用户名: 密码: 验证码:
陨石金相冷却速率测定及母体热历史研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文运用金相微结构研究和金相冷却速率测定相结合的方法,利用光学显微镜、ICR相差显微镜、扫描电镜、场发射扫描电镜和电子探针等技术,选择岩浆分异成因的新疆铁陨石(ⅢE)、建始铁陨石(ⅢAB)、英德铁陨石(ⅣA)和Hoba(ⅣB)铁陨石,冲击熔融成因的南丹铁陨石(ⅢCD)和Mundrabilla(ⅠAB)铁陨石,东乌珠穆沁和渭源中铁陨石,吉林球粒陨石(H5)和强烈冲击熔融的岩庄陨石(H5)为研究对象,对各陨石中Fe-Ni金属相的微结构与低温相变、镍纹石的分带结构与铁纹石的成核世代、冲击作用与母体的热历史、金相冷却速率方法与各陨石冷却速率及母体半径等进行了系统全面的研究和探讨,并建立了不同成因类型陨石母体的热演化模型。
     对我国具成因代表性的铁陨石、中铁陨石和球粒陨石的金相冷却速率测定表明:新疆陨石(ⅢE)的冷却速率为30K/Ma,母体半径为31km,建始陨石(ⅢAB)的冷却速率为60K/Ma,母体半径为23km。新疆和建始铁陨石在形成过程中未出现过冷却现象,母体具线性冷却历史,与ⅢE群和ⅢAB群为岩浆分异成因的观点相一致;英德铁陨石(ⅣA)的冷却速率为3400K/Ma,是目前岩浆分异成因铁陨石中冷却最快的陨石,在母体中埋深为3km,这与岩浆分异成因的观点相矛盾,表明ⅣA陨石的母体经历了冲击破碎事件,为非线性冷却历史。冲击熔融成因的南丹铁陨石(ⅢCD)冷却速率为39K/Ma,其冷却速率与岩浆分异成因的ⅢAB群和ⅢE群没有明显的差异,表明就铁纹石的成核作用和维氏台登构造的形成过程而言,二种成因类型的铁陨石母体是相同的。新近降落的东乌珠穆沁中铁陨石冷却速率为0.01~0.1K/Ma,与其它中铁陨石一样小于0.5K/Ma,其母体半径大于210km。球粒陨石中具代表性的吉林陨石(H5)的冷却速率为10K/Ma,母体半径大于52km。经受严重冲击熔融的岩庄陨石中,熔融体的固化速率为0.8~2935℃/s,熔融体的表观直径约为1~35mm。
     首次提出了铁陨石中铁纹石成核世代现象的普遍性。对新疆、建始和南丹陨石中镍纹石层纹的微结构和Ni剖面分布特征研究表明,铁纹石的成核世代是非平衡成核作用叠加冲击作用的产物。建始陨石(ⅢAB)的母体在初始成核作用发生2.5Ma之后,还经历了二次冲击诱导成核作用,时间间隔大约为6Ma,因此,铁纹石的成核密度分布曲线为多峰值曲线。东乌珠穆沁陨石中未发生铁纹石的成核世代现象,中铁陨石冷却过程非常缓慢,铁纹石的成核密度为“泊松”分布。
     通过对陨石金属相微结构的研究,区分出了二种不同成因的金相微结构,并探讨了陨石母体的低温相变过程和低温热历史。新疆、南丹和英德等铁陨石中的球化合纹石、珠铁状合纹石、“双层”状合纹石、指状合纹石及回火马氏体等微结构,反映了低温条件下母体的快速冷却或再加热和随后的快速冷却过程,与冲击事件具成因联系,形成过程可用边界扩散作用引起合纹石层纹粗粒化的机制来解释。而东乌珠穆沁陨石的镍纹石层纹具CT+CZ二分带结构,CT带为富Ni四方镍纹石亮边,CZ为具“孤岛-蜂窝”微结构的云状花纹带;吉林陨石中镍纹石颗粒的分带结构为CT1+CZ+CT2(+Ma)。这种分带结构是母体在低温阶段缓慢冷却过程中发生各种相变作用的产物,可用Fe-Ni体系的低温相变反应来解释。
     对陨石金属相微结构和冷却速率的冲击效应进行了探讨,冲击作用导致铁纹石中纽曼
    
    带和镍纹石中回火马氏体的形成,冲击再加热作用使铁陨石中合纹石粗粒化,使金相冷却
    速率测定结果变小。极强烈的冲击作用导致陨石母体的部分熔融,对岩庄陨石冲击熔融体
    中金属-陨硫铁球粒的微形态研究和固化速率测定的基础上,详细地探讨了冲击诱导成因熔
    融体的规模、冷凝条件和固化历史。
     基于对不同成因陨石的金相微结构和冷却速率的综合对比和研究,探讨了陨石母体的
    热演化历史,并建立了热演化模型。球粒陨石质母体(原始小行星)经不同的热演化过程形成
    不同的陨石:*)经热变质作用和叠加不同程度的冲击变质作用形成平衡球粒陨石,如吉林
    陨石和岩庄陨石;(2)表面局部冲击熔融形成冲击熔融成因铁陨石,如南丹铁陨石;( )$于
    太阳和短寿命核素汐兀A加o热发生熔融分异作用,形成具核慢结构的分异小行星,撞击破。
    碎后,硅酸盐慢碎块形成无球粒陨石,而金属核碎块为 IllE和 IllAB铁陨石,如新疆和建始
    陨石,这种类陨石具线性的冷却历史;(4)当分异小行星经历冲击一破碎一重新组合等演化
    阶段之后,这种重新组合的母体具非线性冷却历史,形成IVA、IVB和中铁陨石,如英德、
    Hoba铁陨石和东乌珠穆沁中铁陨石。
In this dissertation, using optical microscope and SEM, FE-SEM, EPMA, the metallographic microstructures have been studied and the metallographic cooling rates have been determined for four magmatic irons {Xinjiang(IIIE), Jianshi(IIIAB), Yingde(IVA) and Hoba(IVB)}, two impact melt irons {Mundrabilla(IAB) and Nandan(IIICD)}, two mesosiderites{Dong Ujimqin and Weiyuan}, and two ordinary chondrites{Jilin(H5) and heavenly shocked Yanzhuang(H6-7)}. Through both metallogrphic microstructrue techniques and metallographic cooling rate methods, the author has made a comprehensive research on the low temperature thermal histories of Fe-Ni metallic phases in the host meteorites. The thermal evolutionary models of different meteorite parent bodies have also been constructed in this study.
