用户名: 密码: 验证码:
新型功能化吸附剂的制备及其对痕量金属离子的分离富集
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属离子污染存在于人类生活的各个领域,严重威胁到了人类的健康及生命。有效检测及治理环境中的痕量金属污染物就成为环境分析化学工作者所面临的一大挑战。固相萃取技术(SPE)是目前预处理样品技术中最为灵活、高效的的一种手段。对于固相萃取技术而言,吸附剂的选择决定着方法的回收率和富集因子。为了提高固相萃取技术的选择性,一般通过物理或者化学手段对吸附剂的表面进行修饰。本论文致力于合成新型的固相萃取剂并将其用于环境样品中痕量金属离子的分离富集,主要的研究工作如下:
     1、制备一种新型的固相萃取剂(三乙四胺修饰活性炭),并通过红外光谱进行表征。ICP-OES检测表明:在pH4时,这种萃取剂对Cr(Ⅲ)、Fe(Ⅲ)和Pb(Ⅱ有很好的吸附效果;洗脱条件为0.5M HCl;吸附剂对Cr(Ⅲ)、Fe(Ⅲ)和Pb(Ⅱ)的饱和吸附容量分别是34.6、36.5和51.9mg g-;检出限分别是是0.71、0.35和0.45ng mL-1;相对偏差分别为3.7%、2.2%和2.5%。将新型吸附剂应用于实际样品的测定,结果令人满意。
     2、用罗丹明6G修饰活化的活性炭合成制备了新型吸附剂AC-Rh6G,并建立了很好的富集分离Cr(Ⅲ)、Cu(Ⅱ)、Cd(Ⅱ)和Pb(Ⅱ)的方法。该方法对Cr(Ⅲ)、Cu(Ⅱ)、Cd(Ⅱ)和Pb(Ⅱ)具有较大的吸附容量和富集因子,并且大量共存的干扰物质对该方法影响不大。此外,该吸附剂的制备过程相对简单和方便。该方法已经成功用于实际样品和水样的检测,结果令人满意。
     3、用硫代二酰肼修饰凹凸棒合成了新型的固相萃取剂,实验结果表明这种新型萃取剂对Au(Ⅲ)有很好的分离富集效果。此外,吸附剂的合成过程相对简单和方便,和其他吸附剂相比具有较大的吸附容量。在实际水样和标样的应用中,均得到很好的测试结果。
     4、用1-氨基-2-萘酚-4-磺酸钠盐修饰活性炭合成了新型的固相萃取剂,合成过程相对简单方便,并建立了新的分离富集Au(Ⅲ)的方法,和其他文献报道过的吸附剂相比具有比较好的吸附容量。在实际水样和标样的应用中,均得到很好的测试结果。
     5、在pH7.4,铕(Ⅲ)与蛋白质作用引起共振散射强度在250-600nm范围中明显增强。当pH值大于蛋白质等电点时,蛋白质带负电荷,蛋白质通过静电作用和铕(Ⅲ)结合,由于这个实验现象,我们建立了一种新的简单、灵敏度高的检测蛋白质含量的方法。在优化条件下,共振散射强度分别与血红蛋白(0.16-30.00ug mL-1)和丙种球蛋白的浓度(0.05-20.00ug mL-)成正比,对血红蛋白和丙种球蛋白的检出限分别是80ng mL-1和22ng mL-1,而且本方法受干扰物质(金属离子、氨基酸)影响不大。应用在合成样品中结果令人满意。
The toxicity and the effect of trace elements on human health and the environment are receiving increasing attention in pollution and nutritional studies. Therefore, it is crucial to develop simple, rapid, and efficient methods for monitoring metal ions in the environment. In SPE procedure, the choice of appropriate adsorbent is a critical factor to obtain full recovery and high enrichment factor. To improve the selectivity, a chemical or physical modification of the sorbent surface with some organic compounds, is usually used to load the surface with some donor atoms such as oxygen, sulfur, nitrogen and phosphorus. Based on it, this research paper is devoted to the design, synthesis and application of newly selective solid-phase extractors in order to pre-concentration and separation of trace metal ions. The detailed novelty of this study has been listed in the following:
     1. A new selective solid-phase extractant using activated carbon as matrix which was purified, oxidized and modified by triethylenetetramine (AC-TETA) was prepared and characterized by FT-IR spectroscopy. At pH4, quantitative extraction of trace Cr(Ⅲ), Fe(Ⅲ) and Pb(Ⅱ) was obtained and determined by inductively coupled plasma optical emission spectrometry (ICP-OES). Complete elution of the adsorbed metal ions from the sorbent surface was carried out using0.5mol L-1HCl. The maximum static adsorption capacity of sorbent for Cr(Ⅲ), Fe(Ⅲ) and Pb(Ⅱ) was34.6,36.5and51.9mg g-1, respectively. The time of quantitative adsorption was less than2min. The detection limits of the method was found to be0.71,0.35and0.45ng mL-1for Cr(Ⅲ), Fe(Ⅲ) and Pb(Ⅱ), and the relative standard deviation (RSD) was3.7%,2.2%and2.5%, respectively. Moreover, the method was free from interference with common coexiting ions. The method was also successfully applied to the preconcentration of trace Cr(Ⅲ), Fe(Ⅲ) and Pb(Ⅱ) in synthetic samples and a real sample with satisfactory results.
     2. In this study, Cr(lII), Cu(Ⅱ), Cd(Ⅱ) and Pb(Ⅱ) have been preconcentrated and separated by a new sorbent using rhodamine6G modified oxidized activated carbon and characterized by Fourier transform infrared spectra. At pH4, quantitative extraction of trace Cr(Ⅲ), Cu(Ⅱ), Cd(Ⅱ) and Pb(Ⅱ) was obtained and determined by ICP-OES. The adsorbed metal ions were completely eluted by1.0mol L-1HCl. The method was free from interference with common coexisting ions. The maximum adsorption capacity of the adsorbent at optimum conditions was found to be37.8,47.8,56.5and41.7mg g-1for Cr(Ⅲ), Cu(Ⅱ), Cd(Ⅱ) and Pb(Ⅱ) at pH4, respectively. The detection limits of the method were under0.35ng mL"1and the relative standard deviations were lower than3.5%(n=11). The method was validated using a standard reference material, and has been applied for the determination of trace Cr(Ⅲ), Cu(II), Cd(Ⅱ) and Pb(Ⅱ) in biological and natural water samples with satisfactory results.
     3. The study on the high efficiency of triocarbohydrazide modified attapulgite as solid-phase extractant for preconcentration of trace Au(Ⅲ) prior to the measurement by ICP-OES has been reported. Experimental conditions for effective adsorption of trace levels of Au(Ⅲ) were optimized with respect to different experimental parameters using batch and column procedures in detail. At pH3, Au(Ⅲ) could be quantitatively adsorbed on the new sorbent, and the adsorbed Au(Ⅲ) could be completely eluted from the sorbent surface by2.0mL1.0mol L-1of HCl+2%CS(NH2)2solution. An enrichment factor of150was accomplished. Moreover, common interfering ions did not interfere in both separation and determination. The maximum adsorption capacity of the sorbent for Au(Ⅲ) was found to be66.7mg g-1. The detection limits (3σ) of this method was0.32μg L-1and the relative standard deviation (R.S.D.) was3.3%(n=8). The method, with high selectivity, sensitivity and reproducibility, was validated using certified reference materials, and had been applied for the determination of trace Au(Ⅲ) with satisfactory results.
     4. A new method of separation, preconcentration and determination of trace gold(Ⅲ) in water samples was developed based on utilized1-amino-2-naphthol-4-sulfonate modified activated carbon as a solid-phase sorbent and measured by ICP-OES. The new sorbent was confirmed by Fourier transform infrared spectra. Experimental conditions for effective adsorption of trace gold(Ⅲ) were optimized in details. At pH3, gold(Ⅲ) could be quantitatively adsorbed on the new sorbent, and the adsorbed gold(Ⅲ) could be completely eluted from the sorbent surface by2.0mL of1.0mol L-1of HC1+2%CS(NH2)2. An enrichment factor of200was accomplished. The maximum adsorption capacity of the sorbent for gold(Ⅲ) was found to be32.3mg g-1. Moreover, common electrolytes did not interfere with the adsorption and determination of the analytes. The detection limit (3σ) of this method was found to be0.26ug L-1, and the relative standard deviation (R.S.D.) was3.1%(n=8). The method, with high certified selectivity, sensitivity and reproducibility, was satisfactorily applied to determinate a reference materials and water samples.
