用户名: 密码: 验证码:
2—甲基吡啶直接电氧化和间接电氧化制取2—吡啶甲酸的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Study on the Synthesis of 2-Pyridinecarboxylic Acid by Direct and Indirect Electro-oxidation of 2-Methylpyridine
  • 作者:李克昌
  • 论文级别:博士
  • 学科专业名称:物理化学
  • 学位年度:2005
  • 导师:张恒彬
  • 学科代码:070304
  • 学位授予单位:吉林大学
  • 论文提交日期:2005-05-01
  • 答辩委员会主席:孙家钟
摘要
2-吡啶甲酸是一种非常有价值的有机合成中间体。目前的工业合成方法是以KMnO_4为氧化剂氧化2-甲基毗啶合成。本文以直接电氧化法、间接电氧化法及重铬酸钾氧化法氧化2—甲基吡啶合成了2—吡啶甲酸。采用红外光谱(IR)、高效液相色谱(HPLC)、元素分析(EA)和熔点测试对分离产物进行了分析和表征,并采用电子能谱(XPS)和X—射线衍射(XRD)对PbO_2电极进行了表征。
     在反应过程中,对反应物、中间物和产物的分析测试是判断合成方法好坏和反应条件是否合适的关键。本文建立了一种快速跟踪分析吡啶、2—吡啶甲醛、2—甲基吡啶和2—吡啶甲酸的高效液相色谱分析方法。
     直接电氧化2—甲基吡啶分别在无隔膜和有隔膜电解槽内进行,研究了两种电解槽内各种因素对反应选择性和电流效率的影响规律。直接电氧化法有隔膜电解槽的电流效率和选择性优于无隔膜电解槽的选择性和电流效率。
     槽内式间接电氧化也分别在无隔膜和有隔膜电解槽内进行,研究了两种电解槽内各种因素对选择性及电流效率的影响。结果表明,槽内式间接电氧化有隔膜电解槽的选择性和电流效率优于无隔膜电解槽。
     重铬酸钾氧化法合成2—吡啶甲酸时,考察了各种因素对产率、转化率和选择性的影响规律。其选择性较直接电氧化法稍低,但产率和转化率较高,反应时间较短。
     研究Cr~(3+)在PbO_2、石墨和Pt电极上电氧化情况的同时,考察了添加Ag~+、Co~(2+)和Mn~(2+)对Cr~(3+)在PbO_2电极上电氧化的影响。根据Cr~(3+)在不同电极上电流效率的测定,表明PbO_2电极对Cr~(3+)有较好的电催化作用。
     Cr~(3+)电氧化和K_2Cr_2O_7化学氧化构成了2—甲基吡碇的槽外式间接电氧化,Cr_2O_7~(2-)/Cr~(3+)作为媒质,不会对环境造成污染。
2-pyridinecarboxylic acid (2-picolinic acid) is a very important intermediate in organic synthesis. It was used to synthesize mepivacaine in medicine industry. Its derivatives are the intermediate of herbicide and neuropathic medicine. Chromium picolinate is a new medicine for diabetes. But now it was synthesized by chemical-oxidation and air catalytic-oxidation methods. The chemical-oxidation method was used to synthesizing 2-pyridinecarboxylic acid by oxidation of 2-methylpyridine with KMnO_4 and SeO_2 as oxidants. Because of its low yield and high pollution, it was fallen into disuse in industry. The 2-methylpyridine was oxidized by oxygen in air with catalyst, Because of its low yield of raw material, the high cost and the short life of the catalyst, the air catalytic-oxidation methods has not been used. The electro-oxidation of 2-methylpyridine is a green synthesizing method friendly with the environments, which just using electricity and without using oxidant and no pollution to environment. Although the preparation method on nicotinic acid and isonicotinic acid by electro-oxidation of 3-methylpyridine (3-picoline) and 4-methylpyridine (4-picoline) was reported, no literature have been studied on the electro-oxidation of 2-methylpyridine and the oxidation of 2-methylpyridine with K_2Cr_2O_7 as oxidant before.