    The metallographic cooling rates of Chinese meteorites were .determined according to the taenite lamellar width method using the latest diffusion coefficients and Fe-Ni-P phase diagram: Xinjiang iron cooled at 30K/Ma in the 31km radius parent body, Jianshi iron cooled at 60K/Ma in the 23km radius parent body. The cooling rates ranging very little among HIE group and IIIAB group infered a linar cooling history in HIE and IIIAB parent bodies. Yingde iron cooling at 3400K/Ma had the most rapid cooling rate among melt-differentiated irons, and the cooling rates of IV A group ranged largely, the non-linar cooling history can be proposed in the IV A parent body. Nandan iron cooled at 39K/Ma in the 28km radius parent body. The cooling rates of Dong Ujimqin mesosiderite were 0.02~0.05℃/Ma and certainly less than 0.5癈/Ma as other mesosiderites, this also indicated that mesosiderites cooled slower than any iron meteorites and had an parent asteroid >210km in radius. Jilin chondrite cooled at lOK/Ma in the >52km radi
    
    us parent asteroid. The shock-induced melt about 1 ~35mm width in Yanzhuang chondrite rapidly solidified at 0.8~2935癈/sec.
    Based on the observed microstructures and Ni concentration profiles of taenite in Xinjiangjianshi and Nandan irons, kamacite nucleation multi-stages are commonly found in iron parent bodies. There was a kamacite nucleation due to shock event in a period ~6Ma in Jianshi iron parent body core after initial avalanche of nucleations. Martensite and plessite microstructures formed due to nonequilibium of y-FeNi in a shock event. Formations of spheroidized plessite,pearlitic plessite and duplex plessite in Xinjiang,Jianshi and Nandan irons were related to the thermodynamic mechanism of plessite lamelar coarsening at low temperature. Finger plessite,cellular plessite and net plessite in Yangde iron suggest that FVA parent body was suffered a heavy impact and broke into fragmentations after crystallization of the Fe-Ni core. Taenite is characterized by a zoned structure, consisting of CT and CZ. The CZ shows a typical "island-honeycomb" microstructure in Dong Ujimqin mesosiderite or occurs as "CT2+Ms" in Jilin chond
    
    rite, the zoned structure of taenites formed through some complicated phase transformations during a slow cooling at low temperature (<400C)
    v
    
    
    
    in the parent bodies.