     5. At pH7.4, the resonance light scattering (RLS) intensity of the interaction of europium(Ⅲ) with proteins was obviously enhanced in wavelength range of250-600nm. When the pH value is higher than the isoelectric point of protein in Palitzsch buffer solution (pH7.4), protein takes negative charge. So the electrostatic interaction between europium(Ⅲ) and proteins may occur. Based on the phenomenon, a new simple, sensitive and selective method for the determination of proteins has been developed. Under the optimum condition, the enhanced RLS intensities were proportional to the proteins concentration over the ranges0.16-30.00and0.05-20.00ug mL-1for hemoglobin (Hb) and immunoglobulin G (IgG), respectively. The corresponding limits of detection were80and22ng mL-1for Hb and IgG, respectively. Moreover, the method was free from interference with many metal ions and animo acids. Synthetic samples were satisfactorily determined with the recovery of97.5-103.2%.
引文
[1]I. Liska, Fifty years of solid-phase extraction in water analysis -historical development and overview, J. Chromatogr. A 885 (2000) 3.
    [2]C.F. Poole, Solid-phase extraction, Encyclopedia of Separation Science,3, Academic Press, 2000, p.1405.
    [3]M.C. Hennion, Sample handling strategies for the analysis of non-volatile organic compounds from environmental water samples, Trends Anal. Chem.10 (1991) 317.
    [4]M. Khikuma, M. Nakayama, T. Itoh, H. Tanaka, K. Itoh, Chelate-forming resins prepared by modification of anion-exchange resins, Talanta 27 (1980) 807.
    [5]H. Akaiwa, H. Kawamoto, K. Ogura, Kinetic studies of ion-exchange of cobalt(Ⅱ) and nickel(II) on a resin loaded with 5-sulfo-quinolinol, Talanta 28 (1981) 337.
    [6]K.S. Lee, W. Lee, D.W. Lee, Selective separation of metal ions by a chelating agent-loaded anion exchanger, Anal. Chem.50 (1978) 255.
    [7]K. Kilan, K. Pyrzynska, Preconcentration of metal ions on porphyrin-modified sorbents as pretreatment step in AAS determination, Fresenius J. Anal. Chem.371 (2001) 1076.
    [8]M.E. Mahmoud, Silica gel-immobilized Eriochrome black-T as a potential solid phase extractor for zinc(Ⅱ) and magnesium (Ⅱ) from calcium(Ⅱ), Talanta 45 (1997) 309.
    [9]M. Pesavento, R.Biesuz, M.Gallorini, A.Profumo, Sorption mechanism of trace amounts of divalent metal ions on a chelating resin containing iminodiacetate groups, Anal. Chem.65 (1993)2522.
    [10]M. Pesavento, R... Biesuz, J.L. Cortion, Sorption of metal ions on a weak acid cation-exchange resin containing carboxylic groups, Anal. Chim. Acta 298 (1994) 225.
    [11]M.C. Carson, Ion-pair solid-phase extraction, J. Chromatogr. A 885 (2000) 343.
    [12]V. Porta, E. Mentasti, C. Sarzanini, M.C. Gennaro, Ion-pair liquid-solid extraction for the preconcentration of trace metal ions, Talanta 35 (1998) 167.
    [13]P. Janos, K. Stulik, V. pacakova, An ion-exchange separation of metal cation on a C-18 column coated with dodecylsulfate, Talanta 39 (1992) 29.
    [14]R.E. Majors, Sample preparation for HPLC and gas chromatography using solid-phase extraction, LG-GC 4 (1989) 972.
    [15]R.E. Sturgeon, S.S. Berman, A. Desaulniers, D.S. Russell, Pre-concentration of trace metals from sea-water for determination by graphite-fumace atomic-absorption spectrometry, Talanta 27 (1980) 85.
    [16]T.M. Florence, G.E. Batley, Trace metals species in sea-water-Ⅰ. Removal of trace metals from sea-water by a chelating resin, Talanta 23 (1976) 179.
    [17]E. Castillo, J.-L. Cortina, J.-L. Beltran, M.-D. Part, M.Granados, Simultaneous determination of Cd(Ⅱ), Cu(Ⅱ) and Pb(Ⅱ) in surface waters by solid phase extraction and flow injection analysis with spectrophaotometric detecton, Analyst 126 (2001) 1149.
    [18]M. Shamsipur, A.R. Ghiasvand, H. Sharghi, H. Naeimi, Solid phase extraction of ultra trace copper(Ⅱ) using octadecyl silica membrane disks modified by a naph-thol-derivative Schiff's base, Anal. Chim. Acta 408 (2000) 271.
    [19]M.E. Mahmoud, E.M. Soliman, Silica-immobilized for mylsalicylic acid as a selective phase for the extraction of iron(Ⅲ), Talanta 44 (1997) 15.
    [20]E. Gonzalez-Toledo, M. Benzi, R. Compano, M. Granados, M.D. Prat, Speciation of organotin compounds in shellfish by liquid chromatography-fluorimetric detection, Anal. Chim. Acta 443(2001)183.
    [21]D.T. Rossi, N. Zhang, Automating solid-phase extraction:current aspects and future prospects, J. Chromatogr. A 885 (2000) 97.
    [22]O. Keil, J. Dahmen, D.A. Volmer, Automated matrix separation and preconcentration for the trace level determination of metal impurities in ultrapure inorganic salts by high-resolution ICP-MS, Fresenius J. Anal. Chem.364 (1999) 694.
    [23]J.F. Tyson, Folw injection atomic spectrometry, Spectrochim. Acta Rev.14 (1991) 169.
    [24]C. Kantipuly, S. Katragadda, A. Chow, H.D. Gesser, Chelating polymers and related supports for separation and preconcentration of trace metal, Talanta 37 (1990) 491.
    [25]C. Gueguen, J. Dominck, D. Perret, Use of chelating resins and inductively coupled plasma mass spectrometry for simultaneous determination of trace and major elements in small volumes of trace and major elements in small volumes of saline water samples, Fresenius J. Anal. Chem.370 (2001) 909.
    [26]O. Abollino, M. Aceto, M.C. Bruzzoniti, E. Mentasti, C. Sarzanini, Speciation of copper and manganese in milk by solid-phase extraction/inductively coupled plasma-atomic emission spectrometry, Anal. Chim. Acta 375 (1998) 299.
    [27]A. Tong, Y. Akama, S. Tanak, Pre-concentration of copper, cobalt and nicked with 3-methyl-phenyl-4-stearotl-5-pyrazolone loaded on silica gel, Analyst 115 (1990) 947.
    [28]K. Terada, K. Matsumoto, Y. Taniguchi, Preconcentration of palladium(Ⅱ) from water with thionalide loaded onto silica gel, Anal. Chim. Acta 147 (1983) 411.
    [29]K. Terada, K. Nakamura, Preconcentration of cobalt(Ⅱ) in natural waters with 1-nitroso-2-naphthol supported on silica gel, Talanta 28 (1981) 123.
    [30]M.E. Mahmoud, M.M. Osman, M.E. Amer, Selective pre-concentration and solid phase extraction of mercury(Ⅱ) from natural water by silica gel-loaded dithizone phases, Anal. Chim. Acta 415 (2000) 33.
    [31]M.E. Mahmoud, G.A. Gohar, Silica gel-immobilized-dithioacetal derivatives as potential solid phase extractors for mercury(Ⅱ), Talanta 51 (2000) 77.
    [32]M.E. Mahmoud, Selective solid phase extraction of mercury(Ⅱ) by silica gel-immobilized-dithiocarbamate derivatives, Anal. Chim. Acta 398 (1999) 297.
    [33]E. Vassileva, K. Hadjiinov, T. Stoychev, C. Daiev, Chromium speciation analysis by solid-phase extraction on a high surface area TiO2, Analyst 125 (2000) 693.
    [34]A.C. Sahayam, Speciation of Cr(III) and Cr(VI) in potable wates by using activated neutral alumina as collector and ET-AAS for determination, Anal. Bioanal. Chem.372 (2002) 840.
    [35]J. Saurina, C. Leal, R. Compano, M. Granados, R. Tauler, M.D. Prat, Determination of triphenyltin in sea-water by excitation-emission matrix fluorescence and multivariate curve resolution, Anal. Chim. Acta 409 (2000) 237.
    [36]Y. Yamini, N. Amiri, Solid-phase extraction, separation, and visible spectrophotometric determination of trace amounts of ion in water samples, H. AOAC Int,84 (2001) 713.
    [37]M. Shamsipur, A. Avanes, M.K. Rofouei, H. Sharghi, G. Aghapour, Solid-phase extraction and determination of ultra trace amounts of copper(II) using octadecyl silica membrane disks modified by 11-hydrocynaphthacene-5,12-quinone and flame atomic absorption spectrometry, Talanta 54 (2001) 863.
    [38]O.R. Hashemi, M.R. Kargar, F. Raoufi, A. Moghimi, H. Aghabozorg, M.R. Ganjali, Separation and preconcentration of trace amounts of lead on octadecyl silica membrane disks modified with a new S-containin Schiff's base and its determination by flame atomic absorption spectrometry, Microchem. J.69 (2001) 1.
    [39]M. Shamsipur, F. Raoufi, H. Sharghi, Solid phase extraction and determination of lead in soil and water samples using octadecyl silica membrane disks modified by bis[1-hydroxy-9,10-anthraquinone-2-methyl]sulphide and flame atomic absorption spectrometry, Talanta 52 (2000) 637.
