用户名: 密码: 验证码:
基于网络药理学研究思路探索热毒宁注射液治疗URTI的作用机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热毒宁注射液由金银花(Lonicera Japonica)、栀子(Gardenia Jasminioides)、青蒿(Artemisia Annua)三味中药制备而成,具有清热、疏风、解毒之功效,主要用于上呼吸道感染(URTI)的治疗。前期药理研究表明其有多种药理作用,可降低多种呼吸道病毒载量、抑制PGE2、IL-1、ET等多种炎症因子分泌;临床研究显示能明显缓解上呼吸道感染(URTI)患者的高热、咳嗽等症状。但其治疗URTI的分子机制目前尚不清楚,根据已报道的部分成分作用机制研究和相应的中医理论,疾病是机体整体功能的失衡,中药作用在于调整失衡状态恢复到平衡状态(健康),故推测其作用机制可能是所含活性成分对整个疾病网络的整体调控。
     本文采用主成分分析、分子对接、网络分析以及体外细胞实验等方法对分析了热毒宁注射液中化学成分的空间结构分布、进行了化学分子和与URTI发病机制相关靶蛋白的分子对接,计算了靶蛋白与化学分子的相互作用网络特征,进而预测出热毒宁注射液治疗URTI的分子作用机制、主要活性成分群和可能的适应症,并从细胞水平和蛋白表达水平对所预测的热毒宁注射液抗炎、抗流感病毒分子机制进行了初步的试验验证。通过尝试运用网络药理学研究思路对热毒宁注射液治疗URTI的作用机制探索,明确了热毒宁注射液多组分、多靶点、多途径的作用机制,为其更好的临床应用提供理论支撑,也是对网络药理学在中药作用机制研究方面的有益探索。
     1.热毒宁注射液化学分子和URTI靶蛋白数据库构建
     根据URTI发病机制分析和前期热毒宁注射液化学成分的系统研究,通过TTD、 DrugBank、PDB、Bestelin、UNPD等数据库检索到含有原配体的51个靶蛋白晶体结构和58个化合物的78个化学分子的三维结构。利用DiscoveryStudio2.5中General Purpose对化学分子的分子描述符,并通过与已上市的用于治疗URTI的38个药物进行化学结构相似分析,发现热毒宁注射液中绝大部分化学成分具有较好的类药性和较好的生物利用度,其与治疗URTI的药物在化学结构上有较大的相似性,提示所选择的化合物包含了热毒宁注射液治疗URTI的活性化合物,同时也说明了热毒宁注射液中含有与治疗URTI相关的活性化合物。
     2.热毒宁注射液分子对接与网络分析
     应用Autodock计算化学分子与靶蛋白,再以原配体为阂值,取对接分值较高的化合物(score>=5)导入Cytoscape2.8.1构建生物网络,并通过网络特征分析(包括网络度、介数、网络密度等)发现:a)有25个化学分子与3个以上的靶蛋白存在较强相互作用,其中7个分子对网络的影响比较大(介数比较高),且与7个以上靶蛋白存在作用,而这些靶蛋白分布于病毒复制、炎症介质分泌以及胞内信号转导等环节,推测这些分子在热毒宁注射液治疗URTI中有极重要的地位;b)有4个小分子在分子-分子网络中处于桥连点的位置,有助于保证网络中不同模块间的信息流通,推测其在热毒宁注射液中与其它分子可能存在协同作用:c)靶点分析表明热毒宁注射液缓解URTI症状的分子机制可能是抑制病毒(流感病毒、鼻病毒以及呼吸道合胞病毒等)胞内复制、调控MAPKs、PI3K-Akt、JAK-STAT、 NF-kB信号通路、降低炎症因子(IL-1、 IL-6、NO、PGE2等)分泌,最终促进炎性机体恢复到平衡状态。
     3.热毒宁注射液分子抗炎、抗病毒活性验证
     通过测定热毒宁注射液中28个化合物对LPS刺激RAW264.7释放PGE2、NO的抑制作用,发现16个活性化合物(抑制率>=50%);结合预测结果可知,其中9个可能是通过调控MAPKs、JAK、NF-kB信号通路影响COX、 mPGES-1、iNOS的表达或/和直接抑制PLA2、COX、mPGES-1、iNOS酶的活性来降低PGE2、NO含量,而进一步对COX-2、 mPGES-1、iNOS蛋白表达的分析发现在预测可调控MAPKs、JAK信号通路的(RDN3、 RDN4、 RDN5、RDN11、RDN18、RDN22、RDN27)7个化合物中,5个化合物(RDN3、 RDN5、RDN18、RDN22、RDN27)被证实其抑制PGE2、 NO分泌的作用与降低的COX-2、 mPGES-1、iNOS蛋白表达有关。
     通过对热毒宁注射液中28个化合物的抗流感病毒实验发现,与HA、NA、SAH、IMP dehydrogenase等多个病毒复制环节蛋白存在相互作用的RDN11对A型流感病毒有较强的抑制活性(EC50=28.44μM, SI=24.66),而与HA、IMP dehydrogenase有相互作用但对整个生物网络影响较小的RDN14对A型流感病毒有较弱的抑制活性(EC50=91.284μM,SI=5.48)。
     两次验证结果表明,基于网络药理学研究思路下的热毒宁注射液分子对接与网络分析预测中药分子与靶蛋白的相互作用,结合以生物途径为基础的实验验证是一种阐释复方中药作用机制较为有效的方法,该方法的建立为复方中药的效应物质基础及作用机制研究起着积极作用。
Reduning injection is one of TCM injections for treatment of upper respiratory tract infection (URTI) from which is composed of Lonicerae japonicae Flos (Lonicera japonica), Gardeniae Fructus(Gardenia jasminoides), Artemisiae Annuae Herba(Artemisia annua). Clinical studies have revealed a variety of desirable pharmacological effects of Reduning injection on URTI, such as reducing of respiratory viral titres in the airway, suppressing the secretion of inflammatory cytokines (eg PGE2, IL-1, and ET), improving significantly the symptoms of URTI(eg, fever, cough, nasal congestion and sore throat). However, the molecular details about how Reduning injection can be administrated on URTI are still unclear. From the viewpoint of chemical structures, there is a high extent of overlap between Reduning compounds and western drug, which implies Reduning injection are a multi-component, multi-target agents at the molecular level. Therefore, it could be deduced that the therapeutic effectiveness of Reduning injection is achieved through collectively modulating the molecule network of biological systems by its active ingredients. Systems biology, especially network pharmacology, elucidates the underlying mechanisms of biological systems by depicting and studying the complex interactions at different level as various networks, which thus afford possibilities for uncovering the molecular mechanisms related to the therapeutic effect of tradition Chinese medicine. While virtual screening and network analysis provides powerful tools to predict the relationship of compound of TCM and target proteins interactions, to extract hidden information from large-scale data. Applying network pharmacology to the mode of action of Reduning may open up the possibility to understand the interactions the active ingredients in Reduning injection with these targets in the context of molecular networks. Firstly, the database of compound ligand in Reduning injection and target proteins related to URTI is constructed according to the pathogenesis of URTI and the information of the chemical components in Reduning injection. Subsequently, principal component analysis, molecular docking and network analysis were employed to elucidate the action mechanism of Reduning injection, the main active ingredient group and possible indications. According to these predicted results, the whole efficacy of a compound in a biological network is tested to evaluate the activity of its anti-inflammatory and anti-influenza virus molecular. Applying network pharmacology to study the action mechanism of Reduning injection is beneficial not only to our growing understanding of multi-components, multi-targets and multi-pathways mechanism of Reduning injection but also to exploit the molecular mechanism of traditional Chinese medicine.