    According to metalldgraphic microstructures and cooling rates, the thermal evolution models are proposed for different meteorite parent bodies. When the initial chondritic parent asteriod suffered a thermal metamorphism and repeated some degree shock metamorphism, it formed the chondrites (Jilin and Yanzhuang chondrites); When the initial chondritic parent asteriod was shocked on the surface, it formed the impact melt iron(IIICD,Nandan); When the initial chondritic parent asteriod was heated by solar and radio isotope(26Al), it would differentiate into Fe-Ni core and silicate mantle, the magmatic irons(IIIE and IIIAB) formed from Fe-Ni core fragments causing by a shock after the core had solidified. But if the differentiated parent asteriod experienced a "impact-breakup-reassembly" evolutionary stage, the reassembly parent body would form IVA group,IVB group and mesosiderite after suffered another high velocity impact.
引文
1.王道德,Malvin D.J and Wasson J.T.35个铁陨石化学组成研究及其在分类中的应用,地球化学,1985,第2期,第115-122页.
    2.王道德,陈永亨。我国普通球粒陨石岩石学、化学组成及分类的研究,地球化学,1991,第1期,第12-26页.
    3.王道德、林杨挺.南极陨石研究的启示Ⅰ:早期太阳星云连续化学分馏作用的岩石学证据,南极研究(中文版),第4卷(1992),第3期,第1—15页.
    4.王道德,陈永亨,林杨挺等.中国陨石导论,北京,科学出版社,1993.
    5.王道德,戴诚达,陈永亨等.碰撞作用与类地行星起源探讨,地球化学,1995,第2期,第110—120页.
    6.王道德(1995),陨石学研究新进展,自然杂志,第17卷,第1期,13—17页.
    7.王道德、陈永亨,南极陨石研究的启示Ⅴ:南极铁陨石的化学组成及其分类,南极研究(中文版),第7卷(1995),第1期,17—24页.
    8.王道德,毛艳华.南极陨石研究的启示Ⅷ:原始无球粒陨石及其成因,南极研究(中文版),1998,出版中.
    9.王道德,毛艳华.东乌珠穆沁中铁陨石的金属相冷却速率及其演化历史,地球化学,1998,第2期,132—140页.
    10.毛艳华,王道德,陶克捷等.东乌珠穆沁及渭源中铁陨石岩石学特征及分类,地球化学,27(1998a),第1期,27—34页.
    11.毛艳华,王道德.东乌珠穆沁中铁陨石金属相的场发射扫描电镜研究,科学通报,1998b,出版中.
    12.毛艳华,王道德,张铭诚等.岩庄陨石中快速固化金属—陨硫铁颗粒的金属相微形态特征及冷却速率研究,矿物学报,1999,第1期,出版中.
    13.陈永亨,王道德.疆铁陨石的矿物学特征和母体形成条件,矿物学报,第9卷(1989),第2期,第119-125页.
    14.欧阳自远.天体化学,北京,科学出版社,1988.
    15.陶克捷.渭源中铁铁陨石,地质科学,1980,第3期,296-297页.
    16.戴诚达,王道德,金孝刚等.普通球粒陨石的冲击实验研究,中国科学(B辑),1994,第9期,977~982页.
    17. Albertsen J. F., Jensen G. B. and Kundsen J. M., Structure of taenite in two iron meteorites,Nature, 1978,273,453-454.
    18. Agrell S O, Long J V P and Oglive R E., Nickel content of kamacite near the interface with taenite in iron meteorites.Nature,1963, 198:749-750
    19. Bankheiri Y.,Pellas P. and Storzer D,,The cooling histories of Copiapo and Landes(IA) irons.Icarus 40(1979), 497-501.
    20. Bankheiri Y.,~(244)pu fission track and metallographic cooling rates of Toluca and Copiapo(IA) meteorites. Meteoritics.19(1984), 188.