    [40]R.J. Kvitek, J.F. Evans, P.W. Carr, Diamine/silane-modified controlled pore glass. The covalent attachment reaction from aqueous solution and the mechanism of reaction of bound diamine with copper(Ⅱ), Anal. Chim. Acta 144 (1983) 93.
    [41]A.R. Sarkar, P.K.Datta, M. Sarkar, Sorption recovery of metal ions using silica gel modified with salicylaldoxime, Talanta 43 (1996) 1857.
    [42]J.L. Gomez-Ariza, J.A. Pozas, I.Giraldez, E. Morales, Use of solid phase extraction for speciation of selenium compounds in aqueous excironmental samples, Analyst 124 (1999) 75.
    [43]O. Evans, B.J. Jacobs, A.L. Cohen, liquid-solid extraction of tributyltin from marine sediments, Analyst 116(1991) 15.
    [44]R. Compano, M Granados, C. Leal, M.D. Prat, Solid-phase extraction and spectrofluorimetric determination of triphenyltin in environmental samples, Anal. Chim. Acta 283(1993)272.
    [45]R.E. Sturgeon, S.S. Berman, S.N. Willie, Concentration of trace metals from sea-water by complexation with 8-hydroxyquinoline and adsorption on C18-bonded silica gel, Talanta 29 (1982)167.
    [46]R.E. Sturgeon, S.N. Willie,S.S. Berman, Preconcentration of selenium and antimony from seawater for determination by graphite furnace atomic absorption spectrometry, Anal. Chem. 57 (1985)6.
    [47]A.B. Tawali, G. Schwedt, Combination of solid phase extraction and flame atomic absorption spectrometry for differentiated analysis of labile iron(Ⅱ) and iron(Ⅲ) species, Fresenius J. Anal. Chem.357(1997)50.
    [48]L.B. Bjorklund, G.M. Morrison, Determination of copper speciation in freshwater samples through SPE-spectrophotometry, Anal. Chim. Acta 343 (1997) 259.
    [49]Y. Yamini, A. Tamaddon, Solid-phase extraction and spectrophotometric determination of trace amounts of copper in water samples, Talanta 49 (1999) 119.
    [50]M. Shamsipur, F. Raoufi, H. Sharghi, Solid phase extraction and determination of lead in soil and water samples using octadecyl silica membrane disks modified by bis[1-hydroxy-9,10-anthraquinone-2-methyl]sulfide and flame atomic absorption spectrometry, Talanta 52 (2000) 637.
    [51]M. Shamsipur, M.H. Mashhadizadeh, Preconcentration of trace amounts silver ion in aqueous samples on octadecyl silica membrane disks modified with hexathia-18-crown-6 and its determination by atomic absorption spectrometry, Fresenius J. Anal. Chem.367 (2000) 246.
    [52]V. Cuculic, M. Mlakar, M. Branica, Synergetic adsorption of copper(Ⅱ) mixed ligand complexes onto the SEP-PAK C18 column, Anal. Chim. Acta 339 (1997) 181.
    [53]A.G. Cox, I.G. Cook, C.W. Mcleod, Rapid sequential determination of chromium(Ⅲ)-chromium(Ⅵ) by flow injection analysis-inductively coupled plasma atomicemission spectrometry, Analyst 110 (1985) 331.
    [54]M. Sperling, S. Xu, B. Welz, Determination of chromium(Ⅲ) and chromium(Ⅵ) in water using flow injection on-line preconcentration with selective adsorption on activated alumina and flame atomic absorption spectrometric detection, Anal, Chem.64 (1992) 3101.
    [55]E. Vassileva, K. Hadjiinov, T. Stoychev, C. Daiev, Chromium speciation analysis by solid-phase extraction on a high surface area TiO2, Analyst 125 (2000) 693.
    [56]E. Vassileva, I. Proinova, K. Hadjiinov, Solid-phase extraction of heavy metal ions on a high surface area titanium dioxide, Analyst 121 (1996) 607.
    [57]J.L. Manzoori, M.H. Sorouraddin, F. Shemirani, Chromium speciation by a surfactant-coated alumina micro-column using electrothermal atomic absorption spectrometry, Talanta 42 (1995) 1151.
    [58]E. Vassileva, K. Hadjiinov, Determination of trace elements in AR grade alkali salts after preconcentration by column solid-phase extraction on TiO2 (anatase), Fresenius J. Anal. Chem.357(1997)881.
    [59]P. Liang, Y. Qin, B. Hu, C. Li, T. Peng, Z. Jiang, Study on the adsorption behavior of heavy metal ions on nanometer-size titanium dioxide with ICP-AES, Fresenius J. Anal. Chem.368 (2000)638.
    [60]C. Kantipuly, S. Katragadda, A. Chow, H.D. Gesser, Chelating polymers and related supports for separation and preconcentration of trace metals, Talanta 37 (1990) 491.
    [61]C.W. Huck, G.K. Bonn, Recent developments in poly-mer-based sorbents for solid-phase extraction, J. Chromatogr. A 885 (2000) 51.
    [62]N. Masque, R.M. Marce, F. Borrull, New Polymeric and other types of sorbents for solid-phase extraction of polar organic micropollytants from environmental water, Trends Anal. Chem.17(1998)384.
    [63]L. Elci, L.M. Soylak, A. Uzun, E. Buyukpatir, M. Dogan, Determination of trace impurities in some nickel compounds by flame atomic absorption spectrometry after solid phase extraction using Amberlite XAD-16 resin, Fresenius J. Anal. Chem.368 (2000) 358.
    [64]O. Abollino. M. Aceto, M.C. Bruzzoniti, E. Mentasti, C. Sarzanini, Determination of metals in highly saline matrices by solid-phase extraction and slurry-sampling inductively coupled plasma-atomic emission spectrometry, Anal. Chim. Acta 375 (1998) 293.
    [65]S. Saracogly, L. Elci, Column solid-phase extraction with Chromosorb-102 resin and determination of trace elements in water and sediment samples by flame atomic absorption spetrometry, Anal. Chim. Acta 452 (2002) 77.
    [66]K. Isshiki, Y. Sohrin, H. Karatani, E. Nakayama, Preconcentration of chromium(Ⅲ) and Chromium(VI) in sea water by complexation with quinolin-8-ol and adsorption on macroporous resin, Anal. Chim. Acta 224 (1989) 55.
    [67]O. Abollino, E. Mentasti, V. Porta, C. Sarzanini, Immobilized 8-oxine uits on different solid sorbents for the uptake of metal traces, Anal. Chem.62 (1990) 21.
    [68]A. Tunceli, A.R. Turker, Speciation of Cr(Ⅲ) and Cr(Ⅵ) in water after preconcentration of its 1,5-diphen-ylcarbazone complex on amberlite XAD-16 resin and determination by FAAS, Talanta 57 (2002) 1199.
    [69]A.G. Howard, M.H. Arbab-Zavar, The preconcentration of mercury and methylmercury on dithizone-coated polystyrene beads, Talanta 26 (1979) 895.
    [70]P. Bermejo-Barrera, G. Gonzalez-Campos, M. Ferron-Novais, A. Bennejo-Barrera, Column preconcentration of organotin with tropolone-immobilized and their determination by electrothermal atomization absorption spectrometry, Talanta 46 (1998) 1479.
    [71]P. Bennejo-Barrera, R.M. Anllo-Sendin, M.J. Cantelar-Barbazan, A. Bermejo-Barrera, Selective preconcentration and determination of tributyltin in fresh water by electrothermal atomic absorption spectrometry, Anal. Bioanal. Chem.372 (2002) 837.
    [72]C.S.L. Ferreira, C.F. de Brito, A.F. Dantas, N.M. lopo de Araujo, A.C.S. Costa, Nickel determination in saline matrices by ICP-AES after sorption on Amberlite XAD-2 loaded with PAN, Talanta 48 (1999) 1173.
    [73]K. Isshiki, F. Tsuju, T.Kuwamoto, E. Nakayama, Preconcentration of trace metals from seawater with 7-dodecenyl-8-quinolinol impregnated macroporous resin, Anal. Chem.59 (1987)2491.
    [74]A. Ramesh, K.R. Mohan, K. Seshaiah, Preconcentration of trace metals on Amberlite XAD-4 resin coated with dithiocarbamates and determation by inductively coupled plasma-atomic emission spectrometry in saline matrices, Talanta 57 (2002) 243.
    [75]A.N. Masi, R.A. Olasina, Preparation and characterization of chelating resins loaded with 2-(5-bromo-2-pyridylazo)-5(diethylamino)phenol for preconcentration of rare earth elements, Freseniun J. Anal. Chem.357 (1997) 65.
    [76]M.E. Leon-Gonzalez, L.V. Perez-Arribas, Chemically modified polymeric sorbents for sample preconcentration, J. Chromatogr. A 902 (2000) 3.
