用户名: 密码: 验证码:
“3S”技术在矿山生态环境监测中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
矿产资源是人类赖以生存和发展的重要物质基础,然而长期以来,在矿产资源开发利用过程中,由于认识的局限性,我国在矿产资源开发利用中忽视环境保护工作,许多矿山生产建设不重视环保要求,严重破坏了矿区的生态环境。环境问题已成为当今世界各国最为关注的焦点之一,对环境的现状和变化进行有效监测是大势所趋。运用3S技术能够实时、方便地提取矿山生态环境信息,为人们全面了解环境现状信息及其发展演化规律、合理利用土地和恢复治理环境提供重要依据。
     本文利用2006年1月Quickbird图像和相关统计资料,采用人机交互解译方式提取攀枝花宝鼎煤矿区土地利用/覆被信息和由于矿山开采引发的地质灾害、环境污染以及矿山生态环境恢复与治理信息;基于AHP法,以植被覆盖率、环境污染率、地质灾害面积比和环境恢复治理率为评价因子,对攀枝花宝鼎煤矿区的生态环境质量进行评价和分析,并给出环境治理的措施和建议。
     研究内容包括:
     (1)遥感数字图像处理。包括正射校正、几何校正、图像融合和增强处理。
     (2)遥感影像信息提取。采用人机交互解译方式提取2005年宝鼎煤矿区矿产开采信息;根据2006年1月遥感图像提取由于矿山开采引发的地质灾害及环境污染信息;以及矿山生态环境恢复与治理信息等。
     (3)矿山环境数据库的建立。包括:元数据、矿山开采状况解译数据、矿山环境状况解译数据等。
     (4)遥感影像专题地图的制作。宝鼎煤矿区1∶1万土地利用/覆被图与生态环境遥感监测图等图件的制作。
     (5)野外数据核查。通过野外考察,将遥感影像上的目标和对应的实际地物相联系,来验证室内信息提取的精度,为今后的解译工作积累经验。
     (6)矿区生态环境监测及质量评价。选定评价指标,建立适当的评价模型对研究区的生态环境质量进行评价。
     得出结论如下:
     (1)2005年研究区土地利用/覆被情况为:林地(包括森林、灌木林和疏林地)面积最多,为xxxx.34公顷,占研究区总面积的xx.87%;草地面积xxx.386公顷,占研究区总面积的x.91%;旱地面积xxx.445公顷,占研究区总面积的x.78%;其中排土场面积也不少,大概有xxx.351公顷,占研究区总面积的x.22%。
     (2)对攀枝花宝鼎煤矿区的生态环境监测及结果分析得出,泥石流xx处,滑坡x处,塌陷xx处,大气污染xx.59公顷,粉尘污染xxx.17公顷,水体污染x.84公顷,生态环境恢复治理面积有x.53公顷;
     (3)基于APH法结合遥感和GIS技术对攀枝花宝鼎煤矿区的环境质量进行了评价,得到该地区植被覆盖率为良好,等级为Ⅱ;环境污染严重,等级为Ⅳ;矿山恢复治理率不高,等级为Ⅲ;灾害发生率不高,等级为Ⅱ。该研究区生态环境质量综合评价为Ⅲ。
     通过实践证明,运用3S技术对煤矿土地利用/覆被和生态环境进行监测,并对煤矿生态质量进行评价和分析,这为矿产资源的可持续发展提供了科学的依据,同时为其他类型矿山生态环境监测研究提供了有效、可行的技术流程和工作思路。
The mineral resource is important material base for the humanity livelihood and the development .But since long ago, in the process of exploit mineral resource,because of limitation of cognition, many mines in our country neglect the environmental protection work in the mineral resource development and use. So it destroies the ecological environment of mining area seriously. The environmental problems has become one of focal points which the various countries most pays attention now.Then, Carrying on the effective monitor to the environment's present situation and the change is general trend of events. Using the 3S technology can withdraw the mine ecological environment information real-time and conveniently. It can provide the important basis for the people to understand the environment present situation information and the development evolution rule comprehensively , use the land reasonably and restores the government environment.
