用户名: 密码: 验证码:
寒区湿地软土地基固结沉降与稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
软土地基上修建高等级公路面临的工程地质问题主要是软土地基的沉降和稳定性。软土的成因不同,工程性质就会有一定的差异,在我国南方沿海软土地区建设的高等级公路的许多成功经验、防治措施,是否适用于黑龙江省公路建设中常遇到的湿地淤积的软土,需要研究论证。为此,本文研究寒区湿地软土工程性质、道路施工期短、填筑加载快以及温度影响,改进软土地基固结沉降预测和稳定性评价方法。主要工作包括寒区湿地软土的工程性质试验、现场监测数据分析、沉降计算、沉降拟合曲线比较和稳定性数值分析,提出了随路堤填土分级加载改变固结沉降预测和稳定性评价中计算参数的建议。
     试验研究揭示了寒区湿地软土孔隙比、压缩系数、压缩模量随固结压力的变化规律:压缩系数随固结压力的增大而减小,压缩模量随固结压力的增大而增大;主固结系数和次固结系数随固结压力及不同加载比的变化规律:两层软土主固结系数Cv均随固结压力的增大而减小,与固结压力具有较好的相关性。第一层软土的次固结系数较大,即第一层软土的蠕变性较第二层软土的蠕变性强,加载比?p p> 1,软土的次固结系数随固结压力的增大而增大,具有明显的规律性;不同的固结压力、不同固结度下,主应力差与轴向应变的关系:采用不固结不排水剪时,第一层软土所能够承受的主应力差明显地高于第二层软土,围压较大时,两层软土的最大偏应力比较接近,第一层软土受剪过程中应力-应变关系呈现典型的加工硬化特征,第二层软土接近理想塑性。在相同的应变情况下,随着固结压力和固结度的增加,寒区湿地两层软土的偏应力逐渐增大;不同的固结压力下,剪切过程中孔隙水压力与轴向应变之间的关系:在剪切过程中,小应变时两层软土中孔隙水压力升高相对较快,随着应变的增加孔隙水压力增长的速率逐渐减慢,直至稳定,第二层软土表现得更为明显;软土强度指标和抗剪强度随固结压力、固结度的变化规律:寒区湿地软土的粘聚力c在固结度U < 20%时,随固结度的增加而减小,固结度U > 20%,均随固结度的增加而增大。内摩擦角?随着固结度的增大有所增加,但规律性不很明显。湿地软土抗剪强度总体上随固结压力和固结度的增大而增加,个别情况下,例如,固结压力50 kPa、固结度U < 20%时,粘聚力在抗剪强度中起主要作用时,抗剪强度随固结度的增大而减小;经对比分析,湿地软土土层厚度比沿海地区软土小,工程性质从总体上看要好于沿海地区的软土,为直接引用沿海地区软土地基成功的治理措施提供了依据,试验结果为计算寒区湿地软土在路堤填土分级加载作用下固结沉降与稳定性提供了计算参数。
     本文寒区湿地软土地基固结沉降与稳定性现场监测数据的分析结果表明,路堤填土加载过程中,软土地基的沉降量明显增加,越接近软土地基表面沉降量越大。软土的沉降量占全部沉降量的80%以上。袋装砂井处理的软土地基沉降曲线后期较塑料排水板处理的软土地基平缓,更有利于软土地基的排水固结,减少最终沉降量;软土地基的侧向位移和最大位移深度随着荷载和软土的厚度增加而增大。填筑速率越快,软土地基侧向位移增加得越快。路堤填土冻结过程中,靠近中央分隔带处的土压力逐渐减小,靠近路堤边坡处的土压力逐渐增大。在路堤填土融化的过程中,靠近中央分隔带的土压力逐渐增大,靠近路堤边坡的土压力逐渐减小。随着施工荷载的增加,土工格栅的加筋效果越来越明显,发挥网兜效应,使基底压力分布趋于均匀。
     依据室内试验和现场监测数据,采用分级加载固结度理论,提出软土地基固结沉降计算中随加载逐级改变计算参数的思路,并给出了计算通式。经验证,计算得到的沉降曲线与实际观测沉降曲线比较接近;袋装砂井和塑料排水板加固的寒区湿地软土地基,采用双曲线法分段拟合沉降曲线与观测结果较接近;各方法推测的最终沉降量比较一致。
     本文用有限元分析评价公路软土地基稳定性,根据室内软土抗剪强度指标随固结压力和固结度变化的试验结果及压缩试验结果,分级加载后逐级改变相应的计算参数,竖向位移和水平位移的计算结果与实测结果均比较接近。软土地基在后期加载的过程中没有出现明显的屈服区,与工程实际相符。计算结果和实测数据的对比说明,本文提出改进的寒区湿地软土地基在路堤填土分级加载作用下稳定性评价方法是合理的。
The existing engineering geological problem to build high-grade highways on soft soil foundations mainly is settlement and stability of the soft soil foundations. Soft soil will have different engineering characteristics because of the different formation of it. In the soft soil area along the sea of the south China, there are many successful experiences and treatment measures in construction of high-grade highways, and whether these experiences and measures are suitable for marsh filled up soft soil constantly encountered in highway construction of Heilongjiang province still needs researched and demonstrated. Therefore, this article will research into the engineering characteristics of marsh soft soil in cold area, short construction period of highways, rapid load increasing due to filling action and the effect of temperature, as well as improving the method of prediction of consolidation settlement and stability appraisal of soft soil foundations. The main work includes tests for engineering characteristics of cold area marsh soft soil, site monitoring data analysis, settlement calculation, comparison of settlement fitting curves and stability data analysis, provide the suggestions of changing the calculation parameters in consolidation settlement prediction and stability assessment with embankment filling step by step.