     All of the3D structure of the51proteins related to URTI and78chemicals in Reduning injection were obtained from PDB, Bestelin, UNPD database. The chemical molecules has good drug-like and better bioavailability compared with the38drugs for URTI from DrugBank by general purpose module of DiscoveryStudio2.5, and are likely to have some active compounds on URTI by PCA according to the chemical biology principle for similar chemical structure tending to show similar biological activities.
     After a flexible docking between target proteins and78small molecules was achieved by Autodock4.0, the biological network was constructed by Cytoscape2.8.1including compounds with high docking scores(no less than5and higher than ligand), and then its topological features(network degree, betweenness, network density) were computed by NetworkAnalyzer, a plugin of Cytoscape2.8.1. These results suggest:a) there are25small molecules with a strong interaction with more than3target proteins, of which7chemical molecules with high betweenness target a large number of proteins(>=7) involving in viral replication, secretion of inflammatory mediators and intracellular signal transduction, suggesting that these molecules is of vital importance to Reduning injection for URTI; b) there are four bridging nodes(compounds) in D-D network which occupy critical sites in network and connect subregions to one another, implying that these molecules have the possible synergistic effect in Reduning injection; c) topological analysis of target proteins showed that the molecular mechanism of Reduning injection for URTI symptoms may be involved in inhibiting virus replication (influenza virus, rhinovirus, respiratory syncytial virus, etc.), reducing the secretion of inflammatory cytokines (IL-1, IL-6, NO, PGE2), regulating the MAPKs, PI3K-Akt, JAK-STAT, NF-κB signaling pathway.
     The inhibition of compounds in Reduning injection on PGE2and NO from RAW264.7by LPS stimulation shows that of the collected28compounds, fifteen compounds significantly suppressed the production of PGE2of which8compounds share the activity of NO, and9compounds reduce cellular concentration of NO. While the predicted results show that, of these active compounds, the anti-inflammatory activities of9compounds might be the results from the suppression of the expression of COX, mPGES-1, iNOS through regulating MAPKs, JAK, NF-κB signaling pathway, and/or the inhibition of PLA2, COX, mPGES-1, iNOS enzyme activity.
     To further verify the predicted results, Western blot was performed on LPS-induced RAW264.7to investigate the expression of COX-2, mPGES-1, iNOS. The result suggests that the protein expression levels of COX-2, mPGES-1, iNOS are inhibited by four compounds on LPS-induced RAW264.7cells of6compounds involving in regulating the MAPKs, JAK, NF-κB, signaling pathway.
     Similarly, the anti-influenza activity of compounds in Reduning injection shows that RDN11was confirmed strong antiviral activity against influenza A virus(EC20=28.44μM, SI=24.66) through interacting with multiple stages of the influenza life cycle, such as HA, NA, SAH, IMP dehydrogenase. While network analysis shows that RDN14may interact with HA, IMP dehydrogenase protein and have little influence on the entire biological networks, similarly, RDN14was also confirm the weak inhibition of influenza A virus (EC50=91.284μM, SI=5.48). Basing on these experimental results, it is feasible to investigate the mode action of Reduning injection through the method that molecular docking and analysis is employed to predict the interaction between compounds and target proteins, and the results are tested by pathway-based experiment.
引文
[1]Apic G, Ignjatovic T, Boyer S, et al. Illuminating drug discovery with biological pathways[J]. FEBS Lett., 2005,579(8):1872-1877.
    [2]Kola I, Landis J. Can the pharmaceutical industry reduce attrition rates?[J]. Nature reviews. Drug discovery, 2004,3(8):711-715.
    [3]Paul SM, Mytelka DS, Dunwiddie CT, et al. How to improve R&D productivity:the pharmaceutical industry's grand challenge[J]. Nature reviews. Drug discovery,2010,9(3):203-214.
    [4]Yildirim MA, Goh KI, Cusick ME, et al. Drug-target network[J]. Nat. Biotechnol.,2007,25(10): 1119-1126.
    [5]Cheng F, Liu C, Jiang J, et al. Prediction of Drug-Target Interactions and Drug Repositioning via Network-Based Inference[J]. PLoS Comput Biol,2012,8(5):e1002503.
    [6]Frayling TM. Genome-wide association studies provide new insights into type 2 diabetes aetiology [J]. Nature reviews. Genetics,2007,8(9):657-662.