     In this article,the author uses the Quickbird image in January of 2006 and the correlation statistical data, selects the man-machine interaction interpretation method to extract land utilization/covering information, geological disaster and the environmental pollution because of the mine mining, as well as restoring and government the mine ecological environment information in Panzhihua Baoding coal mine area. This article,based on the AHP method, takes the vegetation coverage fraction, the environmental pollution rate, the geological disaster area ratio and the environment restores rate as the appraisal factors, carries on the appraisal and the analysis to ecological environment quality in the Panzhihua Baoding coal mine area, and gives the measure and suggestion to treatment of environment.
     Its major research contents are as follows:
     (1) Remote sensing digital image processing. Including orthographic projection , geometric correction, image fusion and image enhancement.
     (2) Extracting remote sensing image information. It selects the man-machine interaction interpretation method to extract land utilization/covering information, geological disaster and the environmental pollution because of the mine mining, as well as restoring and governmenting the mine ecological environment information in Panzhihua Baoding coal mine area of the year 2005.
     (3) Database building of the mine area environment. Including metadata, mine mining condition interpretation data, mine environment condition interpretation data and so on.
     (4)Thematic mapping of remote sensing images. Including 1:1 million land use / cover map,the ecological environment Remote monitoring map of Baoding coal mining area and so on.
     (5) Field data verification. Through field investigation,we can contact the objectives on remote sensing images to features of the actual to verify the accuracy of information extraction interior for future interpretation of job experience.
     (6) The ecological environment monitoring and quality evaluation in mine area. Selecting evaluation indicators, setting up an appropriate evaluation model for the eco-environmental quality evaluation of study area .
     Conclusion as follows:
     (1)In 2005 the land use / cover the situation of study area is that forest land area ,including forest, shrub forest and woodland land, is the largest for xxxx.34 hm2, accounting for the total area of the study area xx.87%; Grassland area is xxx.386 hm2, accounting for the total area of the study area x.91%; Dryland area is xxx.445 hm2, accounting for the total area of the study area x.78%; Dump is also quite a number, there is perhaps xxx.351 hm2, accounting for the total area of the study area x.22%.
     (2)It results from the ecological environment monitoring and analysis that, in the Panzhihua Baoding coal mine area, the air pollution area is xx.59hm2 and the water pollution area is x.84 hm2,the dust pollution area is xxx.17hm2 and the ecology restores area is x.53hm2 and there had been 13 latent landslides,4 mud-rock flows,11 cave-ins.
     (3) Using remote sensing and GIS technologies based on APH method to evaluate the environmental quality of Panzhihua Baoding coal mine area. It concludes that the vegetation coverage of the area is good for levelⅡ; environmental pollution is serious for levelⅣ;the mine e environment restore rate is not high for levelⅢ; the disasters incidence is also not high for LevelⅡ.The general quality evaluation of the ecological Environment in study area is levelⅢ.
     Practice has proved that using the 3S technology to monitor the land ues /cover and ecological environment , evaluate and analysis the ecological quality of coal mine area can provide a scientific basis for the sustainable development of mineral resources, and while provides an effective and feasible technology flow and ideas for other types of mine the ecological environment monitoring study.
引文
[1]王永生.我国矿山环境治理的现状、问题与对策[J].西部资源,2006,(5):32~33.
    [2]矿业企业发展问题研究报告.2005年3月11日.
    [3]Turner II B L,Clark W C,Kate R W,et al.The Earth as TraGlobal and Ragional Change in the Bio-sphere Over the PCambridge University Press with Clark University,1990,7~13.
    [4]吴清文.矿区开采对土地环境的破坏预测与分析[J],煤矿环境保护,2002,3,16(3): 49~57.
    [5]川西南多金属成矿监测区矿产资源开发多目标遥感调查与监测报告.2006.
    [6]况顺达,赵震海.SPOT5在矿山监测中的应用[J].2005,(3):79~82.
    [7]唐以杰.3S技术在生态环境保护方面的应用[J].生物磁学,2004(1):44~46.