    21. Begemann F, Palme H and Spettel B et al.(1992), On the thermal history of heavily shocked Yanzhuang H—chondrite.Meteoritics,27:174-178
    22. Bennett M.E and McSween H.Y.,The effects of shock metamorphism on metal texture and metallographic cooling rates in L-group ordinary chondrites ,Meteoritics,Vol.28 (1993),pp322.
    
    
    23. Bennett M E. and Mcsween H Y., Shock features in iron—nickel metal and troilite of L—group ordinary chondrites. Meteoritics & Planetary Science, 31(1996), 255-264
    24. Blan P.J.and Goldstein J.I.,Investigation and simulation of metallic spherules from lunar soils.Geochim.Cosmochim.Acta,39(1975 ):305~324
    25. Bogard D D, Garrison D H,and Jordan et al.,~(40)Ar-~(39)Ar dating of mesosiderites: Evidence for major parent body disruption <4Ga ago: Geochim Cosmochim Acta,54(1990): 2549-2564.
    26. Byeon-Gak Choi, Xinwei Ouyang and Wasson J.T., Classfication and origin of ⅠAB and ⅢCD iron meteorites. Geochim Cosmochim Acta,59(1995):593-612.
    27. Buchwald V.F.,Handbook of Iron Meteorites:Their history, distribution, composition and structure,California, University of Press,1975.
    28. Charlie R. Brooks and Robert Perrin,Microstructural observations and mechanisms of lamellar coarsening in iron meteorites,Materials Characterization,35(1995):229-243.
    29. Chen Ming, Xie Xiande and Goresy A El.,Nonequilibrium solidification and microstructures of metal phases in the shock—induced melt of the Yanzhuang (H6) chondrite.Meteoritics,30(1995):28-32
    30. Clayton R.N., Oxygen isotopes in meteorites. Ann. Rev. Earth Planet. Sci. 21(1993),115-149.
    31. Dean D. C. and Goldstein J. I.,Determination of interdiffusion coefficients in the Fe-Ni and Fe-Ni-P systems below 900oC.Metall Trans. 17A(1986),1131-1138.
    32. Dodd R T., Meteorites, a petrologic-chemical synthesis. Cambridge: Cambridge University Press.1981. 237-273.
    33. Flemings M C, Poirier D R and Barone R V et al,. Microsegregation in iron—based alloys.J.Iron Steel Inst.,1970, 208:371-381.
    34. Goldstein J.I., and Ogilvie R.E., The growth of the Widmastatten patter in metallic meteorites.Geochim. Cosmochim.Acta 29(1965),893-920.
    35. Goldtrein, J. I., and Short, J. M., Cooling rates of 27 iron and stony-iron meteorites. Geochim.Cosmochim.Acta 31(1967):1001-1023.
    36. Goldstein J.I., and Short J.M.,The iron meteorites, their thermal history and parent bodies.Geochim. Cosmochim.Acta 31 (1967),1733-1770.
    37. Heack H.and Rasmussen K.L., Clues to nonlinear thermal history from metallographic cooling rate determinations, Meteoritics,Vol.29(1994), pp470-471.
    38. Haack H, Scott E R D, and Rasmussen K L.,Thermal and shock history of mesosiderites and their large parent asteroid.Geochim Cosmochim Acta, 60 (1996): 2609-2619.
    39. Heack H.and Rasmussen K.L.,The origin of groupⅡF iron meteorites--clues from metallographic cooling rates,Lunar Planet.Sci. Conf,ⅩⅩⅦ,1996, pp.477-478.
    40. Herpfer M.A.,Larimer J.W. and Goldstein J.I., A comparison of metallographic cooling rate methods used in meteorites,Geochim.Cosmochim.Acta, Vol.58(1994), pp. 1353-1365.
    41. Holland-Duffield C.E.,Williams D.B. and Goldstein J.I.,The structure and composition of metal particles in two type 6 ordinary chondrites, Meteoritics.26(1991),97-103.
    42. Jaeger R.R. and Lipschutz M.E.,Implication of shock effects in iron meteorites,Geochim.Cosmochim. A cra, Vol.31 (1967), pp. 1811-1832.