    [77]R. Saxena, A.K. Singh, D.P.S. Rathore, Salicylic acid functionalized polystysrene sorbent Amberlite XAD-2. Synthesis and applications as a preconcentrator in the determination of zinc(Ⅱ) and lead(Ⅱ) by using atomic absorption spectrometry, Analyst 120 (1995) 403.
    [78]P.K. Tewari, A.K. Singh, Thiosalicylic acid-immobilized Amberlite XAD-2:metal sorption behavior and applications in estimation of metal ions by flame atomic absorption spectrometry, Analyst 125 (2000) 2350.
    [79]R. Saxena, A.K. Singh, Pyrocatechol violet immobilized Amberlite XAD-2:synthesis and metal-ion uptake properties suitable for analytical applications, Anal. Chim. Acta 340 (1997) 285.
    [80]P.K. Tewari, A.K. Singh, Amaberlite XAD-2 functionalized with chromotropic acid:synthesis of a new polymer matrix and its applications in metal ion enrichment for their determination by flame atomic absorption spectrometry, Analyst 124 (1999) 1847.
    [81]P.K. Tewari, A.K. Singh, Synthesis, characterization and application of pyrocatechol modified amberlite XAD-2 resin for preconcentration and determination of metal ions in wate samples by flame atomic absorption spectrometry, Talanta 53 (2001) 823.
    [82]P.K. Tewari, A.K. Singh, Preconcentraiton of lead with Amberlite XAD-2 Amberlite XAD-7 based chelating resins for its determination by flame atomic absorption spectrometry, Talanta 56(2002)735.
    [83]M. Kumar, D.P.S. Rathore, A.K. Singh, Metal ion enrichment with Amaberlite XAD-2 functionalized with Tiron:analytical application, Analyst 125 (2000) 1221.
    [84]M.C. Yebra-Biurrun, M.C. Garcia-Dopazo, A. Bennejo-Barrera, M.P. Bennejo-Barrera, Preconcentration of trace amounts of manganese from natural waters by means of a macroreticular poly(dithiocarbamate)resin, Talanta 39 (1992) 671.
    [85]N. Uehara, A. Katamine, Y. Shijo, High-performance liquid chromatographic detennination of cobalt(Ⅱ) as the 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol chelate after preconcentration with a cation-exchange resin, Analyst 119 (1994) 1333.
    [86]B.C. Mondal, D. Das, A.K. Das, Synthesis and characterization of a new resin functionalized with 2-naphthol-3,6-disulfonic acid and its application for the speciation of chromium in natural water, Talanta 56 (2002) 145.
    [87]J.L. Lundgren, A.A. Schilt, Analytical studies and applications of ferroin type chromogens immobilized by adsorption on a styrene-divinylbenzene copolymer, Anal. Chem.49 (1977) 974.
    [88]Y. Cai, G. Jiang, J. Liu, Preconcentration of cobalt with 8-hydroxyquinoline and gas chromatographic stationary phase Chromosorb 105 and its determination by graphite furnace atomic absorption spectrometry, Talanta 57 (2002) 1173.
    [89]F. Shemirani, M. Rahabi, Preconcentration of chromium(Ⅲ) and speciation of chromium by electrothermal atomic absorption spectrometry using cellulose adsorbent, Fresenius J. Anal. Chem.371 (2001) 1037.
    [90]R. Saxena, A.K. Singh, S.S. Sambi, Synthesis of a chelating polymer matrix by immobilizing Alizarin Red-S on Amberlite XAD-2 and its application to the preconcentration of lead(Ⅱ), cadmium(Ⅱ), zinc(Ⅱ) and nickel(Ⅱ), Anal. Chim. Acta 295 (1994) 199.
    [91]S. Hutchinson, G.A. Kearney, E. Home, B. Lynch, J.D. Glennon, M.A. McKervey, S.J. Harris, Solid phase extraction of metal ions using immobilized chelating calixarene tetrahydroxamates, Anal. Chim. Acta 291 (1994) 269.
    [92]K. Dev, G.N. Rao, Preparation and analytical properties of a chelating resin containing bicine groups, Talanta 42 (1995) 591.
    [93]B. Sengupta, J. Das, Preconcentration of trace amounts of mercury(Ⅱ) in water on picolinic acid amide-containing resin, Anal. Chim. Acta 219 (1989) 339.
    [94]P.K. Tewari, A.K. Singh, Amberlite XAD-7 impregnated with Xylenol Orange; a chelating collector for preconcentration of Cd(Ⅱ), CO(Ⅱ), Cu(Ⅱ), Ni(Ⅱ), Zn(Ⅱ) and Fe(Ⅲ) ions prior to their determination by flame AAS, Fresenius J. Anal. Chem.367 (2000) 562.
    [95]B. Wen, X.-Q. Shuan, J. Lian, Separation of Cr(Ⅲ) and Cr(VI) in river and reservoir water with 8-hydroxyquinoline immobilized polyacrylonitrile fiber for determination by inductively coupled plasma mass spectrometry, Talanta 56 (2002) 681.
    [96]C. Duran, H. Senturk, L. Elci, M. Soylak, M. Tufekci, Simultaneous preconcentration of Co(Ⅱ), Ni(Ⅱ), Cu(Ⅱ), and Cd(Ⅱ) from environmental samples on Amberlite XAD-2000 column and determination by FAAS, J. Hazard. Mater,162 (2009) 292.
    [97]C. Duran, A. Gundogdu, V. Bulut, M. Soylak, L. Elci, H. Senturk, M. Tufekci, Solid-phase extraction of Mn(Ⅱ), Co(Ⅱ), Ni(Ⅱ), Cu(Ⅱ), Cd(Ⅱ) and Pb(Ⅱ) ions from environmental samples by flame atomic absorption spectrometry (FAAS), J. Hazard. Mater.146 (2007) 347.
    [98]B. Gong, Y. Wang,ICP-AES determination of traces of noble metal ions pre-concentrated and separated on a new polyacrylacylaminothiourea chelating fiber, Anal. Bioanal. Chem.372 (2002)597.
    [99]M.E. Malla, M.B. Alvarez, D.A. Batistoni, Evaluation of sorption and desoption characteristics of cadmium, lead and zinc on Amberlite IRC-718 iminodiacetate chelating ion exchanger, Talanta 57 (2002) 277.
    [100]M. Bueno, M. Potin-Gautier, Solid-phase extraction for the simultaneous preconcentration of organic (seleno-cystine) and inorganic [Se(Ⅳ), Se(Ⅵ)] selenium in natural waters, J. Chromatogr. A 963 (2002) 185.
    [101]M. Llobat-Estelles, A.R. Mauri-Aucejo, M.D. Lopez-Catalan, Spectrophotometric determination of chromium with dipheylcarbazide in the presence of vanadium, molybdenum, and iron after separation by solid-phase extraction, Fresenius J. Anal. Chem. 371 (2001)358.
    [102]A. Afkhami, T. Madrakian, A.A. Assl, A.A. Sehhat, Solid phase extraction flame atomic absorption spectrometric determination of ultra-trace beryllium, Anal. Chim. Acta 437 (2001) 17.
    [103]R. Compano, R. Ferrer, J. Guiteras, M.D. Prat, Spectrofluorimetric detection of zinc and cadmium with 8-(benzene sulfonamido)-quinoline immobilized on a polymeric matrix, Analyst 119(1994)1225.
    [104]S. Hoshi, H. Fujisawa, K. Nakamura, S. Nakata, M. Uto, K. Akatsuka, Preparation of Amberlite XAD resins coated with dithiosemicarbazone compounds and preconcentration of some metal inos, Talanta 41 (1994) 503.
    [105]D.W. Lee, M. Halmann, Selective separation of nickel(Ⅱ) by dimehtylglyoxime-treated polyurethane foam, Anal. Chem.48 (1976) 2214.
    [106]T. Braun, A.B. Farag, Plasticized open-cell polyurethane foam as a universal matrix for organic reagents in trace element preconcentration. Part Ⅲ. Collection of cobalt traces in 1-nitroso-2-naphthol and diethyldithiocarbamate foams, Anal. Chim. Acta 76 (1975) 107.
    [107]A. Alexandrova, S. Arpadjan, Determination of trace elements in analytical-reagent grade sodium salts by atomic absorption spectrometry and inductively coupled plasma atomic emission spectrometry after preconcentration by colunm solid phase extraction, Analyst 118 (1993)1309.
    [108]D.S. Jesus, R.J. Cassella, S.L.C. Ferreira, A.C.S. Costa, M.S. Carvalho, R.E. Santelli, Polyurethane foam as a sorbent for continuous flow analysis:preoncentration and spectrophotometric determination of zinc in biological materials, Anal. Chim. Acta 366 (1998)263.
    [109]C.S.L. Ferreira, H.C. Santos, D.S. Jesus, Molybdenum determination in iron matrices by ICP-AES after separation and preconcentration using polyurethane foam, Fresenius J. Anal. Chem.369(2001)187.