     The test research uncovers the changing rule of void ratio, compression factor and compression modulus of cold area marsh soft soil with changing of consolidation compressive stress: compression factor will reduce with increasing of consolidation compressive stress, compression modulus will increase with increasing of consolidation compressive stress; the changing rule of the main consolidation factor and secondary consolidation factor with changing of consolidation compressive stress and different loading ratio: the main consolidation factors Cv of two layers of soft soil both reduce with increasing of consolidation compressive stress, and have good relativity with consolidation compressive stress. The secondary consolidation factor of the first layer soft soil is greater, i.e. the creeping feature of the first layer soft soil is stronger than that of the second layer soft soil, the loading ratio ?p p> 1, the secondary consolidation factor of soft soil increases with increasing of consolidation compressive stress, appearing obvious rule; under different consolidation compressive stress and different degree of consolidation, the relationship between the main stress difference and the axial strain: when adopting no-consolidation and no-drainage shearing, the main stress difference of the first layer soft soil is obviously higher than that of the second layer soft soil, for a greater surround compressive stress, the maximum deflective stress of the two layers of soft soil is similar, during shearing process of the first layer soft soil, the stress-strain relationship appears typical processing hardening characteristics, and the second layer soft soil approximates ideal plasticity. Under the same strain, with increasing of consolidation compressive stress and degree of consolidation, the deflective stress of two layers of marsh soft soil in cold area gradually increases; under different consolidation compressive stress, the relationship between void water pressure and axial strain during shearing process: during shearing process, when the strain is small, the void water pressure in the two layers of soft soil increases rapidly, the increasing speed of void water pressure gradually slows down with increasing of strain until becoming stable, and the second layer soft soil shows more clearly; the changing rule of soft soil strength index and shear resistance strength with consolidation pressure and degree of consolidation: when degree of consolidation U < 20%, the cohesive force c of cold area marsh soft soil reduces with increasing of degree of consolidation, when degree of consolidation U > 20%, it will increase with increasing of degree of consolidation. Inner friction angle ? increases with increasing of degree of consolidation, but the rule is not obvious. In general, the shear resistance strength of marsh soft soil increases with increasing of consolidation pressure and degree of consolidation, in several cases such as when consolidation compressive stress is 50 kPa and degree of consolidation U < 20%, cohesive force will play main part in shear resistance strength, at this moment, the shear resistance strength will reduce with increasing of degree of consolidation; through comparison and analysis, the stratum thickness of marsh soft soil is smaller than that of coastal area soft soil, on the whole, the engineering characteristics is better than that of coastal area soft soil. This conclusion provides basis for directly using the successful treatment measures of coastal area soft soil, and the test results supply calculation parameters for calculation of consolidation settlement and stability of cold area marsh soft soil under the action of various steps of loads when filling embankment.