    Through the investigation on direct and indirect electro-oxidation (in-cell and ex-cell) with 2-methylpyridine as the initial material, We studied the oxidation of 2-methylpyridine detailedly. Five research sections were included. First, a new HPLC method was established to determine pyridine, 2-pyridinecarboxaldehyde, 2-methylpyridine and 2-pyridinecarboxylic acid. Second, 2-methylpyridine was oxidized to 2-pyridinecarboxylic acid using the direct electro-oxidation method. Third, using the in-cell indirect electro-oxidation method, 2-methylpyridine was oxidized to 2-pyridinecarboxylic acid in an electrolytic cell with K2Cr2O7 as an oxidant which was prepared by electrochemical oxidation of Cr3+. Fourth, 2-pyridinecarboxylic acid was prepared by the oxidation of 2-methylpyridine with potassium dichromate as an oxidant. Fifth, the electrochemical oxidation of Cr3+ was discussed. Both the fourth and the fifth sections were referred as ex-cell indirect electrochemical oxidation.In the first section, the analyzing method by reversed phase high performance liquid chromatography, the effect of different mobile phases, pH, methanol ratio, flow velocity and column temperature were studied.In the second section, the direct electro-oxidation of 2-methylpyridine took place in an electrolytic cell with or without proton exchange membrane respectively. The effect of temperature, the concentration of 2-methylpyridine and sulfate acid on anode reaction were studied by determination of the polarization curves. The effect of temperature, the concentration of 2-methylpyridine and sulfate acid, anode potential on current efficiency and selectivity were studied with or without civil proton exchange membrane. The best reacting conditions were found by the orthogonalized
    experiment and the analysis with HPLC. Under the optimum conditions in an electrolytic cell with proton exchange membrane, the highest selectivity was 95.3% and the current efficiency was 45.3%. Under the optimum conditions in an electrolytic cell without proton exchange membrane, the highest selectivity was 83.1% and the current efficiency was 34.9%.The reactions were expressed in following equations:The reaction of oxygen evolution was a competitive reaction that also took placed at anode:The main reaction took placed at cathode in the electrolytic cell with proton exchange membrane was hydrogen evolution:Besides hydrogen evolution, the reduction of 2-pyridinecarboxylic acid also took placed at cathode in the electrolytic cell without proton exchange membrane, thus the current efficiency and selectivity dropped.In the third section, the indirect electro-oxidation of 2-methylpyridine took place in an electrolytic cell with or without proton exchange membrane respectively. Cr~(3+) was oxidized to Cr2O~(2-)_7 in an electrolytic cell with or without proton exchange membrane, then Cr_2O~(2-)_7 which as an oxidant oxidize 2-methylpyridine to 2-pyridinecarboxylic acid. The effect of temperature, the concentration of 2-methylpyridine, sulfuric acid and chromium sulphate, as well as anode potential on current efficiency and selectivity were studied. The results indicated that the current efficiency and
    selectivity increased with the increasing of temperature, the concentration of sulfuric acid and chromium sulphate, and decreased with the increase of anode potential. Under the optimum conditions in an electrolytic cell without proton exchange membrane, the highest selectivity was 76.7% and the current efficiency was 19.2%. Under the optimum conditions in an electrolytic cell with proton exchange membrane, the highest selectivity was 80.9% and the current efficiency was 26.6%.It was found from the experiments that the main reaction which took place at the anode was the electro-oxidation of Cr~(3+) to Cr_2O~O~(2-)_7. The chemical reaction which took place in the anodic cell was the oxidation of 2-methylpyridine by Cr_2O~(2-)_7. The reactions were expressed in following equations:In the fourth section, 2-pyridinecarboxylic acid was prepared by potassium dichromate oxidation method, the effect of temperature, sulfuric acid concentration, reaction time, the proportion and concentration of reactants on yield, conversion and selectivity were studied. The obtained product was separated and characterized. The results indicated that the yield and the selectivity of 2-pyridinecarboxylic acid were very high. Compared with other chemical methods, the reaction time was short and the reaction conditions were mild, the highest chromatographic yield was 89.1%, the selectivity was 89.2%In the fifth section, the anode oxidation and the electrochemical
    behaviors of Cr3+ with the civil proton exchange membrane were studied at PbO2, Pt, graphite electrode. Electro-oxidation conditions of Cr3+ were explored by the measurements of cyclic voltammetry and current efficiency at different electrodes. It was found that catalytic action of various electrode materials on Cr3+ oxidation was different. The PbO2 electrode shows good electrochemical stability and catalytic capability, and is superior to graphite and Pt electrode. After adding Ag+, the currnet efficiency increase obviously higher on PbO2 and Pt electrode than graphite electrode. Different metal ions have different supporting catalysis on the PbO2, the current efficiency increased little after adding Mn2+, but current efficiency decreased higher after adding Co2+. The effects of temperature, the concentration of sulfuric acid and chromium sulphate, reaction time and current density on current efficiency were studied in this section.Cr was oxidized to Cr2O72- in electrolytic cell which could be used repeatedly. The oxidation of 2-methylpyridine by Cr2O72- and the electro-oxidation of Cr3+ took place in respective equipments when using ex-cell indirect electro-oxidation. The advantages of ex-cell method are that both optimum conditions can be matched respectively when the chemical reaction and the electrochemical reaction require different conditions, but it has some problems such as it increases equipments and separate steps. The advantage of in-cell method was that fewer equipments can be used and the operation was easy because we needn't separate the organic phase and the water phase, but the conditions of the chemical reaction and the electrochemical reaction such as temperature, pH, composition of solution etc
引文
[1] Juturu V, Komorowski J K. Dietary chromium picolinate: Efficacy and safety [J], Journal of trace elementss in experimental medicine, 2004, 17(4): 291-293
    [2] 陈冠荣.化工百科全书[M],北京:化学工业出版社,1998,12
    [3] 左金福,肖虎,夏泽宽。2—吡啶甲醇及2—吡啶甲醛的合成[J],齐鲁药事,2004,23(2),40-41
    [4] 李锦玉,俞有平,戴荣等,比沙可啶的合成[J].中国医药工业杂志,1993,24(2):53-54.
    [5] Jadon S C S, Fahmi M N, Sinyh R V. Synthetic and biological aspects of some hetero chelates of dioxomolybdenum(Ⅵ) with nitrogen-sulfur donor ligands[J]. Synth React Inorg Met-Org Chem, 1995, 25(8): 1345-63.
    [6] Broom N J P, Edwards P D, Osborne N P. 6-Alkylidenepenems their preparation and their use as antibiotics[P]. WO8700525,1987.