    [7]Samani NJ, Erdmann J, Hall AS, et al. Genomewide association analysis of coronary artery disease[J]. N. Engl. J. Med.,2007,357(5):443-453.
    [8]Network TC. Corrigendum:Comprehensive genomic characterization defines human glioblastoma genes and core pathways[J]. Nature,2008,455(7216):1061-1068.
    [9]Roth BL, Sheffler DJ, Kroeze WK. Magic shotguns versus magic bullets:selectively non-selective drugs for mood disorders and schizophrenia[J]. Nature reviews. Drug discovery,2004,3(4):353-359.
    [10]Zambrowicz BP, Sands AT. Modeling drug action in the mouse with knockouts and RNA interference[J]. Drug Discovery Today:TARGETS,2004,3(5):198-207.
    [11]Giaever G, Chu AM, Ni L, et al. Functional profiling of the Saccharomyces cerevisiae genome[J]. Nature, 2002,418(6896):387-391.
    [12]Wang Z, Zhang J. Abundant indispensable redundancies in cellular metabolic networks[J]. Genome biology and evolution,2009,1:23-33.
    [13]Kitano H. Biological robustness[J]. Nature reviews. Genetics,2004,5(11):826-837.
    [14]Chen Y, Zhu J, Lum PY, et al. Variations in DNA elucidate molecular networks that cause diseasefJ]. Nature,2008,452(7186):429-435.
    [15]Barabasi A-L, Oltvai ZN. Network biology:understanding the cell's functional organization[J]. Nature reviews. Genetics,2004,5(2):101-113.
    [16]Zhou WX, Cheng XR, Zhang YX. Network pharmacology-A new philosophy for understanding of drug action and discovery of new drugs[J]. Chinese Journal of Pharmacology and Toxicology,2012,26(1):4-9.
    [17]Hopkins AL. Network pharmacology[J]. Nat Biotech,2007,25(10):1110-1111.
    [18]Paolini GV, Shapland RH, van Hoorn WP, et al. Global mapping of pharmacological space[J]. Nat. Biotechnol.,2006,24(7):805-815.
    [19]Ma'ayan A, Jenkins SL, Goldfarb J, et al. Network analysis of FDA approved drugs and their targets[J]. Mount Sinai Journal of Medicine:A Journal of Translational and Personalized Medicine,2007,74(1): 27-32.
    [20]Goh K-I, Cusick ME, Valle D, et al. The human disease network[J]. Proceedings of the National Academy of Sciences,2007,104(21):8685-8690.
    [21]Daminelli S, Haupt VJ, Reimann M, et al. Drug repositioning through incomplete bi-cliques in an integrated drug-target-disease network[J]. Integrative Biology,2012,4(7):778-788.
    [22]Yang K, Bai H, Ouyang Q, et al. Finding multiple target optimal intervention in disease-related molecular network[J]. Molecular systems biology,2008,4:228.
    [23]Barabasi AL, Gulbahce N, Loscalzo J. Network medicine:a network-based approach to human disease[J]. Nature reviews. Genetics,2011,12(1):56-68.
    [24]Arrell DK, Terzic A. Network Systems Biology for Drug Discovery[J]. Clin. Pharmacol. Ther.,2010, 88(1):120-125.
    [25]Tao W, Xu X, Wang X, el al. Network pharmacology-based prediction of the active ingredients and potential targets of Chinese herbal Radix Curcumae formula for application to cardiovascular disease[J]. J. Ethnopharmacol.,2012,145(1):1-10.
    [26]Cheng XR, Zhou WX, Zhanag YX. Experimental techniques in network pharmacology[J]. Chinese Journal of Pharmacology and Toxicology,2012,26(2):131-137.
    [27]Ma J, Zhang X, Ung CY, et al. Metabolic network analysis revealed distinct routes of deletion effects between essential and non-essential genes[J]. Molecular BioSystems,2012,8(4):1179-1186.
    [28]Bebek G, Koyuturk M, Price ND, et al. Network biology methods integrating biological data for translational science[J]. Brief Bioinform,2012,13(4):446-459.
    [29]Hasan S, Bonde BK, Buchan NS, et al. Network analysis has diverse roles in drug discovery [J]. Drug Discovery Today,2012,17(15-16):869-874.
    [30]Kholodenko B, Yaffe MB, Kolch W. Computational approaches for analyzing information flow in biological networks[J]. Sci Signal,2012,5(220):rel.
    [31]Loscalzo J, Kohane 1, Barabasi AL. Human disease classification in the postgenomic era:a complex systems approach to human pathobiology[J]. Molecular systems biology,2007,3:124.
    [32]Xiong J. Novel network pharmacology methods for drug mechanism of action identification, pre-clinical drug screening and drug repositioning[J]. Nature Precedings,2011.
    [33]Iorio J, Bosotti, R, Scacheri, E, et al. In Proc. Natl. Acad. Sci. USA,2010; Vol.107,14621-14626.
    [34]Jia J, Zhu F, Ma X, et al. Mechanisms of drug combinations:interaction and network perspectives[J]. Nature reviews. Drug discovery,2009,8(2):111-128.
    [35]Liu X, Lu P, Zuo X, et al. Prediction of network drug target based on improved model of bipartite graph valuation[J]. Zhongguo Zhongyao Zazhi,2012,37(2):125-129.
    [36]Rask-Andersen M, Almen MS, Schioth HB. Trends in the exploitation of novel drug targets[J]. Nature reviews. Drug discovery,2011,10(8):579-590.
    [37]Lu C, Niu X, Xiao C, et al. Network-based gene expression biomarkers for cold and heat patterns of rheumatoid arthritis in traditional chinese medicine[J]. Evidence-based complementary and alternative medicine:eCAM,2012,2012:203043.
    [38]Janga SC, Tzakos A. Structure and organization of drug-target networks:insights from genomic approaches for drug discovery[J]. Molecular BioSystems,2009,5(12):1536-1548.
    [39]Vidal M, Cusick Michael E, Barabasi A-L. Interactome Networks and Human Disease[J]. Cell,2011, 144(6):986-998.
