Tibetan Plateau. London: Philosophical Translations of the Royal Society, 1988.
    Emsbo P, Groves D I, Hofstra A H, et al. The giant Carlin gold province: A protracted interplay of orogenic, basinal, and hydrothermal processes above a lithospheric boundary. Mineralium Deposita, 2006, 41: 517-525.
    Emsbo P, Hofstra A H, Lauha E A, et al. Origin of high-grade gold ore, source of ore fluid components, and genesis of the Meikle and neighboring Carlin-type deposits, northern Carlin Trend, Nevada. Economic Geology, 2003, 98: 1069-1105.
    Emsbo P, Hofstra A H, Park D, et al. A mid-Tertiary age constraint on alteration and mineralization in igneous dikes on the Goldstrike property, Carlin trend, Nevada (abs.). Geological Society of America Abstracts with Programs, 1996, 28(7): A476.
    Emsbo P, Hofstra A H. Origin and significance of postore dissolution collapse breccias cemented with calcite and barite at the Meikle gold deposit, northern Carlin trend, Nevada. Economic Geology, 2003, 98: 1243-1252.
    Emsbo P, Hutchinson R W, Hofstra A H, et al. Syngenetic Au on the Carlin trend: Implications for Carlin-type deposits. Geology, 1999, 27(1): 59-62.
    Faure G. Principles of Isotope Geology. New York: John Wiley & Sons, Inc., 1986.
    Giggenbach W F, Sheppard D S, Robinson B W, et al. Geochemical structure and position of the Waiotapu geothermal field, New Zealand.Geothermics, 1994, 23: 599-644.
    Giggenbach W F. Relative importance of thermodynamic and kinetic processes in governing the chemical and isotopic composition of carbon gases in high-heat flow sedimentary basins. Geochimica et Cosmochimica Acta, 1997, 61(17): 3763-3785.
    Grigoryeva T A, Sukneva L S. Effects of sulfur and of antimony and arsenic sulfide on the solubility of gold. Geochimica et Cosmochimica Acta, 1981, 18: 153-158.
    Gu X X, Liu J M, Schulz O, et al. Syngenetic origin for the sediment-hosted disseminated gold deposits in NW Sichuan, China: Ore fabric evidence. Ore Geology Reviews, 2002, 22: 91- 116.
    Hayes J M. Global methanotropy at the Archean-Proterozoic transition. In: Bengtson S (ed.). Early Life on Earth, Nobel Symposium No.84. New York: Columbia University Press, 1994: 220- 236.
    Henry C D, Boden D R. Eocene magmatism: The heat source for Carlin-type gold deposits of northern Nevada. Geology, 1998, 26: 1067-1070.
    Hofstra A H, Cline A J. Characteristics and models for Carlin-type gold deposits. Reviews in Economic Geology, 2000, 13: 163-220.
    Hofstra A H, Leventhal J S, Northrop H R, et al. Genesis of sediment-hosted disseminated gold deposits by fluid mixing and sulfidization: Chemical-reaction-path modeling of ore-deposi- tional processes documented in the Jerritt Canyon district, Nevada. Geology, 1991, 19: 36-40.
    Hofstra A H, Snee L W, Rye R O, et al. Age constraints on Jerritt Canyon and other Carlin-type gold deposits in the western United States: Relation to mid-Tertiary extension and magma- tism. Economic Geology, 1999, 94: 769-802.
    Hou Z Q, Cook N J. Metallogenesis of the Tibetan Collisional Orogen: A review and introduction to the special issue. Ore Geology Review, 2009, 36(1-3): 2-24.
    Hu R Z, Su W C, Bi X W, et al. Geology and geochemistry of Carlin-type gold deposits in China. Mineralium Deposita, 2002, 37: 378-392.
    Li T. Element Abundances of China’s continental crust and its sedimentary layer and upper continental crust. Chinese Journal of Geochemistry, 1995, 14(1): 26-32.
    Monterio L V S, Xavier R P, Hitzman M W, et al. Mineral chemistry of ore and hydrothermalalteration at the Sossego iron oxide-copper-gold deposit, Carajás Mineral Province, Brazi. Ore Geology Reviews, 2008, 34: 317-336.