    [7] Cushman M S, Hamel E. Stilbene derivatives as anticancer agents[P]. US5430062, 1995.
    [8] Liu L, Queener S F, Abrahan A et al. Nonclassical analogs of 10-deazaaminopterin: synthesis and inhibition of rat liver[J]. Med Chem Res, 1994, 4(3): 211-21.
    [9] Tsuda Y, Mishina T, Obata M, et al. Preparation of dihydroazolopyridines as calcium antagonists or agonists[P]. US4918074,1990.
    [10] Bernareggi V, Bonifacio F, Fano M, et al. Preparation of tetrazolyamide derivatives of hetrocyclylalkenyl acids and their use as allergy inhibitors[P]. EP384450, 1990.
    [11] Broors C D W, Stewart A O, Craig R A. Preparation of anti-inflammatory substituted aryl and heteroarylalke nyl-N-hydroxyurea inhibitors of leurotriene biosynthesis[P]. WO9530671, 1995.
    [12] Fujiphoto Film Co Ltd. Method of processing of color photographic materials[P]. JP59214855, 1984.
    [13] Minamida I, Iwanga K, Okauchi T. Alpha-unaturated amines particularly 1,1-diamino-2-nitroethylene derivatives their insecticidal/miticidal compositions[P]. EP302389, 1989.
    [14] Bold G, Lang M, Faessler A. Preparation of dipeptide derivatives of 5-amino-4-hydroxyhexanoic acid as HIV protease inhibitors [P]. EP618222, 1994.
    [15] 赵雁来,何森泉,徐常德.杂环化学导论[M],北京:高教出版社,1992:290.
    [16] Boekelheide V, L inn WJ. Rearrangements of N-oxide. A novel synthesis of pyridyl carbinols and aldehydes[J]. J Am Cicero Soc, 1954, 76: 128621291.
    [17] Micovic VM, Mihailovic ML. Preparation of aldehydes by the oxidation of alcohols with lead tetraacetate. Part Ⅰ Pyridinealdehyde [J], Rec trav Chim, 1952,71,970-976
    [18] 单世明,余书勤,廖红等,2-吡啶甲醛的合成[J].中国医药工业杂志,1997,28(8):377-378.
    [19] 张珍明.2-吡啶甲醛的改进合成法.中国医药工业杂志,2002,33(11),526-527
    [20] Babasaheb PB, V aibhav SS, Lavkumar SU. Selective and rapid oxidation of primary, allylic and benzylic alcohols to the co rresponding carbonyl compounds with NaNO_2-acetic anhydride under mild and solvent-free conditions[J]. J Chem Soc, Perkin Trans I, 2000,3559-3560.
    [21] 刘懋勤,朱淬石厉.甲基吡啶N-氧化物的Ortoleva-King反应[J].化学学报,1965.31:439-444.
    [22] Anica M, Calvin L S. The synthesis of oxime. Ⅲ. Iodine-dimethyl sulfoxide reaction with methylpyridines[J]. J O rg Chem, 1970, 35(3): 8412843.
    [23] 徐建明,陈杰,刘小宇.2-吡啶甲醛和2,4-吡啶二甲醛的简便合成[J],中国医药工业杂志,2002,33(6),273-274
    [24] Leitics L, Shimanskaya M V. Vapor-phase oxidation of methylpyridines to pyridinecarboxaldehyde[J]. Khim Getero Soedim, 1967, 3:507-511.
    [25] 陈英奇,戴立言,杨能渭.2-甲基吡啶气相氧化合成2-吡啶甲醛的研究[J],高校化学工程学报,2002,16(4),436—440
    [26] Glubokovskikh L K, Kan I I, Suvorov B V. Oxidative reactions of 2,6-lutidine od fused vanadium pentoxide[J]. Ser Khim, 1980, (5): 51-54.
    [27] Takehira K, Shishido T, Song, Z, Matsushita T, Kawabata T, Takaki K. Crystalline CrV_(0.95)P_(0.05)O_4 catalyst for the vapor-phase oxidation of picolines [J], Catalysis Today 91-92 (2004) 7-11
    [28] Hoelderich W. F. 'One-pot' reactions: a contribution to environmental protection[J], Applied Catalysis A: 2000,194,487-496
    [29] Martin A, Lucke B. Ammoxidation of methylaromatics over vanadium phosphate catalysts. I. Effect of the size, position and electronic properties of substituents on the catalytic conversion of methylaromatics to the corresponding nitriles[J], Catalysis Today, 1996, 32, 279
    [30] Shishido T, Song Z, Kadowaki E..Vapor-phase oxidation of 3-picoline to nicotinic acid over Cr_(1-x)Al_xVO_4 catalysts[J],Applied catalysis A-general,2003,239(1-2): 287-296
    [31] Song Z, Matsushita T, Shishido T..Crystalline CrV_(0.95)P_(0.05)O_4 catalyst for vapor-phase oxidation of picolines[J],Chemical Communications,2002,12:1306-1307
    [32] Shishido T, Song Z, Matsushita T..In situ DRIFTS study of picoline oxidation over CrV_(0.95)P_(0.05)O_4 catalyst[J], Physical chemistry chemical physics 2003, 5(12): 2710-2718
    [33] S. Jaras, S.T. Lundin, J. Appl. Chem. Biotechnol. 27(1977), 499.