    [110]I.A. Veselova, T.N. Shekhovtsova, Visual determination of lead(Ⅱ) by inhibitiong of alkaline phosphatase immobilized on polyurethane foam, Anal. Chim. Acta 413 (2000) 95.
    [111]S. Tian, G. Schwedt, Solid-phase extraction of the chromium(Ⅲ)-diphenylcarbazone complex prior to ion-pair chromatography and application to geological samples, Fresenius J. Anal. Chem.354 (1996) 447.
    [112]A.N. Anthemidis, G.A. Zachariadis, J.A. Stratis, Online solid phase extraction system using PTFE packed column for the flame atomic absorption spectrometric determination of copper in water samples, Talanta 54 (2001) 935.
    [113]A.N. Anthemidis, G.A. Zachariadis, J.S. Kougoulis, J.A. Stratis, Flame atomic absorption spectrometric determination of chromium by on-line preconcentration system using a PTFE packed column, Talanta 57 (2002) 15.
    [114]G.A. Zachariadis, A.N. Anthemidis, P.G. Bettas, J.A. Stratis, Determination of lead on-line pahse extraction using a PTFE micro-column and flame atomic absorption spectrometric, Talanta 57(2002)919.
    [115]S. Nielsen, E.H. Hansen, Selective flow-injextion quantification of ultra-trace amounts of Cr via on-line complexation and preconcentration with APDC followes by determination by electrothermal atomic absorption spectrometry, Anal. Chim. Acta 366 (1998) 163.
    [116]C. Shuyu, Z. Zhifeng, Y. Huaming, Dithione as chelator in the flow injection separation and pre-concentration system of trace metals in biological samples, Anal. Chim. Acta 451 (2002) 305.
    [117]S. Tsakovski, K. Benkhedda, E. Ivanova, F.C. Adams, Comparative study of 8-hydroxyquinoline derivatives as chelating reagents for flow-injection preconcentration of cobalt in a knotted reactor, Anal. Chim. Acta 453 (2002) 143.
    [118]LA. Kovalev, L.V. Bogacheva, G.I. Tsysin, A.A. Formanovsky, Y.A. Zolotov, FIA-FAAS system including on-line solid phase extraction for the determination of palladium, platinum and rhodium in alloys and ores, Talanta 52 (2000) 39.
    [119]I.E. De Vito, R.A. Olsina, A.N. Masi, Enrichment method for trace amounts of rare earth elements using chemofiltration and XRF determination, Fresenius J. Anal. Chem.368 (2000) 392
    [120]J.P. Riley, D. Taylor, Chelating resins for the concentration of trace elements from sea water and their analytical use in conjunction with atomic absorption spectrophotometry, Anal. Chim. Acta 40 (1968) 479.
    [121]R. Boniforti, R. Ferraroli, P. Frigieri, D. Heltai, G. Queirazza, Intercomparison of five methods for the determination of trace metals in sea water, Anal. Chim. Acta 162 (1984) 33.
    [122]M. Pesavento, R. Biesuz, Sorption of divalent metal ions on an iminodiacetic resin from artificial seawater, Anal. Chim. Acta 346 (1997) 381.
    [123]S.C. Pai, Pre-concentration efficiency of Chelex-100 resin for heavy metals in seawater. Part 2. Distribution of heavy metals on a Chelex-100 column and optimization of the column efficiency by a plate simulation method, Anal. Chim. Acta 211 (1988) 271.
    [124]P. Hashemi, A. Olin, Equilibrium and kinetic properties of a fast iminodiacetate based chelating ion exchanger and its incorporation in a FIA-ICP-AES system, Talanta 44 (1997) 1037.
    [125]H. Kumagai, Y. Inoue, T. Yokoyama, T.M. Suzuki, T. Suzuki, Chromatographic selectivity of rare earth elements in iminodiacetate-type chelating resins having spacer arms of different lengths:importance of steric flexibility of functional group in a polymer chelating resin, Anal. Chem.70(1998)4070.
    [126]O. Abollino, M. Aceto, M.C. Bruzzoniti, E. Mentasti, C. Sarzanini, Speciation of copper and manganese in milk by solid-phase extraction/inductively coupled plasma-atomic emission spectrometry, Anal. Chim. Acta 375 (1998) 299.
    [127]C.Gueguen, C. Belin, B.A. Thomas, F. Monna, P.Y. Favarger, J. Dominik, The effect of freshwater UV-irradiation prior to resin preconcentration of trace metals, Anal. Chim. Acta 386(1999)155.
    [128]D.J. Hutchinson, A.A. Schilt, Investigation of the adsorption of ferroin-type ligands and metal chelates on activated carbons for applications in reagent purification and trace metal enrichment and determination, Anal. Chim. Acta 154 (1983) 159.
    [129]A. Afkjami, T. Madrakian, Kinetic-spectrophotometric determination of selenium in natural water after preconcentration of elemental selenium on activated carbon, Talanta 58 (2002) 311.
    [130]E. Piperaki, H. Berndt, E. Jackwerth, Investigations on the sorption of metal chelates on activated carbon, Anal. Chim. Acta 100 (1978) 589.
    [131]Y. Petit de Pena, M. Gallego, M. Varcarcel, Flame atomic absorption spectrometric determination of cadmium in biological samples using a preconcentration flow system with an activated carbon column and dithizone as a chelating agent, J. Anal. At. Spectrom.9 (1994) 691.
    [132]T. Aydemir, S. Gucer, Determination of nickel in urine by flame atomic absorption spectrometry after activated carbon enrichment, Anal. Lett.29 (1996) 351.
    [133]M. Soylak, I. Narin, L. Elci, M. Dogan, Atomic absorption-spectrometric determination of copper, cadmium, lead and nickel in urine samples after enrichment and separation procedure on an activated carbon column, Trace Elem. Electrolytes 16 (1999) 131.
    [134]M. Yaman, S. Gucer, Determination of cadmium and lead in vegetables after activated-carbon enrichment by atomic absorption spectrometry, Analyst 120 (1995) 101.
    [135]S.P. Quinaia, J.B.B. Da Silva, M.C.E. Rollemberg, A.J. Curtius, Preconcentration of lead complexed with O,.O-diethyl-dithiophosphate by column solid-phase extraction using different sorbents in a flow injection system coupled to a flame atomic absorption spectrometer, Talanta 54 (2001) 687.
    [136]T. Ferri, E. Cardarelli, B.M. Petronio, Determination of tin and triorganotin compounds in sea-water by graphite-furnace atomic-absorption spectrophotometry, Talanta 36 (1989) 513.
    [137]Q. He, Z. Hu, Y. Jiang, X.J. Chang, Z.F. Tu, L.N. Zhang, Preconcentration of Cu(Ⅱ), Fe(Ⅲ) and Pb(Ⅱ) with 2-((2-aminoethylamino)methyl)phenol-functionalized activated carbon followed by ICP-OES determination, J. Hazard. Mater.175 (2010) 710-714.
    [138]M.S. Karacan, N. Aslantas, Simultaneous preconcentration and removal of iron, chromium, nickel with N,N'-etylenebis-(ethane sulfonamide) ligand on activated carbon in aqueous solution and determination by ICP-OES, J. Hazard. Mater.155 (2008) 551-557.
    [139]Z.F. Tu, Q. He, X.J. Chang, Z. Hu, R. Gao, L.N. Zhang, Z.H. Li, 1-(2-Formamidoethyl)-3-phenylureafunctionalized activated carbon for selective solid-phase extraction and preconcentration of metal ions, Anal. Chim. Acta 649 (2009) 252-257.
    [140]M. Ghaedi, A. Shokrollahi, A.H. Kianfar, A. Pourfarokhi, N.Khanjari, A.S. Mirsadeghi, M. Soylak, Preconcentration and separation of trace amount of heavy metal ions on bis(2-hydroxyacetophenone)ethylendiimine loaded on activated carbon, J. Hazard. Mater.162 (2009) 1408-1414.
    [141]C.F. Poole, A.D. Gunatilleka, R. Sethuraman, Contributions of theory to method development in solid-phase extraction, J. Chromatogr. A 885 (2000) 17.
    [142]M. Pesavento, E. Baldini, Study of soption of copper(Ⅱ) on complexing resin columns by solid phase extraction, Anal. Chim. Acta 389 (1999) 59.
    [143]K. Hirose, Y. Dokiya, Y. Sugimura, Determination of conditional stability constants of organic copper and zinc complexes dissolved in seawater using ligand exchange method with EDTA, Mar. Chem.11 (1982) 343.
    [144]P.J.M. Buckley, C.M.G. van den Berg, Copper complexation profiles in the Atlantic ocean. A comparative study using electrochemical and ion exchange techniques, Mar. Chem.19 (1986)281.
    [145]Y. Yamini, J. Hassan, R. Mohandesi, N. Bahramifar, Preconcentration of trace amounts of beryllium in water sample on octadecyl silica cartridges modified by quinalizarine and its determination with atomic absorption spectrometry, Talanta 56 (2002) 375.