    Norman D I, Moore J N. Methane and excess N2 and Ar in geothermal fluid inclusions. In: Proc. 24th Workshop Geotherm Reservoir. Stanford University, 1999: 196-202.
    Ohmoto H, Goldhaber M B. Sulfur and carbon isotopes. In: Barnes H L(ed.). Geochemistry of Hydrothermal Ore Deposits. New York: John Wiley & Sons, Inc., 1997: 517-611.
    Ohmoto H, Kaiser C J, Geer K A. Systematics of sulphur isotopes in recent marine sediments and ancient sediment-hosted basemetal deposits. In: Herbert H K, Ho S E (eds.). Stable Isotopes and Fluid Processes in Mineralization. Perth: University of Western Austrilia Publication, 1990, 23: 70-120.
    Ohmoto H, Naraoka H, Watanabe Y, Hayashi K. Carbon isotope records suggesting formation of largy anoxic basins 2.8-2.5 Ga ago. Geol. Soc. Am. Ann. Mtgs. Abst. Prog., 1994: A353.
    Ohmoto H, Rye R O. Isotopes of sulfur and carbon. In: Barnes H L(ed.). Geochemistry of Hydrothermal Ore Deposits. New York: John Wiley & Sons, Inc., 1979: 509-567. Ohmoto H. Stable isotope geochemistry of ore deposits. Reviews in Mineralogy and Geochemistry, 1986, 16: 491-559.
    Ohmoto H. Systematics of sulfur and carbon isotopes in hydrothermal ore deposits. Economic Geology, 1972, 67(5): 551-578.
    Reid A J, Christopher J L, Wilson, et al. Structural evidence for the Permo-Triassic tectonic evolution of the Yidun Arc, eastern Tibetan Plateau. Journal of Structural Geology, 2005, 27: 119-137.
    Ressel M W, Noble D C, Henry C D, et al. Dike-hosted ores of the Beast deposit and importance of Eocene magmatism in gold mineralization of the Carlin trend, Nevada. Economic Geology, 2000, 95: 1417-1444.
    Rollison H R.岩石地球化学.杨学明,杨晓勇,陈双喜译.合肥:中国科学技术大学出版社,2000.
    Rye R O, Ohmoto H. Sulfur and carbon isotopes and ore genesis: A review. Economic Geology, 1974, 69: 826-842.
    Schidlowski M, Aharon P. Carbon cycle and carbon isotope record: Geochemical impact of life over 3.8 Ga Earth history. In: Schidlowski M, Golubic S, Kimberley M M, et al. (eds.). EarlyOrganic Evolution Implications for Mineral and Energy Resources. Berlin: Springer-Verlag, 1992: 147-175.
    Schidlowski M, Hayes J M, Kaplan I R. Isotopic inferences of ancient biochemistries: Carbon, sulfur, hydrogen and nitrogen. In: Schidlowski M, Golubic S, Kimberley M M, et al. (eds.). Early Organic Evolution Implications for Mineral and Energy Resources. Berlin: Springer- Verlag, 1983: 149-186.
    Schwarcz H P, Burnie S W. Influence of sedimentary environments on sulfur isotope ratios in clastic rocks: A review. Mineralium Deposita, 1973, 8: 264-277.
    Seward T M.Thio complexes of gold and the transport of gold in hydrothermal ore solutions. Geochimica et Cosmochimica Acta, 1973, 37: 379-399.
    Song X Y, Zhou M F, Cao Z M, et al. Late Permian rifting of the South China Craton caused by the Emeishan mantle plume. Journal of the Geological Society, London, 2004, 161: 773-781.
    Taylor S R, Mclennan S M. The Continental Crust: Iits Composition and Evolution. New York: Wiley-Heyden, 1985.
    Veizer J, Hoefs J. The nature of 18O/16O and 13C/12C secular trends in sedmentary carbonate rocks. Geochim. Cosmochim. Acta, 1976, 40: 1387-1395.
    Vikre P G. Subjacent crustal sources of sulfur and lead in eastern Great Basin metal deposits. Bulletin of the Geological Society of America, 2000, 112: 764-782.
    Wang J H, Yin A, Harrison T M, et al. A tectonic model for Cenozoic igneous activities in the eastern Indo-Asian collision zone. Earth and Planetary Science Letters, 2001, 88: 123-133.