     In this article, the site monitoring data analysis result of consolidation settlement and stability of cold area marsh soft soil foundations indicates that during embankment fill loading process, the settlement of soft soil foundations obviously increases, and the settlement becomes greater and greater in places increasingly near the surface of the soft soil foundations. The settlement of soft soil accounts for above 80% of the total settlement. In late period, the settlement curve of the soft soil foundations treated by bag-filled sand well is more gentle than that of the soft soil foundations treated by plastic drain board, thus more favorable for the drainage consolidation of soft soil foundations and reduction of the final settlement; the side direction displacement and maximum displacement depth of soft soil foundations increase with increasing of load and thickness of the soft soil. With greater filling speed, the side direction displacement of soft soil foundations increases more rapidly. During freezing process of embankment fill, where near the median divider, soil pressure gradually becomes smaller, and where near side slope of the embankment, soil pressure gradually becomes greater. During melting process of embankment fill, where near the median divider, soil pressure gradually becomes greater, and where near side slope of the road embankment, soil pressure gradually becomes smaller. With increasing of construction load, the reinforcing effect of geotextile grids becomes more clear, which play the tuck net part and make foundation base pressure distribute evenly.
     Based on indoor tests and site monitoring data, in this article, adopt loading-by-steps degree of consolidation theory, set forth the idea of changing calculation parameters step by step with loading in settlement calculation of soft soil foundation, and supply the calculation general expression. Through verification and calculation, the obtained settlement curve is similar to the actual observation settlement curve; for bag-filled sand well and plastic drain board reinforced soft soil foundation in cold and marsh area, the settlement curve fitted section by section by hyperbola method is similar to the observation result; and the final settlement obtained by various methods to calculate is consistent.
     In this article, use finite element method to analyze and appraise stability of highway soft soil foundation, according to the test result of indoor soft soil shear resistance strength index changing with consolidation compressive stress and degree of consolidation and the result of compression tests, and after adding loads by steps, change corresponding calculation parameter step by step, the calculation result of the vertical displacement and horizontal displacement is similar to the actual measured result. During late period of loading process, the soft soil foundation has no obvious yield area. It is consistent with the engineering fact. The comparison of the calculation result and actual measured data shows that the appraisal method of stability of soft soil foundation in the cold marsh area under the effect of embankment fill loading by steps is reasonable.
引文
[1] 陈愈炯译.土体稳定的静力计算[M].北京:水利出版社,1957.
    [2] 陈光敬,赵锡宏.横观各向同性非均质地基的 Biot 固结轴对称问题求解[J].土木 工程学报,1999:32(1),14-20.
    [3] 陈晓平,黄国怡,梁志松. 珠江三角洲软土特性研究[J]. 岩石力学与工程学报, 2003:22(1),137-141.
    [4] 陈建峰,石振明,沈明荣.宽路堤软土路基沉降的有限元模拟[J].公路交通科技,2003:20(4),23-26.
    [5] 程小俊.软土地基上分级加载稳定性问题研究[D].武汉:武汉大学硕士学位论文,2004.
    [6] 陈小丹,赵维炳.考虑井阻和涂抹的砂井地基平面应变等效方法分析[J].岩土力学,2005:26(4),567-570.
    [7] 邓永锋,刘松玉,洪振舜. 高速公路工程中动态临界填筑高度的应用研究[J].岩土力学,2006:27(9),1579-1582.
    [8] 董亮,叶阳升,蔡德钩. 高速铁路软土地基处理方法对比试验[J].岩土力学,2006:27(10),1856-1860.
    [9] 高有潮.路堤砂井地基的有限元配合法分析[J].第四界土力学及基础工程学术会议论文选集,北京:1984.
    [10] 顾尧章,金波.轴对称荷载下多层地基的 Biot 固结及其变形[J].工程力学,1992:9(3),81-94.