    43. Jago R.A.,Santa Catharina and the rigin of cloudy taenite in meteorites, Nature, 1979,279,413-415.
    
    
    44. Kowalik J.A.,Williams D.B. and Goldstein J.I.,Formation of the lamellar structure in group ⅠA and ⅢD iron meteorites,in Proceeding of the Eighteeth Lunar and Planetary Science Conference,G.Ryder,ed.,Cambridge University Press,New York, 1988,493-501.
    45. Kracher A.,The evolution of partially differentiated planetesimals:Evidence from iron meteorite groups IAB and ⅢCD.Proc. 15th Lunar Planet.Sci. Conf.,1985,C689-698.
    46. Malvin,D.J.,Wang Daode and Wasson J.T.,Chemical Classification of iron meteorites X-Multielemental studies of 43 irons,resolution of groupⅢE from ⅢAB, and elvolution of Cu as ataxonomic parameter,Geochim.Cosmochim.Acta, Vol.48(1984), pp.785-804
    47. McSween H.Y.,Sears D.W.G. and Dodd R.T.,Thermal metamorphism, in: Meteorites and the Early Solar System. eds. Kerridge J.F. and Matthews M. S., Univ. of Arizona Press, Tucson,1988, pp. 102-113.
    48. Mehta S., Novotny P. M.,and Williams D. B., Electron-optical observations of ordered FeNi in the EstherviUe meteorite. Nature, 1980, 284,151.
    49. Miyamoto M.,Fujii N. and Takeda H.,Ordinary chondrites parent body:an internal heating model,Lunar Panet.Sci.Conf.12nd, 1981, pp. 1145-1152.
    50. Murray W.D.and Landes F,Numerical and machine solutions of transient heat-conduction problems involving melting or freezing.PartⅠ—Method of analysis and sample solutions.Trans.ASME J.Heat Transfer,May,1959,106-112.
    51. Narayan C. and Goldstein J.I., Growth of intragranular ferrite in Fe-Ni-P alloys. Metall.Trans.15A (1984), 867-874.
    52. Narayan C. And Goldstein J. I., A major revision of the iron meteorites cooling rates—An experimental study of the growth of widmanstatter pattern.Geochim.Cosmochim.Acta 49(1985), 397-410.
    53. Noye J.,Numerical Solutions to Partial Differential Equations.North Holland. 1975.
    54. Pawley J B., Low voltage scanning electron microscopy. J Microscopy,136(1984): 45-68
    55. Powell B N., Petrology and chemistry of mesosiderites Ⅰ. Textures and composition of nickeliron. Geochim Cosmochim Acta,33 (1969):789-810.
    56. Rasmussen K.L.,The cooling rates of iron meteorites---a new approach,ICRUS, Vol. 54(1981),pp564-576.
    57. Rasmussen K.L., Determination of cooling rates and nucleation history of eight group ⅣA iron meteorites using local bulk Ni and P variation,ICRUS,Vol.55(1982),444-453
    58. Rasmussen K.L.,Malvin D.J.,and Buchwald V.F., Composition trends and cooling rates of group ⅣB iron meteorites,Geochim.Cosmochim.Acta,Vol.48(1984),pp. 805-813.
    59. Rasmussen K.L., Cooling rates of ⅢAB iron meteorites, ICARUS, Vol. 80(1988), pp315-325.
    60. Rasmussen K.L.,Malvin D.J. and Wasson J.T., Trace element partitioning between taenite and kamacite: Relationship to cooling rates of iron meteorites. Meteoritics,Vol. 23 (1988),pp.107-112
    61. Rasmussen K.L., Cooling rates and parent bodies of iron meteorites from group ⅢCD, IAB,and ⅣB, PhysicaScripta.,Vol. 39(1989),pp410-416.
    62. Rasmussen. K.L.,Ulff-Moller, F. and Haack H., The thermal evolution of ⅣA iron meteorites:Evidence from metallographic cooling rates,Geochim.Cosmochim.Acta,Vol.59(1995),pp.3049-3059.
    63. Renter K B, Williams D B, Goldstein J I., Low temperature phase transformations in the metallic phases of iron and stony-iron meteorites. Geochim Cosmochim Acta,52(1988): 617-626
    
    
    64. Reuter K.B.,Williams D.B.,and Goldstein J.I.,Determination of the Fe-Ni phase diagram below 400oC, Metall Trans.20A(1989), pp719-725.