    [8] ]吴邦灿,费龙.现代环境监测技术[M].北京:中国环境科学出版社,1999.
    [9]李强峰,刁治民,赵呈祥等.“3S”技术在三江源区生态环境动态监测的应用探讨[J].青海草业,2004,13(3):24~26.
    [10]陈涛,杨武年.3S技术在生态环境动态监测中的应用研究[J].中国环境监测,2003(6):19~22.
    [11]刘现印,周荣福等. 3S技术在生态建设中的应用研究[J].安徽农业科学[J].2007,35(29):9453~9454,9458.
    [12]周乐群,康大宁等.3S技术发展现状及其在资源环境调查中的应用[J].资源环境与工程.2004(4):60~66.
    [13]Bell,E J and Hinojosa,R C Markov analyses of land use change:continuous time and stationary processes.Socio—Economic Planning Science.1977,13~17.
    [14]Wolman,M G and Fournier,F G A(eds)Land transformation in agriculture.John Wileyand Sons.1987,79~109.
    [15]Loveland T R,Read B C,Brown J F,et al.Development of a global land cover characteristics database and IGBP Discover from l km AVHRR data.International Journalof Remote Sensing,1998.
    [16]Sellers P J,Los S O,Tucker C J,et al.A revised land surface parameterization(SiB2) for atmospheric GCMS-part two:the generation of global fields of terrestrial biophysical parameters from satellite data.Journal of Climate,1996.
    [17]Defries R S,Townshend J R.Global land cover:comparison of ground-based latasets to classifications with AVHRR data.GM Foody,1994.
    [18]Kienast F.Analysis of historic landscape Ecology,1993.
    [19]Iverson L R.Land-use changes in Illinois,USA-The influence of landscape attributes oncurrent and historic land use.Landscape Ecology,1988.
    [20]Boerner R E,et al.Markov model of intertia and dynamism on two contiguous Ohio landscape.Geographical Analysis.1996.
    [21]吴岗,王晓红.“天眼”望矿山—我国矿产资源开发利用遥感动态监测前景展望[J].中外房地产导报.2002(17):18~19.
    [22]程博,刘少峰等..Terra卫星ASTER数据的特点与应用[J].华东地址学院学报.2003(1):15~17.
    [23]甘甫平等.德兴铜矿矿山污染高光谱遥感直接识别研究[J].地球科学—中国地质大学学报.2004(1):119~126.
    [24]雷利卿,岳燕珍,孙九林,李永庆等.遥感技术在矿区环境污染监测中的应用研究[J].环境监测,2002(2):33~36.
    [25]陈华丽等.LandsatTM在矿区生态环境动态监测中的应用[J].遥感信息,2004(1):31~34.
    [26]杨忠义等.矿区生态破环阶段的土地利用/覆被变化研究[J].山西农业大学学报,2003(4):367~370.
    [27]陈旭.遥感解译分析矿山开发对生态环境的影响[J].资源调查与环境,2004(1):13~17.
    [28]李海鹰.RS与GIS技术在采煤塌陷区生态环境时空监测中的研究与应用—以开滦煤矿塌陷区为例[D].
    [29]杨振兴.3S技术在露天煤矿可持续发展中的应用.中小企业管理与科技.中国期刊网.
    [30]丰茂森.遥感图像数字处理[M].北京地质出版社.1992.
    [31]杨文久,刘心季.不同时相遥感图像的镶嵌技术[J].国土资源遥感,1994, (2): 46~52.
    [32]杨武年,丁纯勤,王大可等.TM正射遥感影像地图在四川南江地区区调研究及成矿预测中的应用[J].地球科学,l998,23(3): 188~192.
    [33]Burt P J,Adelson E H. A multiresolution Spline With Applica-tion to Image Mosaic[J]. ACM Trans. On Graphica, 1983,2(4):38~52.
    [34]廖崇高,杨武年,濮国梁等.不同融合方法在区域地质调查中的应用[J].成都理工大学学报,2003, 30(2): 1~5.