    [11] 龚晓南.高等土力学[M].浙江:浙江大学出版社,1996.
    [12] 高大钊,袁聚云主编.土质学与土力学[M].北京:人民交通出版社,2004.
    [13] 黄传志,肖原.二维固结问题的解析解[J].岩土工程学报,1996:18(3),47-54.
    [14] 胡中雄.土力学与环境土工学[M].上海:同济大学出版社,1997.
    [15] 胡亚元,王立忠,陈云敏等.多层地基二维 Biot 固结的理论解答[J].岩土工程学报,1998:20(5),17-21.
    [16] 洪均,李国维.固结法中塑料插板与袋装砂井施工工艺的比较[J].华东公路,1998:(5),47-50.
    [17] 洪毓康主编.土质学与土力学[M].北京:人民交通出版社,2000.
    [18] 黄熙龄,滕延京,王铁宏等.建筑地基基础设计规范 (GB50007-2002) [S].北京:中国建筑工业出版社,2002.
    [19] 何群,冷伍明,魏丽敏等. 固结度与加载方式对软土抗剪强度的影响[J].公路交通科技,2005:22(1),29-32.
    [20] 何群,冷伍明,魏丽敏.软土抗剪强度与固结度关系的试验研究[J].铁道科学与工程学报,2005:2(2),51-54.
    [21] 黄必良,王剑锋,闫洪涛.高速公路软基砂井预压法处理效果分析[J].港工技术,2006:3(9),47-48.
    [22] 姜荣泽.上海高路堤软基分类及沉降特性分析[D].上海公路, 沪杭高速公路 (上海段)学术论文集,1998,33-42.
    [23] 经绯,刘松玉,邵光辉.软土地基上路堤沉降变形特征分析[J].岩土工程学报,2001:23(6),28-30.
    [24] 贾宁,陈云敏,陈仁朋.路堤饱和软土地基初始孔压分布及沉降分析[J].岩石力学与工程学报,2005:24 增 2,5698-5704.
    [25] 林孔锱,预压地基的强度增长与稳定计算问题[J].岩土工程学报,1998:20(1), 93-96.
    [26] 刘玉生,侯培生,冯丽生.浅谈泥河软基处理[J].黑龙江交通科技,2001:(6),24-24.
    [27] 刘玉卓.公路工程软基处理[M].北京:人民交通出版社,2002.
    [28] 林鹏,许镇鸿,徐鹏等.软土压缩过程中固结系数的研究[J].岩土力学,2003:24(1).106-112.
    [29] 刘萌成,黄晓明.软土地基上桥台后填土工后沉降的数值分析[J].公路交通科技,2004:21(12),22-26.
    [30] 李广信主编.高等土力学[M].北京:清华大学出版社,2004.
    [31] 李英萍.土工格栅在软土地基处理中的应用[J].山西建筑,2005(7):69-70.
    [32] 刘加才,蔡南树,施建勇等.成层竖向排水井地基固结分析[J].岩土力学,2005:26(8),1247-1252.
    [33] 娄炎.预压加固中软土固结系数的变化及分析[J].水利水运工程学报,2006:(4),46-50.
    [34] 马驯.固结系数与固结压力关系的统计分析及研究[J].港口工程,1993:(1),46-53.
    [35] 孟祥波主编.土质与土力学[M].北京:人民交通出版社,2005.
    [36] 潘家铮.建筑物的抗滑稳定和滑坡分析[M].北京:水利出版社,1980.
    [37] 潘林有,谢新宇.用曲线拟合的方法预测软土地基沉降[J].岩土力学,2004:25(7),1053-1058.
    [38] 潘林有,谢新宇,罗昕,曾国熙.软土地基实测沉降的拟合和预测[J].哈尔滨工业大学学报,2004:36(11),1474-1570.
    [39] 钱家欢,殷宗泽.土工原理与计算[M].北京:水利电力出版社,1996.
    [40] 钱玉林,殷宗泽,曹正康.试论路堤临界高度的确定[J].公路,1995:(5),3-7.