    65. Romig A. D. and Goldstein J. I., Determination of the Fe-Ni and Fe-Ni-P phase diagrams at low temperatures (700oC-300oC). Metall Trans.11A(1980),1151-1159.
    66. Roming AD.and Goldstein J.I.,Low temperature phase equilibria in the Fe-Ni and Fe-Ni-Psystem: application to the thermal history of metallic phase in meteorites, Geochim. Cosmochim.
    Acta, Voi.45(1981), pp. 1187-1197.
    67. Rubin K B, Williams D B, and Goldstein J I., Determination of the Fe-Ni phase diagram below 400℃. Metall Trans, 20(A) (1989): 719-725.
    68. Rubin A E, and Mittlefehldt D W., Classification of mafic clasts from mesosiderites:Implications for endogenous igneous processes. Geochim.Cosmochim.Acta,Vol. 56(1992),pp.827-840.
    69. Rubin A E, and Mittlefehldt D W., Evoluational history of the mesosiderite asteroid: Achronologic and petrologic synthesis. Icarus, 101 (1993): 201-212.
    70. Rubin A E,, A history of the mesosiderite asteroid. American Scientist, 85 (1997): 26-35.
    71. Saikumar V. and Goldstein J.I., An evalution of the methods to determine the cooling rates of iron meteorites,Geochim.Cosmochim.Acta,Vol52(1988),pp.715-726.
    72. Sasa Bajt, Sutton S.R. and Rasmussen K.L.,X-ray fluorescence microprobe measurements of trace elements in kamacite in octahedrites,Meteoritics,Vol.27(1992),pp200.
    73. Schulze,H.,Bischoff,A.,and Palme,H.et al.,Mineralogy and chemistry of Rumuruti:the first meteorites fall of the new R chondrite group,Meteoritics,Vol.29(1994),275-286.
    74. Sears, D,W.G. and dodd, R.T,, Overview and classification of meteorites, in Meteorites and the Early Solar System (eds Kerridge,R.F.and Matthews,M.S.),Univ. of Arizona Press,Tucson,1988, pp.3-31.
    75. Scott E. R. D.,The nature of dark-etching rims in meteoritic taenite, Geochim.Cosmochim.Acta.37(1973),, 2283-2294.
    76. Scott E R D, Clarke R S Jr.,Identification of clear taenite in meteorites as ordered FeNi.Nature,281(1979):360-362
    77. Scott E R D., Origin of rapidly solidified metal-troilite grains in chondrites and iron meteorites. Geochim.Cosmochim.Acta, 46(1982):823-823
    78. Scott E.R.D.,Brearly A.J. and Heack H.,Catastrophic fragmention and reassembly of the parent body of the IVA iron and tony-iron meteorites, Meteoritics, Vol29(1994), pp530-531.
    79. Scott E.R.D.,Haack H.and McCoy T.J., Core crystallization and silicate-metal mixing in the parent body of the IVA iron and stony-iron meteorites,Geochim.Cosmochim.Acta,Vol.60(1996), pp.1615-1631.
    80. Scott E R D, Haack H, and Love S G., Formation of mesosiderites by fragmentation and reaccretion of a large differentiated asteroid.Meteoritics & Planetary Science,31(1996):supplement A126.
    81. Stifler D, Kell K and Scott E R D., Shock metamorphism of ordinary chondrites.Geochim.Cosmochim. Acta, 55(1991):3845~3867.
    82. Tao K, Yang Z, Zhang P. A., stony-iron meteorite fall from Dongwu banner,Inner Mongolia,China,on September 7, Meteoritics & Planetary Science, 1996,31A(1995): 139.
    83. Taylor G J and Heymann D.,Postshock thermal histories of reheated chondrites.J. Geophys.Res, 76(1971):1879~1893
    
    
    84. Taylor S.R., Accretion in the inner nebula: The relationship between terrestrial planetary compostions and meteorites.Meteoritics,Vol. 26 (1991), pp. 267-277.