    [40]Arrell DK, Terzic A. Network systems biology for drug discovery[J]. Clinical pharmacology and therapeutics,2010,88(1):120-125.
    [41]Chandra N, Padiadpu J. Network approaches to drug discovery[J]. Expert opinion on drug discovery, 2013,8(1):7-20.
    [42]Hillenmeyer ME, Fung E, Wildenhain J, et al. the chemical genomic portrait of yeast:uncovering a phenotype for all genes[J]. Science,2008,320(5874):362-365.
    [43]Austin CP, Battey JF, Bradley A. The knockout mouse project[J]. Nat. Genet.,2004,36(9):921-924.
    [44]Zimmermann GR, Lehar J, Keith CT. Multi-target therapeutics:when the whole is greater than the sum of the parts[J]. Drug discovery today,2007,12(1-2):34-42.
    [45]Lehar J, Krueger AS, Avery W, et al. Synergistic drug combinations tend to improve therapeutically relevant selectivity[J]. Nat. Biotechnol.,2009,27(7):659-666.
    [46]Merino A, Bronowska AK, Jackson DB, et al. Drug profiling:knowing where it hits[J]. Drug Discovery Today,2010,15(17-18):749-756.
    [47]Zhou TT. Network systems biology for targeted cancer therapies[J]. Chinese Journal of Cancer,2012, 31(3):134-141.
    [48]Lindsay MA. Target discovery[J]. Nature reviews. Drug discovery,2003,2(10):831-838.
    [49]Chong CR, Sullivan DJ. New uses for old drugs[J]. Nature,2007,448(7154):645-646.
    [50]Liu Z, Fang H, Reagan K, et al. In silico drug repositioning-what we need to know[J]. Drug Discovery Today,2013,18(3-4):110-115.
    [51]Keiser MJ, Setola V, Irwin JJ, et al. Predicting new molecular targets for known drugs[J]. Nature,2009, 462(7270):175-181.
    [52]Wu XB, Jiang R, Zhang MQ, et al. Network-based global inference of human disease genes[J]. Molecular systems biology,2008,4:189.
    [53]Zhao S, Li S. Network-based relating pharmacological and genomic spaces for drug target identification[J]. PloS one,2010,5(7):e11764.
    [54]Yao C, Li H, Zhou C, et al. Multi-level reproducibility of signature hubs in human interactome for breast cancer metastasis[J]. BMC Syst Biol,2010,4:151.
    [55]Li S. Network Systems Underlying Traditional Chinese Medicine Syndrome and Herb Formula[J]. Current Bioinformatics,2009,4(3):188-196.
    [56]Zhang J, Ma T, Li Y, et al. dbNEI2.0:building multilayer network for drug-NEI-disease[J]. Bioinformatics,2008,24(20):2409-2411.
    [57]Li Q, Li X, Li C, et al. A network-based multi-target computational estimation scheme for anticoagulant activities of compounds[J]. PloS one,2011,6(3):el4774.
    [58]Jiang X, Liu B, Jiang J, et al. Modularity in the genetic disease-phenotype network[J]. FEBS Lett.,2008, 582(17):2549-2554.
    [59]Li S, Zhang, ZQ, Wu, LJ, et al. Understanding ZHENG in traditional Chinese medicine in the context of neuro-endocrine-immune network[J].IET systems biology,2007,1(1):51-60.
    [60]Achenbach J, Tiikkainen P, Franke L, et al. Computational tools for polypharmacology and repurposing[J]. Future Med Chem,2011,3(8):961-968.
    [61]Wang Y, Zhang YL, Shi XY. Construction and application of TCM function networks[J]. World Sci Technol Mod Tradit Chin Med Mater Med,2008,10:105-108.
    [62]Ye L, He Y, Ye H, et al. Pathway-pathway network-based study of the therapeutic mechanisms by which salvianolic acid B regulates cardiovascular diseases[J]. Chin. Sci. Bull.,2012,57(14):1672-1679.
    [63]Li S, Zhang B, Zhang N. Network target for screening synergistic drug combinations with application to traditional Chinese medicine[J]. BMC Syst Biol,2011,5(Suppl 1):S10.
    [64]Li S, Zhang B, Jiang D, et al. Herb network construction and co-module analysis for uncovering the combination rule of traditional Chinese herbal formulae[J]. BMC bioinformatics,2010, Ⅱ Suppl 11 (Suppl 11):S6.
    [65]Ma T, Tan C, Zhang H, et al. Bridging the gap between traditional Chinese medicine and systems biology: the connection of Cold Syndrome and NEI network[J]. Molecular bioSystems,2010,6(4):613-619.
    [66]刘艾林,杜冠华.网络药理学:药物发现的新思想[J].药学学报,2010,45(12):1472-1477.
    [67]Shang X, Pan H, Li M, et al. Lonicera japonica Thunb.:Ethnopharmacology, phytochemistry and pharmacology of an important traditional Chinese medicine[J]. Journal of Ethnopharmacology,2011, 138(1):1-21.
    [68]黄丽瑛,吕植桢,李继彪,等.中药金银花化学成分的研究[J].中草药,1996,27(11):645-647.
    [69]Peng L-Y, Mei S-X, Jiang B, et al. Constituents from Lonicera japonica[J]. Fitoterapia,2000,71(6): 713-715.
    [70]Iwahashi H, Negoro Y, Ikeda A, et al. Inhibition by chlorogenic acid of haematin-catalysed retinoic acid 5,6-epoxidation[J]. Biochemical Journal,1986,239(3):641-646.
    [71]Qi LW, Chen CY, Li P. Structural characterization and identification of iridoid glycosides, saponins, phenolic acids and flavonoids in Flos Lonicerae Japonicae by a fast liquid chromatography method with diode-array detection and time-of-flight mass spectrometry[J]. Rapid communications in mass spectrometry:RCM,2009,23(19):3227-3242.
    [72]Choi CW, Jung HA, Kang SS, et al. Antioxidant constituents and a new triterpenoid glycoside from Flos Lonicerae[J]. Archives of pharmacal research,2007,30(1):1-7.