    [34] 化工百科全书[M],第一卷,北京:化学工业出版社,1990,557-584
    [35] Kinaga E, Mori M.. Seatbelt system[P],US4 294 468, 1981
    [36] 王海棠,王咏心,潘志权。一种合成2—吡啶甲酸的新办法[J]湖北化工2001,2, 26-27
    [37]Cook D.J.,Roland S,The preparation of isonicotinic and picolinic acids[J], J.Am.Chem.Soc,l952,74(21),5515-5516
    [38]Sudip Mukhopadhyay, Sampatraj B. Chandalia.Kinetics of the Highly Selective Liquid-Phase Oxidation of Side Chain Alkyl Groups in 2-Methylpyrazine and Picolines by Selenium Dioxid[J]Organic Process Research & Development 1999, 3, 455-459
    [39]Bhattacharyya D ,Guha D K,Roy A N. Indian Chem.Engin. ,1983 ,24(1) :46 - 49.
    [40]Ronny Neumann ,Yoel Sasson. J. Org Chem. ,1984 (49): 1282 - 1284.
    [41]E.M. Al'kaeva, T.V. Andrushkevich, G.A. Zenkovets and D.E. Babushkin.Studies on the conditions of synthesis of picolinic acid byheterogeneous catalytic oxidation of 2-picoline[J],Catalysis Letters 54 (1998) 149-152
    [42] Wachs I. E, Saleh R. Y, Chan S. S, Chersich C. C.. Interaction of vanadium pentoxide with titania(anatase): Part I - Effect on O-xylene oxidation to phthalic anhydride.[J], Applied Catalysis, 1985, 15(2), 339-352
    [43]Martin A ,Lucke B , Seeboth H . Ammoxidation of picolines on vanadium phosphate catalysts[J], Applied Catalysis. ,1989 (49) :205 -211.
    [44]Munir Ahmed ,T.A.Chaudhari,Maqbool Ahmed. Catalytic oxidation of alkylpyridine by metel Rosinates[J],Pakistan J.Sci.Ind.Res.,1986, 29(5),336-337
    [45]Joseph E. Toomey,Gregory A.Chaney.Anodic Oxidation of 2-picoline [J], Tetrahedron 1991,47(4),697-704
    [46] Binns F, Swan G A.. Oxidation of 5-acetyl-2-methylpyridine[J]. J Chem Soc, 1962, (7): 2831-2832.
    [47] Suvorov B V, Bakirova S B, Serazetdinova V A, et al. Preparation method for obtaining nicotinic acid and its amide from 2-methyl-5-ethylpyridine[J]. Khim-Farm Zh 1992, 26 (11-12): 81-83.
    [48]Titova T S, Usmavshtskov B F, Farberov M I. Industrial synthesis of 2,5-Pyridine dicarboxylic acids and Oxidation of Oxidation of alkylpyridine to nicotinic acid with dilute nitric acid [J]. Zh prikl Khim, 1969, 42(4): 910-920.
    [49] Bengtsson Erik B. Oxidation of pyridine bases to pyridine carboxylic acids with dilute nitric acid at high temperature[J]. Acta chemica scandinavica, 1955,9(5): 832-836.
    [50] Li,yuangan . Process for preparing nicotinic acid [P].CN 1,235,158(1998).
    [51] Sidorov O F, Kosareva M A. Catalytic oxidation of sulfo derivatives of quinoline by sulfuric acid [J]. Zh Prikl Khim (Leningrad) 1983 ,56(1) :227 -228(Russ).
    [52] Woodward C F, Badgett C O, Kaufman Jerome G. Chemical-catalytic liquid-phase oxidation of nicotine, p-picoline, and quinoline to nicotinic acid[J]. Ind Eng Chem, 1944, 36(1): 544-546
    [53] Yin Hong. Process for preparing nicotinic acid[P]. CN 1141288, (1997).
    [54] Brzaszcs, M., Kloc, K.,Maposah, M. et al. Selenium(IV) oxide catalyzed oxidation of aldehydes to carboxylic acids with hydrogen peroxide[J]. Synth.Commun. 2000, 30 (24): 4425-4434.
    [55] E. S. Zhdanorich, A. F. Galkin, I. B. Chekmareva, et al. Preparation of pyridine-carboxylic acids [J]. Zh. Prikl. khim.. 1959 ,32(12): 2821-2822.
    [56] 朝绿康信,桥功,泷川进一朗,烟酸的制备方法[p].CN 1112921A
    [57] Shin,Chae-Ho;Chang,Tae-Sun; Cho,Deug-Hee et al.Ammoxidation of 3-picoline over metal phosphate catalysts[J]. Hwahak Konghak. 1997, 35(2): 270-275(Korean).
    [58] Heterogeneous-catalytic gas-phase oxidation of (β-picoline[J]. Fortschr.-Ber. VDI, reihe3 1999, 582 I-VIII 1-160(Ger), VDI Verlag GmbH.
    [59] A.Andersson. Activities of V-Ti-O catajysts in the ammoxidation of 3-picoline [J].J.Catal. 1982,76:144-156.
    [60] A.Andersson.A combined transient response and temperature-programmed desorption techique used in the ammoxidation of 3-picoline over a V_2O_5 catalyst[J].J.Catal. 1986,100:414-428.