    85. Urey H.C. and Mayeda T.,The metallic particals of some chondrites.Geochim. Cosmochim.Acta,Vol.17(1959), pp.113-124.
    86. Van Schmus W.R. and Wood J.A.,A chemical-petrological classification for the chondritic meteorites, Geochim.Cosmochim. Acta,Vol.31 (1967), pp. 747-765.
    87. Wang Daode, Malvin, D.J. and Wasson J.T., Classification of ten Chinese, eleven Antarctic and other iron meteorites, in Lunar and Planetary Science Ⅲ, Lunar Planet.Inst., Houston, 1982,pp139-141.
    88. Wang Dao de, Malvin,D.J. and Wasson J.T., The compositional classification of some Chinese iron meteorites, Geochemistry, Vol.2(1983), pp. 117-131.
    89. Wang Daode and Alan E. Rubin, Petrology of nine ordinary chondrite falls from China,Meteoritics, Vol.22(1987), No. 1, pp.97-104.
    90. Wang Daode and Lin Yangting, Inspiration from study of Antarctic meteorites Ⅰ: Petrographic and compositional evidences for early continuous chemical fractionation of the solar nebula. Antarctic Research.Vol.3(1992), No.1, pp 1-16.
    91. Wasson,J. T. and Kimberlin, J., The chemical classification of iron meteorites: Ⅱ. Irons and pallasites with germanium concentrations between 8 and 100ppm,Geochim. Cosmochim. Acta, Vol.31 (1969),pp.2065-2093.
    92. Wasson, J. T., Meteorites: Classification and properties, Springer-Verlag, New York, 1974, pp.63-84.
    93. Wasson, J. T., Willis, J. and Wai, C. M., Origin of iron meteorie group IAB and ⅢCD,Z.Nature for sch.,35a(1980), pp. 781-795.
    94. Wasson, J. T., Meteorites, Their record of early solar system history, W. H. Freeman and Co.,New York, 1985.
    95. Wasson,J.T. and Rubin,A.E.,Formation of mesosiderites by low-velcoity impacts as a natural consequence of planet formation. Nature,318(1985), 168-170.
    96. Wasson, J. T., Wang, J., A nonmagmatic origin of group IIE iron meteorites,Geochim.Cosmochim.Acta, Vol.50(1986),pp.725-732.
    97. Willis J. and Goldstein J.I.,A revision of the metallographic cooling rate curves for chondrites.Proc.Lunar Planet.Sci.12(1981),1135-1143.
    98. Willis J. and Goldstein J. I.,A three-dimensional study of metal grains in equilibrated ordinary chondrites.Proc.Lunar Planet.Sci.88(1983),B287-292.
    99. Wood J. A., Cooling rates and parent planets of several iron meteorites.Icarus 3(1964). 429-459.
    100.Wood J. A., Chondrites: their metallic minerals, thermal histories and parents.Icarus 6(1967).1-49.
    101.Wood J. A., Review of the metallographic cooling rates of meteorites and a new model for the planetesimals in which they formed.In Asteroids (ed.T.GEHRELS) Univ. Arizona Press.1979.
    102.Xie Xiande, Li Zhaohui and Wang Daode et al., The new meteorite fall of Yanzhuang, a severely shocked H6 chondrite with black molten materials (abstract). Meteoritics, 1991, 26:411
    103.Yang C W, Williams D B, and Goldstein J I., New cooling rate indicator for metal particles in meteorites.Meteoritics, 29(1994): 553-554.
    104.Yang C W, Williams D B, and Goldstein J I., A revision of the Fe-Ni phase digram at Iow
    
    temperatures (<400℃). Joural of Phase Equilibria,7(1996a): 522-531
    105.Yang C W, Williams D.B.and Goldstein J.I., Teanite decomposition in meteoritic metal at low temperature (<400℃), Meteoritics & Planetary Sceince,Vol.31(1996b), Supplement,A 156-157.
    106.Yang C W, Williams D B, and Goldstein J I., A new empirical cooling rate indicator for meteorites based on the size of the cloudy zone of the metallic phases.Meteoritics & Planetary Science, 32(1997): 423-429.
    107.Zipfel J,Weinbruch S.,SpechtS.and PalmeH.,Trance elements of olivine in silicate inclusions of IAB iron meteorites reflecting low temperature history,Meteoritics,Vol. 29(1994),pp555.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700