    [73]宋卫霞.金银花水溶性化学成分研究[D].中国协和医科大学,2008.
    [74]毕跃峰,田野,裴姗姗,等.金银花中裂环环烯醚萜苷类化学成分研究[J].中草药,2008,(01): 18-21.
    [75]Kakuda R, Imai M, Yaoita Y, et al. Secoiridoid glycosides from the flower buds of Lonicera japonica[J]. Phytochemistry,2000,55(8):879-881.
    [76]Song W, Li S, Wang S, et al. Pyridinium alkaloid-coupled secoiridoids from the flower buds of Lonicera japonica[J]. Journal of natural products,2008,71(5):922-925.
    [77]Kawai H, Kuroyanagi M, Umehara K, et al. Studies on the saponins of Lonicera japonica THUNB[J]. Chemical & pharmaceutical bulletin,1988,36(12):4769-4775.
    [78]娄红祥,郎伟君,吕木坚.金银花中水溶性化合物的分离与结构确定[J].中草药,1996,27(04):195-199.
    [79]陈昌祥,王薇薇,倪伟,等.金银花花蕾中的新三萜皂甙[J].云南植物研究,2000,(02):201-208.
    [80]Lin LM, Zhang XG, Zhu JJ, et al. Two new triterpenoid saponins from the flowers and buds of Lonicera japonica[J]. Journal of Asian natural products research,2008,10(9-10):925-929.
    [81]Kumar N, Singh B, Gupta AP, et al. Lonijaposides, novel cerebrosides from Lonicera japonica[J]. Tetrahedron,2006,62(18):4317-4322.
    [82]马双成,刘燕,毕培曦,等.金银花药材中抗呼吸道病毒感染的环烯醚萜苷类成分的定量研究[J].药物分析杂志,2006,v.26(08):1039-1042.
    [83]马双成,刘燕,毕培曦,等.金银花药材中抗呼吸道病毒感染的黄酮类成分的定量研究[J].药物分析杂志,2006,v.26(04):426-430.
    [84]马双成,毕培曦,黄荣春,等.金银花药材中抗呼吸道病毒感染的咖啡酰奎宁酸类成分的定量研究[J].药物分析杂志,2005,v.25(07):751-755.
    [85]胡克杰,孙考祥,王璟璐,等.氯原酸体外抗病毒作用研究[J].哈尔滨医科大学学报,2001,(06):430-432.
    [86]Chiang LC, Chiang W, Chang MY, et al. Antiviral activity of Plantago major extracts and related compounds in vitro[J]. Antiviral Research,2002,55(1):53-62.
    [87]Kang OH, Choi YA, Park HJ, et al. Inhibition of trypsin-induced mast cell activation by water fraction of Lonicera japonica[J]. Archives of pharmacal research,2004,27(11):1141-1146.
    [88]Suh S-J, Chung T-W, Son M-J, et al. The naturally occurring biflavonoid, ochnaflavone, inhibits LPS-induced iNOS expression, which is mediated by ERK1/2 via NF-[kappa]B regulation, in RAW264.7 cells[J]. Archives of Biochemistry and Biophysics,2006,447(2):136-146.
    [89]霍晓英,唐彦萍,张庆军,等.绿原酸对脂多糖诱导的巨噬细胞的影响[J].遵义医学院学报,2003,26(06):507-510.
    [90]Ehrman TM, Barlow DJ, Hylands PJ. In silico search for multi-target anti-inflammatories in Chinese herbs and formulas[J]. Bioorganic & medicinal chemistry,2010,18(6):2204-2218.
    [91]谢新华.金银花注射液对兔IL-1p性发热的解热作用及机制的实验研究[D].暨南大学,2006.
    [92]陈阳,赵璨,张浩,等.不同浓度乙醇提取栀子有效成分效果的研究[J].遵义医学院学报,2009,v.32;No.132(05):439-441+444.
    [93]周婷婷.栀子化合物组与代谢物组的多维色谱_质谱法研究[D].第二军医大学,2007.
    [94]于洋,高昊,戴毅,等.栀子属植物化学成分的研究进展[J].中草药,2010,41(01):148-153.
    [95]Chen QC, Zhang WY, Youn U, et al. Iridoid glycosides from Gardeniae Fructus for treatment of ankle sprain[J]. Phytochemistry,2009,70(6):779-784.
    [96]Machida K, Oyama K, Ishii M, et al. Studies of the constituents of Gardenia species. Ⅱ. Terpenoids from Gardeniae Fructus[J]. Chemical & pharmaceutical bulletin,2000,48(5):746-748.
    [97]徐燕,曹进,王义明,等.多波长高效液相色谱法同时测定栀子中的三类成分[J].药学学报,2003,38(07):543-546.
    [98]付小梅,俞桂新,王峥涛.栀子的化学成分[J].中国天然药物,2008,6(06):418-420.
    [99]贾琳.栀子的质量标准及化学成分研究[D].四川大学,2005.
    [100]Clifford MN, Wu W, Kirkpatrick J, et al. Profiling and characterisation by liquid chromatography/multi-stage mass spectrometry of the chlorogenic acids in Gardeniae Fructus[J]. Rapid communications in mass spectrometry:RCM,2010,24(21):3109-3120.
    [101]陈红,肖永庆,李丽,等.栀子化学成分研究[J].中国中药杂志,2007,32(11):1041-1043.
    [102]于洋,高昊,戴毅,等.栀子中的木脂素类成分研究[J].中草药,2010,v.41;No.459(04):509-514.
    [103]Machida K, Oyama K, Ishii M, et al. Studies of the constituents of Gardenia species. Ⅱ. Terpenoids from Gardeniae fructus[J]. Chemical & pharmaceutical bulletin,2000,48(5):746-748.
    [104]吴虹,陈尹,魏伟,等.栀子总苷对大鼠佐剂性关节炎治疗作用及部分机制的研究[J].中国实验方剂学杂志,2008,14(11):49-52.