    [35]刘建平,赵英时.高光谱遥感数据解译的最佳波段选择方法研究[J].中国科学院研究生院学报,1999(2):153~161.
    [36]杨肖琪,林嵩等.高分辨率卫星遥感数据的融合比较研究[J].集美大学学报,2005(4):338~342.
    [37]四川省地质调查院.川西南多金属成矿监测区矿产资源开发多目标遥感调查与监测报告.
    [38]王晓红,聂洪峰,李成尊,汪劲.不同遥感数据源在矿山开发状况及环境调查中的应用[J].国土资源遥感,2006(2):69~71.
    [39]葛伟.基于MAPGIS的土地资源人机交互遥感解译方法研究[J].安徽农学通报,2008,14(7):123~124.
    [40]刘玲,陈佑德.人机交互技术在土地利用更新调查中的应用[J].山西建筑,2008(2):3~4.
    [41]刘沛,况顺达等.RS、GIS在贵州省环境地质综合调查中的应用—以崩塌、滑坡、泥石流调查为例[J].贵州地质,2004(3):161~164.
    [42]徐刚,郑达兴等.黄土高原西南部陇—千阳一带崩塌、滑坡地质灾害的遥感影像特征及分布规律[J].地质通报,2008(11):1837~1845.
    [43]钟光.遥感技术在环境监测中应用[J].科技天地,2008(21):155~156.
    [44]刘美玲.基于GIS和RS的矿产自由开发生态环境效应监测与评价—以云南省兰坪县铅锌矿为例[D].
    [45]陈桥,雒昆利.基于AHP法的矿山生态环境综合评价模式研究.中国矿业大学学报,2006,(3):377~383.
    [46]王文峰,宋志敏,秦勇.淮北宿县矿区煤层气地质评价[J].煤田地质与勘探,2002, 30(3):29~33.
    [47]谢先军,韩咏文.黄石巷子口地区水环境重金属污染评价与防治对策研究[J].安全与环境工程,2003 ,10 (4) :34~36.
    [48]李桂华.307例解剖工人尘肺生命质量的评价[J].四川解剖学杂志,2003 ,11 (4) :21~23.
    [49]张丽萍,唐克丽.矿山泥石流成灾度模糊综合评价[J].山地学报,2002 ,20 4) :212~217.
    [50]李援,徐晓春.矿山酸性排水的测量方法及评价[J].合肥工业大学学,2003,26(2):188~192.
    [51]刘玲.矿山开发建设项目中地表形态变化预测及环境影响评价[J].安徽师范大学学报,1997,20(4):372~377.
    [52]胡光道,陈建国.金属矿产资源评价分析系统设计[J].地质科技情报,1998,17(1):45~49.
    [53]袁艺,蔡永立,李东林等.淮北宿县矿区拟建铁路生态环境现状调查与质量评价[J].安徽农业科学,1996(1):75~77.
    [54]田家华,牛建英.矿产资源开发环境影响评价的指标体系与方法[J].地质科技情报,1996,15(3):67~70.
    [55]陈新燕,杜扬松.矿产资源环境质量评价初步研究[J].矿产保护与利用,200 (3):9~11.
    [56]常春平,陈辉,钱金平等.石灰石矿生态环境评价初探[J]河北师范大学学报,1998,22(1) : 115~118.
    [57]王广成.矿区生态健康系统评价理论与方法初探[J].山东工商学院学报,2003,17(3):1~4.
    [58]毕晓丽,洪伟.生态环境综合评价方法的研究进展[J].农业系统科学与综合研究,2001,17(2):122~126.
    [59]姚建.AHP法在县域生态质量评价中的应用[J].重庆环境科学,1998,20(2):11~14.
    [60]刘来福,曾文艺.数学模型与数学建模[M].北京:北京师范大学出版社,1995.
    [61]詹前涌.层次模糊决策法及其在生态环境评价中的应用[J].系统工程理论与实践,2000 (12):133~136.
    [62]傅伯杰,刘世梁,马克明.生态系统综合评价的内容与方法[J].生态学报,2001,21(11):1885~1892.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700