    [41] 秦建平,陈栓发.软基路堤现场观测结果的分析与工程应用[J].西安公路交通大学学报,1997:17(1),5-8.
    [42] 日本数学会.数学百科辞典[M].北京:科学出版社,1984.
    [43] 饶波,魏丽敏. 一种填筑软土路基的稳定性控制方法[J]. 公路交通科技,2005:22(2),46-49.
    [44] 施建勇,赵维柄.砂井施工对软粘土扰动的影响[J].河海大学学报,1997:25(2),30-33.
    [45] 沈珠江.软土工程特性和软土地基设计[J].岩土工程学报,1998:20(1),100-111.
    [46] 单炜,王平,张爱民.应用塑料排水板加固软土地基效果的理论分析[J].东北林业大学学报,2002:30(6),65-68.
    [47] 沈水龙,余怒国,蔡丰锡.分级施工河堤下高灵敏性粘土的强度增加[J].岩土力学,2006:27(9),1519-1522.
    [48] 汤斌,陈晓平,张伟.考虑流变性状的软土地基固结有限元分析[J].岩土力学,2004:25(4),583-589.
    [49] 温耀霖,潘健,吴湘兴.珠江三角洲软上的微观结构与力学特性[J].华南理工大学学报(自然科学版),1995:23(1),144-152.
    [50] 王志仁主编.京珠高速公路广(州)珠(海)段工程组织管理、道桥工程、软基处理[M].北京:人民交通出版社,2000.
    [51] 王晓谋,袁怀宇编著.高等级公路软土地基路堤设计与施工技术[M].北京:人 民交通出版社,2001.
    [52] 王立忠,丁利,吴承章.施工扰动对软土强度的影响[J].工业建筑,2001:31(9),48-71.
    [53] 王军.结构性软土地基的固结沉降及稳定研究[D].浙江:浙江大学博士学位论文,2002.
    [54] 王志亮. 分层总和法计算高速公路沉降的修正研究[J].水运工程,2004:1,21-23.
    [55] 魏丽敏,何群,孙愚男.砂井地基固结过程的监测与分析[J].中南大学学报(自然科学版),2004:35(6),1019-1024.
    [56] 王旭升,陈崇希.砂井地基固结的三维有限元模型及应用[J].岩土力学,2004:25(1),94-98.
    [57] 王炳龙,宫全美,周顺华等. 砂井联合超载预压控制软土地基路基工后沉降的优化设计[J].2004:26(6),75-80.
    [58] 王国欣,肖树芳,黄宏伟.杭州海积软土应力一应变特征与结构强度损伤规律研究[J].岩石力学与工程学报,2005:24(5),1555-1560.
    [59] 王伟,王俭,薛剑豪等.土工格栅加筋垫层加固软土地基模型试验分析[J].岩土力学,2005:26(12),1885-1891.
    [60] 徐勇夫,陈冠军.高速公路软土路基处理方法的研究[J].华东公路,1998:(3),43-45.
    [61] 谢洪涛,杨春和,陈晓平. 竖井地基的粘弹一粘塑性固结及有限元解[J].岩土力学,2001:22(4),403-407.
    [62] 徐超,罗松,董天林等. 扁铲侧胀试验在软土地基评价中的应用研究[J].岩土力学,2005:26(10),1633-1636.
    [63] 谢康和,周开茂.未打穿竖向排水井地基固结理论[J].岩土工程学报,2006:28(6),679-684.
    [64] 叶书麟,韩杰,叶观宝著译.地基处理与托换技术[M].北京:中国建筑工业出版社,1996.
    [65] 闫澍旺,Barr B.土工格栅与土相互作用的有限元分析[J].岩土工程学报,1997:19(6),56-61.
    [66] 杨果林.加筋土筋材工程特性试验研究[J].中国公路学报,2001:14(3),11-16.
    [67] 岳红宇,陈加付,谢明锋.真空顶压加固软基的沉降过程模拟与数值分析[J].公路交通科技,2002:12,5-9.
    [68] 殷宗泽,张海波,朱俊高,李国维.软土的次固结[J].岩土工程学报,2003:25(5),521-526.