    [105]吕茂平.复方栀子注射液的制剂学及质量标准研究[D].北京中医药大学,2003.
    [106]杨东,曹红卫,伏建峰,等.栀子抗内毒素组分的制备及活性初步分析[J].第三军医大学学报,2008,30(08):706-708.
    [107]Zheng X, Yang D, Liu X, et al. Identification of a new anti-LPS agent, geniposide, from Gardenia jasminoides Ellis, and its ability of direct binding and neutralization of lipopolysaccharide in vitro and in vivo[J]. Int Immunopharmacol,2010,10(10):1209-1219.
    [108]Lu J, Wang J-S, Kong L-Y. Anti-inflammatory effects of Huang-Lian-Jie-Du decoction, its two fractions and four typical compounds[J]. Journal of Ethnopharmacology,2011,134(3):911-918.
    [109]Koo H-J, Song YS, Kim H-J, et al. Antiinflammatory effects of genipin, an active principle of gardenia[J]. European Journal of Pharmacology,2004,495(2-3):201-208.
    [110]王意忠,崔晓兰,高英杰,等.栀子提取物抗病毒试验研究[J].中国中药杂志,2006,31(14):1176-1178.
    [111]王秀坤,郭姗姗,黄洋,等.栀子提取物ZG对单纯疱疹病毒1型感染后细胞膜流动性的影响[J].中华微生物学和免疫学杂志,2006,26(11):1005-1008.
    [112]郭姗姗,黄洋,赵哗,等.栀子提取物ZG对副流感病毒1型感染后宿主细胞膜的影响[J].病毒学报,2007,24(05):384-388.
    [113]Nam KN, Park YM, Jung HJ, et al. Anti-inflammatory effects of crocin and crocetin in rat brain microglial cells[J]. Eur J Pharmacol,2010,648(1-3):110-116.
    [114]Nam KN, Choi YS, Jung HJ, et al. Genipin inhibits the inflammatory response of rat brain microglial cells[J]. Int Immunopharmacol,2010,10(4):493-499.
    [115]杨军宣,张海燕,赵成城,等.栀子环烯醚萜苷治疗脑缺血损伤的作用机制研究[J].中国实验方剂学杂志,2010,v.16(06):277-280.
    [116]刘亚梅.中药青蒿解热有效部位青蒿挥发油及其制剂青蒿油软胶囊的药学研究[D].成都中医药大学,2007.
    [117]刘鸿鸣,李国林,吴慧章.中药青蒿化学成分的研究[J].药学学报,1981,16(01):65-67.
    [118]陈靖,周玉波,张欣,等.黄花蒿化学成分研究:中国江西南昌,2007;
    [119]屠呦呦,倪慕云,钟裕容,等.中药青蒿化学成分的研究Ⅰ[J].药学学报,1981,16(05):366-370.
    [120]Lai JP, Lim YH, Su J, et al. Identification and characterization of major flavonoids and caffeoylquinic acids in three Compositae plants by LC/DAD-APCI/MS[J]. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences,2007,848(2):215-225.
    [121]Han J, Ye M, Qiao X, et al. Characterization of phenolic compounds in the Chinese herbal drug Artemisia annua by liquid chromatography coupled to electrospray ionization mass spectrometry[J]. Journal of Pharmaceutical and Biomedical Analysis,2008,47(3):516-525.
    [122]R.S.Bhakuni, D.C.Jain, R.P.Sharma, et al. secondary metabolites of artemisia annua and their biology activity[J]. current science,2001,80(1):35-48.
    [123]杨柯,曾春晖.莨菪亭解热作用机理实验研究[J].中国药物应用与监测,2006,(03):24-27.
    [124]李兰芳,郭淑英,张畅斌,等.青蒿有效部位及其成分的解热作用研究[J].中国实验方剂学杂志,2009,v.15(12):65-67.
    [125]宫毓静,闫寒,李爱媛,等.青蒿总香豆素解热作用及其机理初步研究[J].中国实验方剂学杂志,2008,v.14(12):49-52.
    [126]Koh D-j, Ahn H-s, Chung H-S, et al. Inhibitory effects of casticin on migration of eosinophil and expression of chemokines and adhesion molecules in A549 lung epithelial cells via NF-[kappa]B inactivation[J]. Journal of Ethnopharmacology,2011,136(3):399-405.
    [127]钱瑞生,李柱良,余建良,等.青蒿素的免疫作用和抗病毒作用[J].中医杂志,1981,(06):63-66.
    [128]Ferreira JF, Luthria DL, Sasaki T, et al. Flavonoids from Artemisia annua L. as antioxidants and their potential synergism with artemisinin against malaria and cancer[J]. Molecules (Basel, Switzerland),2010, 15(5):3135-3170.
    [1]Manoharan A, Winter J. Tackling upper respiratory tract infections[J]. Practitioner,2010,254(1734):25-28, 22-23.
    [2]Monto AS. Epidemiology of viral respiratory infections[J]. Am. J. Med.,2002,112 Suppl 6A:4S-12S.
    [3]Morris PS. Upper respiratory tract infections (including otitis media)[J]. Pediatr. Clin. North Am.,2009, 56(1):101-117, x.
    [4]Heikkinen T, Jarvinen A. The common cold[J]. Lancet,2003,361(9351):51-59.
    [5]Fendrick AM, Monto AS, Nightengale B, et al. The economic burden of non-influenza-related viral respiratory tract infection in the United States[J]. Arch. Intern. Med.,2003,163(4):487-494.
    [6]Smith AP. Effects of the common cold on mood, psychomotor performance, the encoding of new information, speed of working memory and semantic processing[J]. Brain. Behav. Immun.,2012,26(7): 1072-1076.
    [7]Gwaltney JM, Jr., Winther B, Patrie JT, et al. Combined antivirai-antimediator treatment for the common cold[J]. J. Infect. Dis.,2002,186(2):147-154.
    [8]Predy GN, Goel V, Lovlin R, et al. Efficacy of an extract of North American ginseng containing poly-furanosyl-pyranosyl-saccharides for preventing upper respiratory tract infections:a randomized controlled trial[J]. CMAJ,2005,173(9):1043-1048.