    Xiao L, Xu Y G, Xu J F, et al. Chemostratigraphy of flood basalts in the Garzê-Litang region and Zongza block Implications for western extension of the Emeishan of the large igneous province, SW China. Acta Geologica Sinica, 2004, 78(1): 61-67.
    Yigit O, Hofstra A H. Lithogeochemistry of Carlin-type gold mineralization in the Gold Bar district, Battle Mountain-Eureka trend, Nevada. Ore Geology Reviews, 2003, 22: 201-224.
    Zartman R E, Doe B R. Plumbotectonics-thermodel. Tectonophys, 1981, 75: 135-162.
    Zhang X C, Hofstra A H, Hu R Z, et al. Geochemistry andδ34S of ores and ore stage iron sulfides in Carlin-type gold deposits, Dian-Qian-Gui area, China: Implications for ore genesis. Mineral Deposit Research: Meeting the Global Challenge, Session 9, 2005: 1107-1110.
    Zou G F, Mao Y, Mao J Y. Tectonic evolution of the Garze-Litang plate junction, with particularreference to the gold deposits (Abstract). Earth Science Frontiers, 2007, 7(Supl.): 407-408.
    曹烨,李胜荣,敖翀,等.黄铁矿热电性特征在冀西石湖金矿床中的应用.中国地质,2008,35(4):746-753.
    陈炳蔚,王铠元,刘万熹,等.怒江—澜沧江—金沙江大地构造.北京:地质出版社,1987.
    陈翠华,何彬彬,顾雪祥,等.一种典型的同生沉积型微细浸染型金矿床——桂西北高龙金矿床.吉林大学学报(地球科学版),2003,33(3):290-295.
    陈光远,邵伟,孙岱生,等.胶东成因矿物学与找矿.重庆:重庆出版社,1989.
    陈光远,孙岱生,殷辉安,等.成因矿物学与找矿矿物学.重庆:重庆出版社,1987.
    陈衍景,倪培,范宏瑞,等.不同类型热液金矿系统的流体包裹体特征.岩石学报,2007,23(9):2085-2092.
    戴宗明,秦华忠,侯浩,等.1:25万新龙县幅区域地质调查报告(H47C002003).成都:四川省地质调查院,2003.
    付绍洪,王苹.川西北马脑壳金矿床流体包裹体研究及对成矿条件的制约.岩石学报,2000,16(4):569-574.
    付小方,侯立玮,俞如龙,等.四川西部三江中段成矿带地质构造演化、成矿特征与成矿系列.四川地质学报,2006,26(4):204-209.
    付小方,应汉龙.甘孜理塘断裂带北段新生代构造特征及金矿成矿作用.中国地质,2003.11,30(4):413-418.
    付小方,赵勇.甘孜嘎拉金矿床含金剪切带的蚀变特征及地质找矿意义.四川地质学报,1996,1(16):18-27.
    高浩中,蔡新平,张宝林,等.黄铁矿的诸多特征与金矿化.黄金科学技术,1999,7(3):10-14.
    国家辉,黄德保,施立达,等.桂西北超微粒型金矿及其成矿和找矿模式.北京:地震出版社,1992:166.
    韩发.如何解释陈嘉杖子金矿的铅同位素资料.矿床地质,2006,25(5):582-589.
    韩吟文,马振东,张宏飞,等.地球化学.北京:地质出版社,2003.
    侯增谦,侯立玮,叶庆同,等.“三江”地区义敦岛弧构造-岩浆演化与火山成因块状硫化物矿床.北京:地震出版社,1995.
    侯增谦,卢记仁,李红阳,等.中国西南特提斯构造演化.地球学报,1996,17(4):439-453.
    侯增谦,吕庆田,王安建,等.初论陆—陆碰撞与成矿作用——以青藏高原造山带为例.矿床地质,2003,22(4):319-333.
    侯增谦,莫宣学,杨志明,等.青藏高原碰撞造山带成矿作用:构造背景、时空分布和主要类型.中国地质,2006a,33(02):340-351.
    侯增谦,潘桂棠,王安建,等.青藏高原碰撞造山带:Ⅱ晚碰撞转换成矿作用.矿床地质,2006c,25(5):521-543.