    [69] 叶季平,李雪松,邹勇.应用应力路径分析法计算建筑物沉降变形[J].中国农村水利水电,2004:9,72-74.
    [70] 杨涛,李国维,杨伟清.基于双曲线法的分级填筑路堤沉降预测[J]. 岩土力学,2004:25(10),1551-1554.
    [71] 余闯,刘松玉.考虑应力水平的软土固结系数计算与试验研究[J].岩土力学,2004:25(增刊),103-107.
    [72] 于芳,赵维炳,李荣强. 软土地基沉降蠕变一固结有限元分析及应用[J]. 河海大学学报(自然科学板),2006:34(2),180-184.
    [73] 张天宝.土坡稳定分析和土工建筑物的边坡设计[M].成都:成都科技大学出版 社,1987.
    [74] 曾国熙,谢康和.砂井地基固结理论的新发展,第五届土力学及基础工程学术会议论文选集[D].北京:中国建筑工业出版社,1987.
    [75] 张定.铁路软土路堤临界高度的离心模拟研究[J].上海铁道学院学报,1990:11(1),78-81.
    [76] 中华人民共和国交通部发布.《公路土工试验规程》(JTJ051-93)[S].北京:人民交通出版社,1993.
    [77] 中华人民共和国交通部发布.《公路软土地基路堤设计与施工技术规范》(JTJ017-96)[S].北京:人民交通出版社,1997.
    [78] 中 华 人 民 共 和 国 交 通 部 发 布 . 《 公 路 工 程 土 工 合 成 材 料 试 验 规 程 》(JTGE50-2006)[S].北京:人民交通出版社,2006.
    [79] 张诚厚,袁文明,戴济群.软粘土的结构性及其对路基沉降的影响[J].岩土工程学报,1995:17(5),25-32.
    [80] 张诚厚,袁文明,戴济群编著.高速公路软基处理[M].北京:中国建筑工业出版社,1997.
    [81] 赵维炳,陈永辉,龚友平.平面应变有限元分析中砂井的处理方法[J].水利学报,1998:6,53-57.
    [82] 中华人民共和国行业标准编写组.《土工试验规程》(SL273-1999)[S].北京:中国水利水电出版社,1999.
    [83] 宰金珉,梅国雄.成长曲线在地基沉降预测中的应用[J].南京建筑工程学院学报,2000:2,8-11.
    [84] 张明君,李成志,郭大鹏.大齐公路软土地基处理[J].黑龙江交通科技,2002:11,19-20.
    [85] 张树山,王新安,李劲等.旧路帮宽试验段土压力观测与分析[J].黑龙江交通科技,2002:11,17-20.
    [86] 张延军,张延诘.海积软土弹粘塑性 Biot 固结的数值分析[J]. 吉林大学学报(地球科学版),2003:33(1),71-76.
    [87] 周翠英,牟春梅.软土破裂面的微观结构特征与强度的关系[J].岩土工程学报,2005:20(10),1136-1141.
    [88] 郑晓国,刘松玉,经绯.软土地基路堤临界高度确定方法探讨[J].公路交通科技,2005:22(10),35-39.
    [89] 郑永来,童琪华,杨柳峰.软土路堤沉降预测方法研究[J].同济大学学报(自然科学板),2005:33(12),1581-1585.
    [90] 章定文,刘松玉. 试论连云港海相软土路堤沉降规律[J].岩土力学,2006:27(2),304-308.
    [91] 周秋娟,陈晓平.软土次固结特性试验研究[J].岩土力学,2006:27(3),404-408.
    [92] 张银屏,宫全美,董月英.软土抗剪强度随固结度变化的试验研究[J].岩土工程界,2004:8(2),37-40.
    [93] 赵平,关继发.佛山大福路主干道软土路基综合处理技术[J].路基工程,2007(1),108-109.
    [94] 周开茂,谢康和,应宏伟等. 双面排水条件下未打穿竖井地基固结计算[J].浙江大学学报(工学板),2007:41(1),151-156.
    [95] A W Skempton,L Bjerrum .A Contribution to the Settlement Analysis of Foundation on Clay[J].Geotech,1957,(7):168-178.