    [146]胡振元,施梅儿.痕量环境有机污染物分析中的样品前处理技术[J].化学世界.1999,(1):563-567.
    [147]赵进英,李金昶.固相萃取技术及其在环境分析中的应用[J].化学工程师.2002,90(3):29-31.
    [148]叶振福.高效液相色谱法分析水中多环芳烃(PAHs) [J]厦门科技.1999,(4):38.
    [149]贾瑞宝.水中痕量多环芳烃(PAHs)类环境污染物检测方法的研究[J].中国环境检测.1999,15(1):40-42.
    [150]朱坚,汪国权.食品中危害残留物的现代分析技术[M].上海:同济大学出版社.2003.[151]林玉君,解光武,徐小静,贾静.固相膜萃取-气相色谱/离子阱质谱法测定水中17种多环芳烃[J].广州化工.2010,37(5):210-214.
    [152]康跃惠,张干,盛国英.固相萃取法测定水源水中的有机磷农药中国环境科学.2000,20(1):1-4.
    [153]孙锡浩,陈雁君,卢英华等.水中硫双威固相萃取方法的研究[J].济宁医学院学报.1998,21(3):17-19.
    [154]何淼.固相萃取技术在环境有机污染物分析中的应用[硕十论文].北京:中国地质科学院.2007.
    [155]许建华.应用固相萃取富集环境空气中痕量有机化合物[J].环境监测管理与技术.1997,9(6):14-]6.
    [156]Cui Y., Chang X., Zhai Y, et al. ICP-AES determination of trace elements after preconcentrated with p-dimethylaminobenzaldehyde-modified nanometer SiO2 from sample solution[J]. Microchem. J.2006,83:35-41.
    [157]王琳,刘国宏,张新荣.纳米Ti02固相萃取电感耦合等离子体质谱法测定雪水中的痕量金属离子[J].分析化学.2004,32:1006-1010.
    [158]程永华,李青彬.固相萃取富集-火焰原子吸收法测定水中痕量铜[J].化学试剂.2010,32(8):718-720.
    [159]Kadriye Ozlem Saygi, Mustafa Tuzen, Mustafa Soylak, et al. Chromium speciation by solid phase extraction on Dowex M4195 chelating resin and determination by atomic absorption spectrometry[J]. J. Hazard. Mater.2008,153:1009-1014.
    [160]Liu R., Liang P.. Determination of trace lead in water samples by graphite furnace atomic absorption spectrometry after preconcentration with nanometer titanium dioxide immobilized on silica gel[J]. J. Hazard. Mater.2008,152:166-171.
    [161]Liu Y., Liang P., Guo L. Nanometer titanium dioxide immobilized on silica gel as sorbent for preconcentration of metal ions prior to their determination by inductively coupled plasma atomic emission spectrometry[J]. Talanta.2005,68:25-30.
    [162]Liu R., Liang P.. Determination of gold by nanometer titanium dioxide immobilized on silica gel packed microcolumn and flame atomic absorption spectrometry in geological and water samples[J]. Anal. Chim. Acta.2007,604:114-118.
    [163]Stafford CG St,ClaireⅢRL, High-performance liquid chromatography analysis of the lactone and carboxylate forms of a topoisomerase I inhibitor in plasma[J]. J. Chromatogr. B. 1995,633:119.
    [164]Lu G., Jun H.W. Determination of trace methotrexate and 7-OH-methotrixate in plasma by high-performance liquid chromatography with fluorimetric detection[J]. J. Liq. Chromatogr. 1995,18(1):155-171.
    [165]陈騉,王睿,王静.固相萃取HPLC检测生物样品中甲苯磺丁腺和代谢产物及其人体药代动力学研究[J].药物分析杂志.2005,25(1):50-54.
    [166]王丽梅,固相萃取-HPLC法快速测定苯妥英钠及卡马西平的血药浓度[J].中国新医药.2003,3(3):42-45.
    [167]丁劲松,彭文兴,张祖.固相萃取结合HPLC2MS测定人血浆中奥曲肽的浓度及相对生物利用度[J].药学学报.2004,16(7):62-65.
    [168]张毕奎,李焕德,邓航.柱前衍生HPLC法结合固相萃取测定血浆中卡托普利[J].药物分析杂志.2002,22(1):28-30.
    [169]Chen H.J., Zhang L., Cox J., et al. DNA Adducts of 2,3-Epoxy-4-hydroxynonanal:Detection of 7-(1',2'-Dihydroxyheptyl)-3H-imidazo[2,1-i]purine and 1,N6-Ethenoadenine by Gas Chromatography/Negative Ion Chemical Ionization/Mass Spectrometry[J]. Chem. Res. Toxicol.1998,11(12):1474.
    [170]Deforcel D.L., Lemiere F., Hoes L., et al. Analysis of the DNA adducts of phenyl glycidyl ether in a calf thymus DNA hydrolysate by capillary zone electrophoresis-electrospray mass spectrometry:evidence for phosphate alkylation[J]. Carcinogenesis.1998,19(6):1077-1086.
    [171]高立勤,刘文英.固相萃取技术及其在生物样本分析中的应用与进展[J].药学进展.1997,21(1):8-13.
    [172]Zhizhina G.P., Blyukhterova N.V. Biochemistry (Moscow).1997,62(1):88-94.
    [173]Fiori M., Pierdminici E., Longo F. Identification of main corticosteroids as illegal feed additives in milk replacers by liquid chromatography-atmospheric pressure chemical ionisation mass spectrometry [J]. J. Chromatogr. A.1998,807(2):219-227.
    [174]鲁杰,杨大进,方从容.固相萃取-高效液相色谱法用于保健食品中违禁添加物枸橼酸西地那非的分析[J].中国卫生检验杂志.2007,17(9):36-38.
    [175]李俊,郭晓关,任玉娟,王震.蔬菜水果中农药残留检测方法的优化[J].贵州农业科学.2010,38(8):246-249.
    [176]张燕,郭天鑫,于姣等.离子交换固相萃取高效液相色谱联用法检测食品中的5-羟甲基糠醛[J].食品科学.2010,31(18):212-215.
    [177]黄武,章晶晶,郁小朴,孙艳波.固相萃取—高效液相色谱法检测鱼粉中三聚氰胺[J].2010,38(8):192-194.
    [1]A. Oliveira, M. Pampulha, Effects of long-term heavy metal contamination on soil microbial characteristics, J. Biosci. Bioeng.102 (2006)157-161.
    [2]D. Chen, B. Hu, C. Huang, Chitosan modified ordered mesoporous silica as micro-column packing materials for online flow injection-inductively coupled plasma optical emission spectrometry determination of trace heavy metals in environmental water samples, Talanta 78 (2009) 491-497.
    [3]N. Rajesh, B. Deepthi, A. Subramaniam, Solid phase extraction of chromium(VI) from aqueous solutions by adsorption of its ion-association complex with cetyltrimethylammoniumbromide on an alumina column, J. Hazard. Mater.144 (2007) 464-469.
    [4]N. Rajesh, G. Gurulakshmanan, Solid phase extraction and spectrophotometric determination of mercury by adsorption of its diphenylthiocarbazone complex on an alumina column, Spectrochimica Acta Part A 69 (2008) 391-395.
    [5]A.Tunceli, R. Turker, Speciation of Cr(Ⅲ) and Cr(Ⅵ) in water after preconcentration of its 1,5-diphenylcarbazone complex on amberlite XAD-16 resin and determination by FAAS, Talanta 57 (2002) 1199-1204.
    [6]J. Fan, C. Wu, Y. Wei, C. Peng, P. Peng, Preparation of xylenol orange functionalized silica gel as a selective solid phase extractor and its application for preconcentration—separation of mercury from waters, J. Hazard. Mater.145 (2007) 323-330.
    [7]W. Ngeontae, W. Aeungmaitrepirom, T. Tuntulani, Chemically modified silica gel with aminothioamidoanthraquinone for solid phase extraction and preconcentration of Pb(II), Cu(Ⅱ), Ni(Ⅱ), Co(Ⅱ) and Cd(Ⅱ), Talanta 71 (2007) 1075-1082.
    [8]C. Gustavo Rocha de, A. Ilton Luiz de, R. Paulo dos Santos, Synthesis, characterization and determination of the metal ions adsorption capacity of cellulose modified with p-aminobenzoic groups, Mater. Res.7 (2004) 329-334.
    [9]O. Kalfa, O. Yalcinkaya, A. Turker, Synthesis of nano B2O3/TiO2 composite material as a new solid phase extractor and its application to preconcentration and separation of cadmium, J. Hazard. Mater.166 (2009) 455-461.
    [10]Q. Zhou, X. Zhao, J. Xiao, Preconcentration of nickel and cadmium by TiO2 nanotubes as solid-phase extraction adsorbents coupled with flame atomic absorption spectrometry, Talanta,77 (2009) 1774-1777.