    [61] Suvorov, Boris Viktorovitch;Stepanova,Lidija Anatolevna; Belova, Nadezhda Atonoona et al. Oxidative ammonolysis of alkylpyridines and a highly selective catalyst with its use[J]. Jpn. Kokai Tokkyo Koho JP 07,313,865. 1995.
    [62] 路百程.烟酸的合成与应用[J].辽宁化工.1994,3:10.
    [63] Dolgova, N.D.,Zlobina, E.V., Kalidzhanova, G. T. et al. Preparation of nicotic acid by vapor-phase catalytic oxidation of 3-methylpyridine[J]. Izv. Minist. Obraz Nauki Resp. Kaz.,Nats. Akad. Nauk resp. Kaz., Ser. Khim. 2000, (5): 89-93.
    [64] Dolgova, N.D.,Zlobina, E.V., Kalidzhanova, G. T. et al. Preparation of nicotic acid by vapor-phase catalytic oxidation of 3-methylpyridine[J]. Izv. Minist. Obraz Nauki Resp. Kaz.,Nats. Akad. Nauk resp. Kaz., Ser. Khim. 2000, (5): 85-88.
    [65] S. Lars, T. Andersson.Activity measurements and ESCA investigations of a V_2O_5/SnO_2 catalyst for the vapor oxidation of alkylpyridines[J]. J. Catal. 1980, 64:51.
    [66] Sembaev, D. Kh..Catalytic synthesis of vitamin PP[J].Vestn. Akad. Nauk Kaz. SSR 1990, (10): 14-18.
    [67] Alkaeva, E. M., Makarenko, M. G., Zenkovets,G. A..New processes for partial oxidation. Synthesis of formic and nicotinic acid[J]. Khim. Prom-st.(Moscow) 1996, (3): 21-25.
    [68] D. Heinz, W.F. Hoelderich, S. Krill, et al. V_2O_5/TiO_2 catalysts for the vapor-phase oxidation of β-picoline influence of the TiO_2-carrier [P],DE 19,839,559 (2000)
    [69] D. Heinz, W.F. Hoelderich, S. Krill, et al. V_2O_5/TiO_2 catalysts for the vapor-phase oxidation of β-picoline influence of the TiO_2-carrier[J]. J. Catal. 2000, 192: 1-10.
    [70] E.M.Al'kaeva, T.V.Andrushkevich, G.A.Zenkovets,et al. Formation of active state in vanadium-titanium oxide system regarding to reaction of oxidation or β-picoline to nicotinic acid[J]. Catal.Today, 2000, 61: 249-254.
    [71] Al'kaeva, E. M., Andrushkevich, T. V., Zenkovets, G. A., et al. Method of obtaining nicotinic acid via single-stage oxidation of β-picoline with oxygen in the presence steam and of catalyst based on vanadium and titanium oxides[P]. WO 95 20577, (1995).
    [72] Hoelderich, W. E.'One-pot' reations: a contribution to environmental protection[J]. Appl. Catal., A 2000, 194-195: 487-496.
    [73] Zenkovets,GA., Kryukova, G.N.. Tsybulya,S.V. et al. Formation of vanadia-titania oxide catalysts[J]. Kinet. Catal. 2000, 41(4): 572-583.
    [74] T.Shishido, Z.song E. Kadowwaki, et al.Vapor-phase oxidation of 3-picoline to nicotinic acid over Cr_1-xAl_xVO_4 catalysts[J]. Applied catalysis A:General 2003, 239: 287-296
    [75] Z.song, T.Matsushita, T.Shishido et al. Crystalline CrV_1-xP_xO_4catalysts for the vapor-phase oxidation of 3-picoline[J]. J. Catal., 2003, 218: 32-41.
    [76] Z.song, T.Matsushita, T.Shishido et al. Crystalline CrV_1-xP_xO_4catalysts for the vapor-phase oxidation of 3-picoline[J]. Chem. Commun. .2002, 1306-1308.
    [77] Smivnova I. E..Nutural microbial associations of cellulolytic bacteria[J]. dokl. Nats. Akad. Nauk resp. Kaz. .2000, (2): 60-63.
    [78] Almatawah, Q. A.,Cowan D. A..Thermostable nitrilase catalyzed production of nicotinic acid from 3-cyanopyridine[J],Enzyme. Microb. Technol. 1999, 25 (8-9): 718-724.
    [79] A. Kiener. Enzymatic oxidation of Methyl groups on aromatic heteroaromatic carboxylic acids[J]. Angew. Chem. Int. Engl. 1992, 31 (6): 774-775.
    [80] M.Yokoyama, Das Verhalten des Pyridinrings bei der Elektrochemischen Oxydation. II. Picolin.[J]. Bull. Chem. Soc. Japan.. 1932, 7(69): 69-72.
    [81] M.Yokoyama und K.Yamamoto, Das Verhalten des Pyridinrings bei der Elektrochemischen Oxydation. V. Chinolin.[J]. Bull. Chem. Soc. Japan.. 1943, 18(3):121-126.