    侯增谦,曲晓明,周继荣,等.三江地区义敦岛弧碰撞造山过程:花岗岩记录.地质学报,2001.11,75(4):484-497.
    侯增谦,王二七,莫宣学,等.青藏高原碰撞造山与成矿作用.北京:地质出版社,2008.
    侯增谦,杨竹森,徐文艺,等.青藏高原碰撞造山带:Ⅰ.主碰撞造山成矿作用.矿床地质,2006b,25(04):337-358.
    江思宏,聂凤军,刘翼飞.西藏马攸木金矿床的矿床类型讨论.矿床地质,2008,27(2):220-229.
    黎彤,倪守斌.地球和地壳的化学元素丰度.北京:地质出版社,1990:74-76.
    李高山.矿物中的电子-空穴心及其在找矿勘探中的应用.北京:地质出版社,1993.
    李红兵,曾凡治.金矿中的黄铁矿标型特征.地质找矿论丛,2005,20(3):199-203.
    李文昌,莫宣学.西南“三江”地区新生代构造及其成矿作用.云南地质,2001,20(4):333-346.
    李文冗,姜信顺,李文元,等.黔西南微细金矿床地质特征及成矿作用.见:沈阳地质矿产研究所.中国金矿主要类型区域成矿条件文集:(6)黔西南地区.北京:地质出版社,1989:1-86.
    李兴振,江新胜,孙志明,等.西南三江地区碰撞造山过程.北京:地质出版社,2002.
    李兴振,刘文均,王义昭,等.西南三江地区特提斯构造演化与成矿.北京:地质出版社,1999.
    李学斌,祝渊陵.川西北炉霍构造带微细浸染型金矿的构造控矿作用.四川地质学报,1993,13(4):288-295.
    李志坚,杨元忠,夏国清.四川省宰乌隆洼金矿地质特征及成矿模式分析.重庆科技学院学报,2007.3,9(1):18-20.
    刘家军,刘建明,顾雪祥,等.黔西南微细浸染型金矿床的喷流沉积成因.科学通报,1997(19):2126-2127.
    刘家军,杨丹,刘建明,等.卡林型金矿床中自然砷的特征与成矿物理化学条件示踪.地学前缘,2007,14(5):158-166.
    刘建.四川甘孜错阿金矿开采方式的探讨.黄金科学技术,2009.4,17(2):54-57.
    刘建明,刘家军,郑明华,等.微细浸染型金矿床的稳定同位素特征与成因探讨.地球化学,1998,27(6):585-591.
    刘建明,刘家军.滇黔桂金三角区微细浸染型金矿床的盆地流体成因模式.矿物学报,1997,17(4):448-456.
    刘建明,叶杰,刘家军,等.论我国微细浸染型金矿床与沉积盆地演化的关系——以右江盆地为例.矿床地质,2001,20(4):367-377.
    刘增乾,李兴振,叶庆同,等.三江地区构造岩浆带的划分与矿产分布规律.北京:地质出版社,1993.
    刘增乾,徐宪,潘桂棠,等.青藏高原大地构造与形成演化.北京:地质出版社,1990.
    卢焕章,范宏瑞,倪培,等.流体包裹体.北京:地质出版社,2004.
    卢焕章,李秉伦,沈昆,等.包裹体地球化学.北京:地质出版社,1990:151-181.
    骆耀南,俞如龙.西南三江地区造山演化过程及成矿时空分布.矿物岩石,2001,21(3):153-159.
    梅建明.浙江遂昌治岭头金矿床黄铁矿的化学成分标型研究.现代地质,2000,14(1):51-55.
    莫宣学,陆凤香,沈上越,等.“三江”特提斯火山作用与成矿.北京:地质出版社,1993.
    潘桂棠,陈智梁,李兴振,等.东特提斯地质构造形成演化.北京:地质出版社,1997.
    潘桂棠,徐强,侯增谦等.西南“三江”多岛弧造山过程成矿系统与资源评价.北京:地质出版社,2003.
    彭华,马秀敏,白嘉启,等.甘孜玉树断裂带第四纪活动特征.地质力学学报,2006,12(3):295-304.