    [11]M. Ghaedi, M. Montazerozohori, M. Soylak, Solid phase extraction method for selective determination of Pb(II) in water samples using 4-(4-methoxybenzylidenimine) thiophenole, J. Hazard. Mater.142 (2007) 368-373.
    [12]N. Rajesh, G. Gurulakshmanan, Solid phase extraction and spectrophotometric determination of mercury by adsorption of its diphenylthiocarbazone complex on an alumina column, Spectrochim. Acta Part A 69 (2008) 391-395.
    [13]R. Qadeer, J. Hanif, M. Saleem, M. Afzal, Adsorption of samarium on activated charcoal from aqueous solution, J. Chem. Soc. Pak.14 (2) (1992) 91-96.
    [14]V.A. Lemos, L.S.G. Teixeira, M.A. Bezerra, A.C.S. Costa, J.T. Castro, L. A. M. Cardoso, D.S. de Jesus, E.S. Santos, P.X. Baliza, L.N. Santos, New materials for solid-phase extraction of trace elements, Appl. Spectros. Rev.43 (2008) 303-334.
    [15]Z. Li, X. Chang, Z. Hu, X. Huang, X. Zou, Q. Wu, R. Nie, Zincon modified activated carbon for solid phase extraction, preconcentration of trace lead and chromium from environmental samples, J. Hazard. Mater.166 (2009) 133-137.
    [16]D. Mohan, S. Chander, Single component and multi-component adsorption of metal ions by activated carbons, Colloids surf. A 177 (2000) 183-196.
    [17]A. Ozer, M. Tanyildizi, F. Tumen, Study of cadmium adsorption from aqueous solution on activated carbon from sugar beet pulp, Environ. Technol.19 (1998) 1119-1121.
    [18]M. Ghaedi, A. Shokrollahi, A.H. Kianfar, A.S. Mirsadeghi, A. Pourfarokhi, M. Soylak, The determination of some heavy metals in food samples by flame atomic absorption spectrometry after their separation-preconcentration on bis salicyl aldehyde,1,3 propan diimine (BSPDI) loaded on activated carbon, J. Hazard. Mater.154 (2008) 128-134.
    [19]B. Mikula, B. Puzio, Determination of trace metals by ICP-OES in plant materials after preconcentration of 1,10-phenanthroline complexes on activated carbon, Talanta 71 (2007) 136-140.
    [20]M. Ghaedi, F. Ahmadib, M. Soylak, Preconcentration and separation of nickel, copper and cobalt using solid phase extraction and their determination in some real sample, J. Hazard. Mater.147 (2007) 226-231.
    [21]M.S. Karacan, N. Aslantas, Simultaneous preconcentration and removal of iron, chromium, nickel with N,N'-etylenebis-(ethane sulfonamide) ligand on activated carbon in aqueous solution and determination by ICP-OES, J. Hazard. Mater.155 (2008) 551-557.
    [22]M. Ghaedi, A. Shokrollahi, A. Kianfara, A. Pourfarokhia, N. Khanjaria, A. Mirsadeghia, M. Soylakb, Preconcentration and separation of trace amount of heavy metal ions on bis(2-hydroxy acetophenone)ethylendiimine loaded on activated carbon, J. Hazard. Mater. 162(2009) 1408-1414.
    [23]H. Tang, Organic compound spectra determination, Publishing house of Beijing University, Beijing 1992:124.
    [24]Q. Dong, IR Spectrum Method, Publishing house of the Chemical Industry, Beijing 1979: 104.
    [25]G.L. Long, J.D. Winefordner, ACS committee on Environmental Improvement, Guidelines for data acquisition and data quality evaluation in environmental chemistry, Anal. Chem.52 (1980)2242-2249.
    [1]Hultberg B, Andersson A, Isaksson A, Toxicology 1998,126:203.
    [2]Antochshuk V, Jaroniec M, Chem. Commun.2002, pp:258.
    [3]Fang G Z, Tan J, Yan X P, Anal. Chem.2005,77(6):1734
    [4]R. Gao, Z. Hu, X.J. Chang, Q. He, L.J. Zhang, Z.F. Tu, J.P. Shi, Chemically modied activated carbon with 1-acylthiosemicarbazide for selective solid-phase extraction and preconcentration of trace Cu(Ⅱ), Hg(Ⅱ) and Pb(Ⅱ) from water samples, J. Hazard. Mater.172 (2009) 324-329.
    [5]Liu Y W, Guo Y, Chang X J, Meng S M, Yang D, Din B J, Microchim. Acta 2005,149:95.
    [6]J. Posta, A. Alimonti, F. Petruci, S. Caroli, On-line separation and preconcentration of chromium species in seawater, Anal. Chim. Acta 325 (1996) 185-193.
    [7]C.F. Poole, New trends in solid-phase extraction, TrAC Trends Anal. Chem.22 (2003) 362-373.
    [8]M. Ghaedi, M.R. Fathi, A.Shokrollahi, F. Shajarat, Highly selective and sensitive preconcentration of mercury ion and determination by cold vapor atomic absorption spectroscopy, Anal. Lett.39 (2006) 1171-1185.
    [9]Z. Li, X. Chang, X. Zou, X. Zhu, R. Nie, Z. Hu, R. Li, Chemically-modied activated carbon with ethylenediamine for selective solid-phase extraction and preconcentration of metal ions, Anal. Chim. Acta 632 (2009) 272-277.
    [10]V. Camel, Solid phase extraction of trace elements, Spectrochim. Acta B 58 (2003) 1177-1233.
    [11]D. Mohan, C.U. PittmanJr., Activated carbons and low cost adsorbents for remediation of tri-and hexavalent chromium from water, J. Hazard. Mater.137 (2006) 762-811.
    [12]P. Vassileva, P. Tzvetkova, L. Lakov, O. Peshev, Thiouracil modied activated carbon as asorbent for some precious and heavy metal ions, J. PorousMater.15 (2008) 593-599.
    [13]M.M. Karim, A.K. Das, S.H. Lee, Treatment of colored effluent of the textile industry in Bangladesh using zinc chloride treated indigenous actibated carbons, Anal. Chim. Acta 576 (2006) 37-42.
    [14]Z. Li, X. Chang, Z. Hu, X. Huang, X. Zou, Q. Wu, R. Nie, Zincon modified activated carbon for solid phase extraction, preconcentration of trace lead and chromium from environmental samples, J. Hazard. Mater.166 (2009) 133-137.
    [15]Q. He, Z. Hu, Y. Jiang, X.J. Chang, Z.F. Tu, L.N. Zhang, Preconcentration of Cu(Ⅱ), Fe(Ⅲ) and Pb(Ⅱ) with 2-((2-aminoethylamino)methyl)phenol-functionalized activated carbon followed by ICP-OES determination, J. Hazard. Mater.175 (2010) 710-714.
    [16]M.S. Karacan, N. Aslantas, Simultaneous preconcentration and removal of iron, chromium, nickel with N,N'-etylenebis-(ethane sulfonamide) ligand on activated carbon in aqueous solution and determination by ICP-OES, J. Hazard. Mater.155 (2008) 551-557.
    [17]Z.F. Tu, Q. He, X.J. Chang, Z. Hu, R. Gao, L.N. Zhang, Z.H. Li, 1-(2-Formamidoethyl)-3-phenylureafunctionalized activated carbon for selective solid-phase extraction and preconcentration of metal ions, Anal. Chim. Acta 649 (20069) 252-257.
    [18]M. Ghaedi, A. Shokrollahi, A.H. Kianfar, A. Pourfarokhi, N.Khanjari, A.S. Mirsadeghi, M. Soylak, Preconcentration and separation of trace amount of heavy metal ions on bis(2-hydroxyacetophenone)ethylendiimine loaded on activated carbon, J. Hazard. Mater.162 (2009)1408-1414.
    [19]G. Saini, A. Sharma, S. Kaur, K. Bindra, V. Sathe, S.K. Tripathi,C.G. Mhahajan, Rhodamine 6G interaction with solvents studied by vibrational spectroscopy and density functional theory, Journal of Molecular Structure 931 (2009) 10-19.
    [20]D. Magde, G.E. Rojas, P.G. Seybold, Solvent dependence of the fluorescence life times of xanthene dyes, Photochem. Photobiol.70(5) (1999) 737-744.
    [21]J.P. Brown, G.W. Roehm, R.J. Brown, Mutagenicity testing of certied food colors and related azo xanthene and triphenylmethane dyes with the Sa/mone//a/microsome system, Mutet.Res. 56(1978)249-271.
    [22]Y.W. Liu, X.J. Chang, Y. Guo, S.M. Meng, J. Hazard. Mater. B 135 (2006) 389.
    [23]H. Tang, Publishing house of Beijing University, Beijing 1992, pp 124.
    [24]P.H. Solomom, X.M. Wang, Infrared Adsorption Spectroscopy, Publishing house of Science, Beijing 1984, pp 15-18,27.