    [82] S. S. Kruglikov and V. G. Khomyakov ,Tr. Mosk. Khim. Tekhnol. Inst., 1961,32: 194-200
    [83] V. G. Khomyakov, et al Zh. Obshch. Khim., 1958, 28: 2895
    [84] V. G. Khomyakov , Tr. Mosk. Khim.Tekhnol. Inst., 1957, 25: 178-187
    [85] Fr. Fichier und Hans Stenzl. Anodische Oxydation von Brucin und nicotin [J]. Helv.Chim.Acta., 1936, 19: 1171-1175.
    [86] Borkhi, Khim. Geterotsikl Soedin, 1970,10:1362
    [87] M.Kulka. Electrolytic oxidation of quinoline and 3-picoline[J]. J. Am. Chem. Soc. 1946, 68: 2472-2473.
    [88] P. N. Gupta and G. M. Rather, Electrochemical Synthesis of Nicotinic Acid from 3-picoline[J], J. Indian Chem. Soc,1998,LXY:633-635
    [89] J.E.Toomey, Electrochemical Oxidation of Pyridine Bases[P]. US 4482439,1984.
    [90] Te Schinnen, Marinus Alfenaar. Electrochemical oxidation of alkylpyridines [P]. NL 85 02485, (1987).
    [91] Van den Brink, Frank T. B. J., Van Hardeveld, Rudolf. Electrochemical oxidation of alkylpyridines[P]. NL 85 02486, (1987).
    [92] J. E. Toomey, Electrochemical Synthesis of Niacin and Other N-heterocyclic Compounds[P]. US 5002641, (1991).
    [93] J. E. Toomey. Electrochemical Synthesis and Simultaneous Purification Process[P] WO 91/19020,(1991).
    [94] Thomas, A. M. J., Brink V. D., Franciscus T. B. J., et al. Process for the electrochemical oxidation of organic products[P]. EP 253439, (1988).
    [95] Haber, J., Czerwenka, M., Szymanska, M., et al. Pol. Method of obtaining mono-and dicarboxylic acids based on derivative of nitrogen containing heterocyclic compounds[P]. PL 167985, (1995)
    [96] Feldman, D., Czerwenka, M., Stoch, L., et al. Anodic oxidation of methyl derivatives of nitrogen-containing heterocycles on activated nickel oxide electrode[J]. Khim. Geterotsikl. Soedin., 1995,(1): 90-96(Russ).
    [97] J. Iniesta, E A. Michaud, M. Panizza, et al. Electrochemical oxidation of 3-methylpyridine at a boron-doped diamond electrode: application to electeoorganic synthesis and wastewater treatment[J]. Electrochemistry communication. 2001, 3: 346-351.
    [98] 陆旭.烟碱电化学合成烟酸的研究[J].精细化工.2000,17(18):453-455.
    [99] 刘冲.司徒玉莲,申大志,等.石油化工手册:第三分册[M].北京:化学工业出版社,1987.272-273.
    [100] 吴枫,黄振谦,胡南媛.电解合成4—吡啶甲酸[J].广东化工,1991,(4):21-24.
    [101] 实用精细化学品手册编写组.实用精细化学品手册[M].北京:化学工业出版社,1996.1822-1823.
    [102] 乔秀明,乔秀明,胡家元,李贤均.RuCl_3催化氧化γ—甲基吡啶合成γ-吡啶羧酸的研究[J],化学研究与应用,2001,13(3):308-310
    [103] 乔庆东,于大勇,梁红玉.电解氧化4-甲基吡啶合成异烟酸[J],精细化工[J],2000,17,suppl,78—81
    [104] 杨绮琴,方北龙,童叶翔.应用电化学[M],广州,中山大学出版社,2001,205
    [105] 邝生鲁,陈芬儿,梁启勇.应用电化学[M],武汉,华中理工大学出版社,1994,227
    [106] 田玫,张恒彬,曹学静.草酸电还原制取乙醛酸的研究[J],分子科学学报,2002,18(1),19-25
    [107] Luna A. M. C., Bolzan A. E., Mele M. F. The voltammetric electrooxidation of glucose and glucose residues formed on on electrodispersed platinum electrodes in acid electrolytes [J]. Pure Appl. Chem. 1991, 63(11), 1599-608
    [108] Popovic K. D., Markovic N. M., Tripcovic A. V. Structural effects in electrocatalysis. Oxidation of D-glucose on single crystal platinum electrodes in alkaline solution [J]. J. Electroanal. Chem. Interfacial Electrochem. 1991, 313(1-2), 181-99
    [109] Bae I. T., Yeager E., Xiang X. In situ infrared studies of glucose oxidation on platinum in an alkaline medium [J]. J. Electroanal. Chem. Interfacial Electrochem. 1991, 309(1-2), 131-45
    [110] Kokkinidis G., Moumdzis I., Xonoglou N. Electrocatalysis of D-glucose oxidation on noble metal electrodes modified by underpotential-deposited heavy metal adatoms in alkaline media [J]. Electrocata., Mater. Symp. Electrochem. Set. Pol. Chem. Soc., 9th 1987, 185-92
    [111] Hsiao M. W., Adzic R. R., Yeager E. B. The effects of adsorbed anions on the oxidation of D-glucose on gold single crystal electrodes [J]. J. Electrochem. Soc. 1996, 143(3), 759-67