    [9]Turner RB, Bauer R, Woelkart K, et al. An evaluation of Echinacea angustifolia in experimental rhinovirus infections[J]. N. Engl. J. Med.,2005,353(4):341-348.
    [10]Weiss JR, Tessema B, Brown SM. Complementary and Integrative Treatments:Upper Respiratory lnfection[J]. Otolaryngol. Clin. North Am.,2013, (0).
    [11]Zhao S, Li S. Network-based relating pharmacological and genomic spaces for drug target identification[J]. PloS one,2010,5(7):el1764.
    [12]Normile D. Asian medicine. The new face of traditional Chinese medicine[J]. Science,2003,299(5604): 188-190.
    [13]Barlow DJ, Buriani A, Ehrman T, et al. In-silico studies in Chinese herbal medicines' research:Evaluation of in-silico methodologies and phytochemical data sources, and a review of research to date[J]. J. Ethnopharmacol.,2012,140(3):526-534.
    [14]Chen G, Lu C, Zha Q, et al. A network-based analysis of traditional Chinese medicine cold and hot patterns in rheumatoid arthritis[J]. Complement. Thr. Med.,2012,20(1-2):23-30.
    [15]Zhao S, Iyengar R. Systems pharmacology:Network analysis to identify multiscale mechanisms of drug action[J].2012,52:505-521.
    [16]Jacoby DB. Pathophysiology of airway viral infections[J]. Pulm. Pharmacol. Ther.,2004,17(6):333-336.
    [17]Dakhama A, Lee YM, Gelfand EW. Virus-induced airway dysfunction:pathogenesis and biomechanisms[J]. Pediatr. Infect. Dis. J.,2005,24(11 Suppl):S159-169, discussion S166-157.
    [18]Hansbro NG, Horvat JC, Wark PA, et al. Understanding the mechanisms of viral induced asthma:New therapeutic directions[J]. Pharmacology & amp; Therapeutics,2008,117(3):313-353.
    [19]Eccles R. Mechanisms of symptoms of the common cold and influenza[J]. British journal of hospital medicine (London, England:2005),2007,68(2):71-75.
    [20]Paul-Clark MJ, George PM, Gatheral T, et al. Pharmacology and therapeutic potential of pattern recognition receptors[J]. Pharmacol. Ther.,2012,135(2):200-215.
    [21]Eccles R. Understanding the symptoms of the common cold and influenza[J]. The Lancet Infectious Diseases,2005,5(11):718-725.
    [22]Zhu F, Shi Z, Qin C, et al. Therapeutic target database update 2012:a resource for facilitating target-oriented drug discovery[J]. Nucleic Acids Res,2012,40(Database issue):D1128-1136.
    [23]Wishart DS, Knox C, Guo AC, et al. DrugBank:a knowledgebase for drugs, drug actions and drug targets[J]. Nucleic Acids Res.,2008,36(suppl I):D901-D906.
    [24]Deshpande N, Addess KJ, Bluhm WF, et al. The RCSB Protein Data Bank:a redesigned query system and relational database based on the mmCIF schema[J]. Nucleic Acids Res,2005,33(Database issue): D233-237.
    [25]Smoot ME, Ono K, Ruscheinski J, et al. Cytoscape 2.8:new features for data integration and network visualization[J]. Bioinformatics,2011,27(3):431-432.
    [26]Lipinski CA, Lombardo F, Dominy BW, et al. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings[J]. Adv Drug Deliv Rev,2001, 46(1-3):3-26.
    [27]Meanwell NA. Improving Drug Candidates by Design:A Focus on Physicochemical Properties As a Means of Improving Compound Disposition and Safety[J]. Chem. Res. Toxicol.,2011,24(9):1420-1456.
    [28]Berger SI, Iyengar R. Network analyses in systems pharmacology[J]. Bioinformatics,2009,25(19): 2466-2472.
    [29]Jeong H, Mason SP, Barabasi AL, et al. Lethality and centrality in protein networks[J]. Nature,2001, 411(6833):41-42.
    [30]Wang H, Hemandez JM Van Mieghem P. Betweenness centrality in a weighted network[J]. Physical Review E,2008,77(4):046105. [31] Zhu M, Gao L, Li X, et al. The analysis of the drug-targets based on the topological properties in the human protein-protein interaction network[J]. J. Drug Target.,2009,17(7):524-532.
    [32]Seelinger G, Merfort I, Schempp CM. Anti-oxidant, anti-inflammatory and anti-allergic activities of luteolin[J]. Planta Med.,2008,74(14):1667-1677.
    [33]Kao TK, Ou YC, Lin SY, et al. Luteolin inhibits cytokine expression in endotoxin/cytokine-stimulated microglia[J]. J Nutr Biochem,2011,22(7):612-624.
    [34]Lee JP, Li YC, Chen HY, et al. Protective effects of luteolin against lipopolysaccharide-induced acute lung injury involves inhibition of MEK/ERK and PI3/Akt pathways in neutrophils[J]. Acta pharmacologica Sinica,2010,31(7):831-838.
    [35]Kuo MY, Liao MF, Chen FL, et al. Luteolin attenuates the pulmonary inflammatory response involves abilities of antioxidation and inhibition of MAPK and NFkappaB pathways in mice with endotoxin-induced acute lung injury[J]. Food Chem. Toxicol.,2011,49(10):2660-2666.
    [36]Heinz SA, Henson DA, Austin MD, et al. Quercetin supplementation and upper respiratory tract infection: A randomized community clinical trial[J]. Pharmacological Research,2010,62(3):237-242.
    [37]Boesch-Saadatmandi C, Loboda A, Wagner AE, et al. Effect of quercetin and its metabolites isorhamnetin and quercetin-3-glucuronide on inflammatory gene expression:role of miR-155[J]. J Nutr Biochem,2011, 22(3):293-299.