    彭兴阶,刘嘉惠,吴精汇.怒江—澜沧江—金沙江地区地质.见:《中国地质图集》编委会.中国地质图集.北京:地质出版社,2002.
    齐亚林,张复新,王伟涛,等.拉尔玛金矿床与夏家店金矿床地质地球化学特征对比.地质找矿论丛,2004,19(4):217-222.
    卿敏,韩先菊.金矿床主要矿物标型特征研究综述.黄金地质,2003,9(4):39-45.
    邵洁涟.金矿找矿矿物学在评价矿床深部远景及挽救危机矿山上的应用.矿产与勘查,1990(6):36-40.
    孙树浩,文国林.微细浸染型联合村式金矿的地质和地球化学特征.地质找矿论丛,1993,8(4):9-22.
    孙晓明,王敏,薛婷,等.流体包裹体中微量气体组成及其成矿示踪体系研究新进展.地学前缘,2004,11(2):471-478.
    谭榜平,付仁平.马脑壳金矿床成矿物质来源研究.四川地质学报,2001,21(2):88-91.
    唐荣昌,韩渭宾.四川活动断裂与地震.北京:地震出版社,1993.
    王登红,杨建民,闫升好,等.西南三江新生代矿集区的分布格局及找矿前景.地球学报,2002.4,23(2):135-140.
    王铠元.西南三江地区弧形深断裂——板块俯冲带的构造演化.见:王铠元,孙克祥(编).西南三江及扬子西缘区构造岩矿综论集.昆明:云南科技出版社,2001:3-13.
    王可勇,姚书振,吕新彪.川西北马脑壳金矿床成矿流体地球化学特征与性质.地球化学,2001b,30(3):273-281.
    王可勇,姚书振,吕新彪.川西北马脑壳金矿床构造-流体-金成矿作用系统演化模式.地质科学,2001a,36(2):164-175.
    王小春.川西炉霍二叠纪—三叠纪古裂谷的识别及其地质演化.地质学报,2000,74(3):247-253.
    王小春.甘孜丘洛成矿带金矿的流体包裹体研究.矿物岩石,1992b,12(1):73-79.
    王小春.论川西炉霍裂谷微细浸染型金矿的矿质来源.大地构造与成矿学,1999b,23(3):254-261.
    王小春.甘孜丘洛成矿带微细浸染型金矿的地质特征和找矿前景.四川地质学报,1992a,12:55-60.
    王小春.论川西炉霍裂谷的沉积建造特征.沉积学报,1999a,17(增刊):798-804.
    王小春.论甘孜丘洛成矿带微细浸染型金矿的成矿条件.矿物岩石,1993,13(1):68-75.
    王小春.普弄巴金矿同位素地质学研究.地质找矿论丛,1992c,7(2):85-97.
    王秀璋,程景平,张宝贵,等.中国改造型金矿床地球化学.北京:科学出版社,1992:1-115.
    魏永峰,罗森林.甘孜—理塘结合带中部花岗岩的地质特征.四川地质学报,2003a,23(1):5-9.
    魏永峰,罗森林.甘孜—理塘结合带中段非史密斯地层的划分及组分特征.2004.12,24(4):21-30.
    魏永峰,罗森林.甘孜—理塘结合带中段蛇绿岩的地质特征.四川地质学报,2003b,23(3):134-140.
    闻学泽,黄圣睦,江在雄,等.甘孜—玉树断裂带新构造运动特征与地震危险性估计.地震地质,1985,7(3):23-34.
    夏廷高,孙传敏,李亮等.四川阿加隆洼金矿地质特征与找矿标志.地质与勘探,2006.5,42(3):53-55.
    夏廷高.四川省甘孜—理塘金矿成矿带成矿模式与开发模式研究:[博士学位论文].成都:成都理工大学,2006.
    肖军,孙传敏,刘严松,等.四川甘孜理塘断裂带中段阿加隆洼金矿围岩蚀变特征及与金矿化关系.地质与勘探,2008.11,44(6):8-12.
    徐刚,江元生,孙宝伟,等.炉霍县幅地质调查新成果及主要进展.地质学报,2010,30(2):145-149.
    徐刚.1:25万炉霍、马尔康幅区域地质调查新进展.内蒙古石油化工,2008(7):49-52.