    [112] Hsiao M. W., Adzic R. R., Yeager E. B. Electrochemical oxidation of glucose on single crystal and polycrystalline gold surfaces in phosphate buffer [J]. Electrochim. Acta 1992, 37(2), 357-63
    [113] Rethinam A J, Kennedy C J.Indirect electrooxidation of crotyl and cinnamyl alcohol using a Ni(OH)_2 electrode [J], Journal of applied electrochemistry, 2004 34 (4): 371-374
    [114] Anodic oxidation of anthracene to anthraquinone in the presence of RuO_2 and KCI redox double mediator [J], Journal of the Chinese institute of chemical engineers, 2003,34(2): 239-246
    [115] Kuroboshi M, Yoshihisa H, Cortona MN. Electro-oxidative kinetic resolution of sec-alcohols by using an optically active N-oxyl mediator [J], Tetrahedron Letters, 2000, 41(42): 8131-8135
    [116] Galla U, Kritzer P, Bringmann J.Process for the degradation of organic pollutants by indirect electrooxidation [J], 1999,Chemie Ingenieur Technik 71(6): 628-633
    [117] Falgayrac G, Savall A.Electrochemical activation of the catalytic effect of cobalt in autoxidation of toluene in acetic acid [J], Journal of applied electrochemistry, 199929 (2): 253-258
    [118] 王保成,何龙,许文林.蒽间接电化学氧化制蒽醌[J],煤炭转化,1996,19(2),93-96
    [119] 郭子成,郭信.葡萄糖酸镁的电氧化合成[J],中国医药工业杂志, 1997,28(8),350-352
    [120] Park K., Pintauro P. N., Baizer M. M. Flow reactor studies of the paired electro-oxidation ang electroreduction of glucose [J]. J. Eletrochem. Soc. 1985, 132(8), 1850-5
    [121] 李伟,郭子成,李红梅.成对电解葡萄糖研制葡萄糖酸和山梨醇[J],现代化工,1994,(7).21-24
    [122] 任永,朱建良,欧阳平恺.葡萄糖电氧化还原的研究[J],南京化工学院学报,1995,17(2),37-42
    [123] Petitierre J P, Manteghetti M, Loubatieres Mariani MM et al. Differential Effects of Purinergic and Cholinergic Activation on theHudrolysis of Membrane Polyphosphoinostitides[J]. Electro-chem Acta,1990,35(1):281.
    [124] Do Jingshan, et al. Indirect electrooxidation of benzylmenthanol using ClO/Cl[J]. A Appl Electrochem, 1989, (19):922.
    [125] Do Jingshan, et al. Indirect electrooxidation of benzylmenthanol on anode electrode [J]. Ind Eng Chem Res, 1990, (29): 1095.
    [126] Rennie RAC. Electro-oxidation[P].US,3,873 580,1987-07-03.
    [127] 张恒彬.电解生成Mn~(3+)的研究.精细化工[J].2000,(17):75~77
    [128] 张国衡.Mn~(3+)/Mn~(2+)在间接电氧化甲苯系物时的电极过程和氧化性能[J].精细化工,2000,17,78~83.
    [129] 陶永新,周礼花.非均相电解氧化Mn~(2+)及间接电合成苯甲醛[J].高校化学工程学报,2000,14(6):597~600.
    [130] 吴爱莲,孙彦平.溴离子在旋转圆盘电极上氧化动力学模型[J].太原理工大学学报,1999,30(1):36~39.
    [131] 金世雄.硫酸溶液中Ce~(3+)在PbO2电极上阳极氧化过程中动力学[J].高等学校化学学报、1995,1109~13.
    [132] Jiang Lincai, pletcher D. The Catalysis of the Anotic Oxidation of Chromium (3) to Dichromate by Silver (1) in the Aqueous Sulphuric Acid[J].J Electronal Chem,1983:152~157.
    [133] 陈琪瑞,庞开.11α-羟基-16,17α-环氧黄体酮的间接电解氧化[M].有机化学,1990,10(2):19~134.
    [134] 张积树.对苯二甲酸的间接电合成[J].有机电化学及其工业应用,1992,12:189.
    [135] 赵建友.电氧化法转化Cr~(3+)为Cr~(6+)的研究[J].精细化工,2000,17,64~66.
    [136] 王家荣.硫酸铬阳极电解氧化过程的研究[J].化学世界(J),1999,13,457~460.
    [137] 王克学.对硝基苯甲酸电合成的研究[D].青岛化工学院毕业论文.
    [138] Pampin, Kim L.; Johnson, Dennis C. Electrocatalysis of anodic oxygen transfer rcactlons:oxidation of Cr~(3+) to Cr~(6+) at Bi~(5+) doped PbO_2-film electrodes [J].J Electrochem Soc 1996, 143(7), 2119~2125.
    [139] Karwas, Christoper P. Ammonia complexation in the analysis of hexavalent chromium in fly ash[J]. J Environ Sci Health, Part: Environ Sci Eng Toxic Hazard Suvst Control 1995, A 30(6), 1223~1235.
    [140] De Souza Claudio E, Machado Sergio A S. Electrochemical oxidation of chromium (3+) on Pb/PbO2[J]. Quire Nova 1993,16(5),426~430.
    [141] Danilov F I, Velichenko A B. Electrocatalytic activity of anodes in reference to chromium (3+) oxidation [J]. Electrochim Acta,1993,38(2~3), 437~440.