    [96] Biot M A. General theory of three-dimensional consolidation[J]. Journal of Applied Physics,1941, 12:155-164.
    [97] Biot M A. Consolidation settlement under a rectangular load distribution[J]. Journal of Applied Physics,1941, 12: 426-430.
    [98] Barron R A. Consolidation of fine-grained soils by drained wells [J]. Trans, ASCE, 1948, 113: 718-733.
    [99] Booker J K. A method of computing the consolidation behavior of layered soils using direct numerical inversion of laplace transforms [J]. International Journal for Numerical and Analytical Methods in Geomechanics,1987, 11: 363-380.
    [100] Bathurst R J, Koerner R M. Results of Class A predictions for the RMC Reinforced Soil Wall Trials. In: Proceedings of the NATO advanced Research Workshop on Application of Polymeric Reinforcement in Soil Retaining Structures [J]. Kingston Ontario, Canada, 1987, 121-171.
    [101] Bridle R J, Jenner C G, Barr B. Novel Applications of Geogrids in Areas of Shallow Mineworking. In: Prooceedings of Fifth International Conference on Geotextiles Geomembrances and Related Products[C]. Singapore, 1994.
    [102] Carrillo N. Simple two and three-dimensional cose in the theory of consolidation of soils [J]. Math and Phys, 1942, 21(1).
    [103] Gibson E E, et al. Plane strain and axially symmetric consolidation of a clay layer on a smooth impervious bas [J]. Mech. Appl Math. 1970, 23 (4).
    [104] Janbu N. Slope Stability Computations[A]. In: HirschfeldRC, Poulos S J ed. Embankment-Dam Engineering, Casagrande Volume[C].Florida: KriegrPub. Co., 1973, 47-86
    [105] Jianguo W, Shisheng F.State space solution of non-axisymmetric Biot consolidation problem for multilayered porous media[J].International Journal of Engineering Science, 2003,41(15):1799-1813.
    [106] Lowe John III, Jonas E, Obrician V. Controlled gradient consolidation test. Journal of the Soil Mechanics and Foundation Engineering Division [J]. ASCE, 1969, 95(SM1): 77-97.
    [107] Ladd C C.Stability evaluation during staged construction[J].Journal of Geotechnical Engineering, ASCE, 1991,117(4): 541-615.
    [108] Leroueil S, Magnan J P, Tavenas F. Embankments on Soft Clays[M]. English Edition, translated by Wood D M, New York: Ellis Horwood,1990.
    [109] Mc Namee J and Gibson R E. Plane strain and axially symmetric problems of the consolidation of a semi-infinite ciay stratum [J]. Mech.Appl.Math, 1960, 1(2).
    [110] Mcnamee J,Gibson R E. Plane strain and axially symmetric problems of the consolidation of a semi-infinite clay stratum[J]. Quarterly Joumal of Mechanics and Applied Mathematics, 1960, 8(2):211-227.
    [111] Rendulic L. Porenziffer and Porenwasserdruck in Tonen. Bauingenieur, 1936(7): 51-53.
    [112] Robert M. Koerner, Y. Hsuan and Arthur E. Lord. Remaining technical barriers to obtaining general acceptance of geosynthetics[J].Geotextiles and Geomembranes, 1993,12(1):1-52
    [113] Zienkiewizo R A. A Limit Eguilibuium Design Method for Reinforced Embankments on Soft Foundations. end, International conf. Of Gestexiles, 1976.
    [114] Sridharan A, Murthvand N S, Prskash K. Rectangular hyperbola method of consolidation analysis [J]. Geotechnique, 1987, 37(3): 355-368.
    [115] Sama S K. Stability Analysis of Embankments and Slopes [J]. Geotechnique, Vo1.23, No.3, 1993.
    [116] Terzaghi K. Erdbaumechanik Auf Bodenphysikalischer Grundlage[M]. Leipzig, Germany: Franz Deuticke, 1925.
    [117] Tang X W and Onitsuka K. Consolidation by Vertical Drains under Time-dependent Loading[J]. International Journal for Numerical and Analytical Methods in Geomechanics, Vo1.24, No.9, 2000:739-752.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700