    许志琴,侯立玮,王宗秀,等.中国松潘—甘孜造山带的造山过程.北京:地质出版社,1992.
    闫建梅,林高源,廖怀清.四川德格错阿金矿特征与矿床成因初析.四川地质学报,2008.9,28(3):208-210.
    晏子贵.甘孜理塘断裂带金矿成矿地质特征和控矿因素浅析.地质找矿论丛,2006.10,21:52-57.
    杨伟寿,胡正文,何德润.四川甘孜理塘断裂带中段阿加隆洼金矿床地球化学找矿模式.中国地质,2007.2,34(1):123-131.
    杨永鹏,杨露云.四川理塘阿加隆洼—亚火金(铜)矿带地质特征及找矿前景.四川地质学报,2007.9,27(3):170-176.
    姚学良.甘孜—理塘蛇绿混杂岩带存在N型洋脊玄武岩.四川地质学报,2001.9,21(3):138-140.
    尹福光,潘桂棠,万方,等.西南“三江”造山带大地构造相.沉积与特提斯地质,2006.12,26(4):33-39.
    尹观,倪师军.同位素地球化学.北京:地质出版社,2009:169.
    尹显科.甘孜理塘断裂带北段主要金矿类型及地质特征.四川地质学报,1995,15(3):195-203.
    尤世娜.三江义敦岛弧(中北段)典型矿床地球化学特征及成矿演化:[硕士学位论文].北京:中国地质大学(北京),2007.
    于远山,戴宗明,游再平,等.1:25万甘孜县幅区域地质调查报告(H47C001003).成都:四川省地质调查院,2001.
    张建龙.嘎拉金矿及其外围金品位的分维特征研究.四川地质学报,1996,2(16):186-189.
    张宽忠,李振江,黄成,等.炉霍—道孚蛇绿岩的发现及其意义.沉积与特提斯地质,2008,28(4):106-110.
    张理刚.稳定同位素在地质科学中的应用——金属活化热液成矿作用及找矿.西安:陕西科学技术出版社,1985.
    张能德,曹亚文,廖远安,等.四川甘孜—理塘裂谷带地质与成矿.北京:地质出版社,1998.6.
    郑明华,顾雪祥,周渝峰.四川东北寨微细浸染型金矿床成矿物理化学条件和成矿过程分析.矿床地质,1990,9(2):129-140.
    郑明华,周渝峰,顾雪祥.东北寨微细浸染型金矿床的同位素组成特征.四川地质学报,1992,12:27-35.
    郑明华,周渝峰,顾雪祥.四川东北寨微细浸染型金矿床的同位素组成特征及其成因意义.地质科学,1991,(2):159-173.
    郑明华,周渝峰,刘建明,等.喷流型与浊流型层控金矿床.成都:四川科学技术出版社,1994:273.
    郑素娟.从黄铁矿和磁黄铁矿的某些特征探讨河南栾川骆驼山硫多金属矿床的成因.见:全国第一届矿相学学术讨论会矿相学论文集.北京:地质出版社,1987:254-159.
    郑永飞.稳定同位素地质温度计.西北地质,1987(2):15-25.
    朱炳泉,李献华,戴橦谟,等.地球科学中同位素体系理论与应用——兼论中国大陆壳幔演化.北京:科学出版社,1998.
    朱和平,王莉娟,刘建明.不同成矿阶段流体包裹体气相成分的四极质谱测定.岩石学报,2003,19(2):314-331.
    朱华平.四川阿加隆洼金矿床的地质特征及矿床成因.黄金地质,2007,28(6):18-20.
    邹光富,侯立玮,尹显科.甘孜—理塘蛇绿混杂岩带特征及其构造意义.四川地质学报,1994,14(1):17-24.
    邹光富,毛英.四川甘孜嘎拉金矿地质特征及矿床成因研究.黄金地质,2007a,5(28):9-13.
    邹光富,毛英.四川甘孜尼多金矿矿床地质特征与找矿方向.矿业快报,2007b,(8):63-67.
    邹光富.川西藏东地区金矿床类型与特提斯地质演化的关系.四川地质学报,1996,16(1):46-53.
    邹光富.甘孜—理塘板块缝合带研究的新进展.四川地质学报,1995,15(4):257-263.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700