    [142] Danilov F I, Velichenko A B, Loboda S M. Effect of electode material on the oxidation of trivalent chromium [J].Elektrohimiya 1992,28(1), 125~127.
    [143]. Fieser L. F., Fieser M. Reagents for Organic Synthesis[M],John Wiley & Sons: New York, 1967, Vol.1,144-147
    [144]. Freeman, F. In Organic Synthesis by Oxidation with Metal Compounds[M], Mijs, W. J.; de Johge, C. R. H. I.,Eds.; Plenum Press: New York, 1986,68-81.
    [145]. Haines, A. H. Methods for the Oxidation of Organic Compounds, Alcohols, Alcohol Derivatives, Alkyl halides, Nitroalkanes, Alkyl Azides, Carbonyl Compounds, Hydroxyarenes and Aminoarenes[M], Academic Press: London, 1988,17- 41.
    [146]. Ley, S. V.; Madin, A. In Comprehensive Organic Synthesis[M], Trost, B. M.; Fleming, I., Eds.; Pergamon Press: London, 1991, Vol. 7, 251-289.
    [147]Ji-Dong Lou, A New Procedure for the Preparation of Aldehydes and Ketones by the Oxidation of Primary and Secondary Alcohols with Potassium Dichromate in a Neutral Benzene-Water System[J], J. Chem. Research, 1997,206
    [148] Lou, J.-D.; Lu, L.-H.; Liu, W. Oxidation of Alcohols to Carbonyl Compounds With a New Potassium Permanganate Adsorbed on Kieselguhr Reagent[J],Synth. Commun. 1997, 27,3697-3700.
    [149]Ji-Dong Lou, Zhi-Nan Xu. Selective solvent-free oxidation of alcohols with potassium dichromate[J], Tetrahedron Letters 43 (2002) 8843-8844
    [150]L. Friedman, D. L. Fiahel. and H. Sheohter. Oxidation of Alkylarenes with Aqueous Sodium Dichromate. A Useful Method for Preparing Mono- and Polyaromatic Carboxylic Acids[J],J . Org. Chem., 1965,80, 1453-1455
    [151] R. H. Reitsema and N. L. Allphin, J . Org. Chem., 31, 27 (1962).
    [152] K. B. Wiberg .Oxidation in Organic Chemistry[M], part A, Academic Press, New York, N. Y., 1965, PP 90-92.
    [153] L. F. Fieser and M. Fieser, "Reagents for Organic Synthesis," John Wiley & Sons, Inc., New York, N. Y., 1887, p 1081.
    [154] D G. Lee, U A. SPITZER, The Oxidation of Ethylbenzene with Aqueous Sodium Dichromate[J], The Journal of Organic Chemistry, 1493-1495
    [155] D. G. Lee, "Oxidation, Techniques and Applications in Organic Synthesis," Yol. I, R. L. Augustine, Ed., Mareel Dekker, New York, N. Y., 1969.
    [156] K. B. Wiberg, "Oxidation in Organic Chemistry," Part A, K. B.Wiberg, Ed., Academic Press, New York and London, 1968.
    [157] Albrecht G., Abraham W. Kinetic Study of the Acid-Catalyzed Chromiurn(Ⅵ) Oxidation of the Methyl Group.Oxidation of 3-Picoline-1-Oxide and 4-Nitro-3-picoline-1-Oxide[J], J. Org. Chem., Vol. 37, No. 20, 1972,37(20), 3063-3066
    [158] Michael R, Baloga J.The Kinetics of the Oxidation of Cr(Ⅲ) to Cr(Ⅳ) by Hydrogen Peroxide, 1961, 83, 4906-4909
    [159] Fendorf S E, Fendorf M, Sparks D, Gronsky R.J. Colloid Interface Sci. 1992, 153, 37-54.
    [160] Peters Nico, Robertj Zasoski, Importance of Mn(Ⅲ) Availability on the Rate of Cr(Ⅲ) Oxidation on δ-MnO2[J], Environ. Sci. Technol.2000, 34,3363-3367
    [161] Hong Zhang, Light and Iron(Ⅲ)-induced oxidation of chromium(Ⅲ) in the presence of organic acids and manganese(Ⅱ) in simulated atmospheric water, Atmospheric Environment 34 (2000) 1633-1640
    [162] Zhang, H., Bartlett, R.J., 1999. Light-induced oxidation aqueous chromium(Ⅲ) in the presence of iron(Ⅲ). Environmental Science and Technology 33,588-594.
    [163] Devilliers M.T. Dinh Thi, E. Mahe, Q. Le Xuan, Cr(Ⅲ) oxidation with lead dioxide-based anodes, Electrochimica Acta 48(2003) 4301-4309
    [164] 刘峥,李亚敏.间接电解氧化罚制备环己酮[J].合成化学,2002,10(2):140~145
    [165] 陈昌平,王雅琼,许文林.Cr~(3+)电化学氧化过程的电流效率研究[J].扬州大学学报,2002,5(4):35~39
    [166] 赵建宏,王留成,宋成盈,等.间接电氧化法合成2-甲基-1,4-萘醌Ⅱ.电氧化法转化Cr~(3+)为Cr~(6+)的研究[J].精细化工,2000,17(增刊):64~66
    [167] 陈新志,郑文刚,吴兆立,等.电化学法合成精细化学品-间接氧化制间硝基苯甲

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700