    [38]Hamalainen M, Nieminen R, Asmawi MZ, et al. Effects of flavonoids on prostaglandin E2 production and on COX-2 and mPGES-1 expressions in activated macrophages[J]. Planta Med.,2011,77(13): 1504-1511.
    [39]Ha CL, Weng CY, Wang L, et al. Immunomodulatory effect of Glossogyne tenuifolia in murine peritoneal macrophages and splenocytes[J]. J. Ethnopharmacol.,2006,107(1):116-125.
    [40]Hwang WC, Zhang A, Ramanathan M. Identification of information flow-modulating drug targets:a novel bridging paradigm for drug discovery[J]. Clin. Pharmacol. Ther.,2008,84(5):563-572.
    [41]Ma XH, Zheng CJ, Han LY, et al. Synergistic therapeutic actions of herbal ingredients and their mechanisms from molecular interaction and network perspectives[J]. Drug Discovery Today,2009, 14(11-12):579-588.
    [42]Leyssen P, De Clercq E, Neyts J. Molecular strategies to inhibit the replication of RNA viruses[J]. Antiviral Res.,2008,78(1):9-25.
    [43]Paolini GV, Shapland RH, van Hoorn WP, et al. Global mapping of pharmacological space[J]. Nat. Biotechnol.,2006,24(7):805-815.
    [44]Bartfai T, Conti B. Fever[J]. TheScientificWorldJoumal,2010,10:490-503.
    [45]Ivanov AI, Romanovsky AA. Prostaglandin E2 as a mediator of fever:synthesis and catabolism[J]. Front. Biosci.,2004,9:1977-1993.
    [46]Hara S, Kamei D, Sasaki Y, et al. Prostaglandin E synthases:Understanding their pathophysiological roles through mouse genetic models[J]. Biochimie,2010,92(6):651-659.
    [47]Yamamoto K, Rose-John S. Therapeutic Blockade of Interleukin-6 in Chronic Inflammatory Disease[J]. Clin. Pharmacol. Ther.,2012,91(4):574-576
    [48]Kagiwada K, Chida D, Sakatani T, et al. Interleukin (IL)-6, But Not IL-I, Induction in the Brain Downstream of Cyclooxygenase-2 Is Essential for the Induction of Febrile Response against Peripheral IL-la[J]. Endocrinology,2004,145(11):5044-5048.
    [49]Rummel C, Sachot C, Poole S, et al. Circulating interleukin-6 induces fever through a STAT3-linked activation of COX-2 in the brain[J]. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology,2006,291 (5):R1316-R1326.
    [50]Oka Y, Ibuki T, Matsumura K, et al. Interleukin-6 is a candidate molecule that transmits inflammatory information to the CNS[J]. Neuroscience,2007,145(2):530-538.
    [51]Goh, K-I Cusick ME, Valle D, et al. The human disease network[J]. Proceedings of the National Academy of Sciences,2007,104(21):8685-8690.
    [52]de Souza N. Networking to understand disease[J]. Nat Meth,2011,8(1):46-46.
    [53]Liu Z, Fang H, Reagan K, et al. In silico drug repositioning-what we need to know[J]. Drug Discovery Today,2013,18(3-4):110-115.
    [54]Dudley JT, Deshpande T, Butte AJ. Exploiting drug-disease relationships for computational drug repositioning[J]. Brief Bioinform,2011,12(4):303-311.
    [55]Onuora S. Inflammation:A new path to treating arthritis[J]. Nature reviews. Rheumatology,2012,9(1):2.
    [56]Zuo X, Lu P, Liu X, et al. Network-based local and global consistency of cardiovascular genes[J]. Zhongguo Zhongyao Zazhi,2012,37(2):130-133.
    [57]Zu M, Zhou D, Gao L, et al. [Evaluation of Chinese traditional patent medicines against influenza virus in vitro][J]. Yao xue xue bao=Acta pharmaceutica Sinica,2010,45(3):408-412.
    [58]Barabasi AL, Gulbahce N, Loscalzo J. Network medicine:a network-based approach to human disease[J]. Nature reviews. Genetics,2011,12(1):56-68.
    [59]Park JY, Pillinger MH, Abramson SB. Prostaglandin E2 synthesis and secretion:The role of PGE2 synthasesfJ]. Clin. Immunol.,2006,119(3):229-240.
    [60]Rivest S. In Prog. Brain Res.; Luciano, M, Ed.; Elsevier,2010; Vol. Volume 181, pp.43-53.
    [61]Dimie O. Fever, fever patterns and diseases called'fever'-A review[J]. Journal of Infection and Public Health,2011,4(3):108-124.
    [62]Fukuyama S, Kawaoka Y. The pathogenesis of influenza virus infections:the contributions of virus and host factors[J]. Curr. Opin. Immunol.,2011,23(4):481-486.
    [63]Gopinath SCB, Awazu K, Fujimaki M, et al. Neu5Acα2,6Gal and Neu5Acαt2,3Gal receptor specificities on influenza viruses determined by a waveguide-mode sensor[J]. Acta Biomaterialia,2013,9(2): 5080-5087.
    [64]Chen L, Dou J, Su Z, et al. Synergistic activity of baicalein with ribavirin against influenza A (H1N1) virus infections in cell culture and in mice[J]. Antiviral Res.,2011,91(3):314-320.
    [65]Hung H-C, Tseng C-P, Yang J-M, et al. Aurintricarboxylic acid inhibits influenza virus neuraminidase[J], Antiviral Res.,2009,81(2):123-131.
    [66]Sithisam P, Michaelis M, Schubert-Zsilavecz M, et al. Differential antiviral and anti-inflammatory mechanisms of the flavonoids biochanin A and baicalein in H5N1 influenza A virus-infected cells[J]. Antiviral Res,,2012,97(1):41-48
    [67]Maddry JA, Chen X, Jonsson CB, et al. Discovery of novel benzoquinazolinones and thiazoloimidazoles, inhibitors of influenza H5N1 and H1N1 viruses, from a cell-based high-throughput screen[J]. Journal of biomolecular screening,2011,16(1):73-81.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700