    [25]L.J. Zhang, X.J. Chang, Y.H. Zhai, Q. He, X.P. Huang, Z. Hu, N. Jiang, Selective solid phase extraction of trace Sc(Ⅲ) from environmental samples using silica gel modied with 4-(2-morinyldiazenyl)-N-(3-(trimethylsiIyl)propyl) benzamide, Anal. Chim. Acta 629 (2008) 84-91.
    [26]T. Madrakian, A. Afkhami, M. A. Zolgol, M. Solgi, Separation, preconcentration and determination of silver ion from water samples using silica gel modied with 2,4,6-trimorpholino-1,3,5-triazin, J. Hazard. Mater.128 (2006) 67-72.
    [27]G.L. Long, J.D. Winefordner, ACS committee on Environmental Improvement, Guidelines for data acquisition and data quality evaluation in environmental chemistry, Anal. Chem.52 (1980)2242-2249.
    [28]J.Suleiman, B. Hu, H. Peng, C. Huang, Talanta 77 (2009)1579-1583.
    [29]C. Duran, H. Senturk, L. Elci, M. Soylak, M. Tufekci, J. Hazard. Mater.162 (2009) 292-299.
    [30]M. Ezoddin, F. Shemirani, K. Abdi, M. Saghezchi, M. Jamali, J. Hazard. Mater.178 (2010) 900-905.
    [31]C. Duran, A. Gundogdu, V. Bulut, M. Soylak, L. Elci, H. Senturk, M. Tufekci, J. Hazard. Mater.146(2007)347-355.
    [1]J. Medved, M. Bujdos, P. Matus, J. Kubova, Determination of trace amounts of gold in acid-attacked environmental samples by atomic absorption spectrometry with electrothermal atomization after preconcentration, Anal. Bioanal. Chem.379 (2004) 60-65.
    [2]H. Ebrahimzadeh, N. Tavassoli, M.M. Amini, Y. Fazaeli, H. Abedi, Determination of very low levels of gold and palladium in wastewater and soil samples by atomic absorption after preconcentration on modified MCM-48 and MCM-41 silica, Talanta 81 (2010) 1183-1188.
    [3]L. Elci, D. Sahan, A. Basaran, M. Soylak, Environ, olid phase extraction of gold(Ⅲ) on Amberlite XAD-2000 prior to its flame atomic absorption spectrometric determination, Monit. Assess.132 (2007) 331-338.
    [4]H. Chen, A.Q. Wang, Adsorption of heavy metal ions with carbon nanotubes, J Colloid Interface Sci.307 (2007) 309-316.
    [5]R. Giustetto, F.X.L. Xamena, G. Ricchiardi, S. Bordiga, A. Damin, R. Gobetto, M. Rchierotti, Maya Blue:A Computational and Spectroscopic Study, J Phys Chem B 109 (2005) 19360-19368.
    [6]J. Huang, Y. Liu, Q. Jin, X. Wang, Adsorption studies of a water soluble dye, Reactive Red MF-3B, using sonication-surfactant-modified attapulgite clay, J. Yang, J Hazard Mater.143 (2007)541-548.
    [7]P. Liu, T.M. Wang, Adsorption properties of hyperbranched aliphatic polyester grafted attapulgite towards heavy metal ions, J Hazard Mater.149 (2007) 75-79.
    [8]Q.H. Fan, D.D. Shao, J. Hu, W.S. Wu, X.K. Wang, Comparison of Ni2+ sorption to bare and ACT-graft attapulgites:Effect of pH, temperature and foreign ions, Surf Sci.602 (2008) 778-785.
    [9]H. Tang, Organic compound spectra determination, Publishing house of Beijing University, Beijing,1992, pp.124.
    [10]Q. Dong, IR Spectrum Method, Publishing house of the Chemical Industry, Beijing,1979, pp. 104.
    [11]Senturk. H. B., Gundogdu. A, Bulut. V. N., et al., J. Hazard. Mater.,2007,149(2),317-323.
    [12]P. Liang, E. Zhao, Q. Ding, D. Du, Multiwalled carbon nanotubes microcolumn preconcentration and determination of gold in geological and water samples by flame atomic absorption spectrometry, Spectrochim. Acta. Part B 63 (2008) 714-717.
    [13]R. Liu, P. Liang, Determination of gold by nanometer titanium dioxide immobilized on silica gel packed microcolumn and flame atomic absorption spectrometry in geological and water samples, Anal. Chim. Acta 604 (2007) 114-118.
    [14]H.B. Senturk, A. Gundogdu, V.N. Bulut, C. Duranc, M. Soylak, L. Elci, M. Tufekci, Separation and enrichment of gold(Ⅲ) from environmental samples prior to its flame atomic absorption spectrometric determination, J. Hazard. Mater.149 (2007) 317-323.
    [15]Q.S. Pu, Z.X. Su, Z.H. Hu, X.J. Chang, M.J. Yang,2-Mercaptobenzothiazole-bonded silica gel as selective sorbent for preconcentration of gold, platinum and palladium prior to their simultaneous inductively coupled plasma optical emission spectrometric determination, J Anal At Spectrom 13 (1998) 249-253.
    [16]W. Nakbanpote, P. Thiravetyan, C. Kalambaheti, Comparison of gold adsorption by chlorella vulgaris, rice hush and activated carbon, Miner. Eng.15 (2002) 549-552.
    [17]G.L. Long, J.D. Winefordner, Guidelines for data acquisition and data quality evaluation in environmental chemistry, Anal. Chem.52 (1980) 2242-2249.
    [1]Medved J, Bujdos M, Matus P, Kubova J (2004) Determination of trace amounts of gold in acid-attacked environmental samples by atomic absorption spectrometry with electrothermal atomization after preconcentration. Anal Bioanal Chem 379:60
    [2]Ebrahimzadeh H, Tavassoli N, Amini MM, Fazaeli Y, Abedi H (2010) Determination of very low levels of gold and palladium in wastewater and soil samples by atomic absorption after preconcentration on modified MCM-48 and MCM-41 silica. Talanta 81:1183
    [3]Elci L, Sahan D, Basaran A, oylakM S (2007) Solid phase extraction of gold(Ⅲ) on Amberlite XAD-2000 prior to its flame atomic absorption spectrometric determination. Environ Monit Assess 132:331
    [4]Manzoori JL, Abdolmohammad-Zadeh H, Amjadi M (2007) Simplied cloud point extraction for the preconcentration of ultra-trace amounts of gold prior to determination by electrothermal atomic absorption spectrometry. Microchim Acta 159:71
    [5]Konecna M, Komarek J (2007) Utilization of electrodeposition for electrothermal atomic absorption spectrometry determination of gold. Spectrochim Acta Part B 62:283
    [6]E1-Shahawi MS, BashammakhAS, Bahaf SO (2007)Chemical speciation and recovery of gold(Ⅰ,Ⅲ) from waste water and silver by liquid-liquid extraction with the ion-pair reagent amiloride mono hydrochloride and AAS determination. Talanta 72:1494
    [7]Yu M, Sun D, Huang R, Tian W, Shen W, Zhang H, Xu N (2003) Determination of ultra-trace gold in natural water by graphite furnace atomic absorption spectrophotometry after in situ enrichment with thiol cotton fiber. Anal Chim Acta 479:225
    [8]Itagaki T, Ashino T, Takada K (2000) Determination of trace amounts of gold and silver in high-purity iron and steel by electrothermal atomic absorption spectrometry after reductive coprecipitation. Fresenius J Anal Chem 368:344
    [9]Pyrzynska K (1999) Adsorption of heavy metal ions with carbon nanotubes. Crit Rev Anal Chem 29:313
    [10]Poole CF (2003) New trends in solid-phase extraction. Trends Anal Chem 22:362
    [11]Dean JR (1998) Extraction Methods for Environmental Analysis. Wiley, NewYork
    [12]Zhang SM, Pu QS, Liu P, Sun QY, Su ZX (2002) Synthesis of amidinothioureido-silica gel and its application to flame atomic absorption spectrometric determination of silver, gold and palladium with on-line preconcentration and separation. Anal Chim Acta 452:223
    [13]Pu Q, Liu P, Sun Q, Su Z (2003) Flame Atomic Absorption Spectrometric Determination of Gold and Palladium Using Microcolumn On-line Preconcentration and Separation. Microchim Acta 143:45
    [14]Chakrapani G, Mahanta PL, Murty DSR, Gomathy B (2001) Preconcentration of traces of gold, silver and palladium on activated carbon and its determination in geological samples by flame AAS after wet ashing. Talanta 53:1139
    [15]lvarez-Ayuso E, Garca-Snchez A (2007) Removal of cadmium from aqueous solutions by palygorskite, J Hazard Mater 147:594
    [16]Chen H, Zhao YG, Wang AQ (2007) Removal of Cu(Ⅱ) from aqueous solution by adsorption onto acid-activated palygorskite. J Hazard Mater 149:346
    [17]Mohan D, PittmanJr CU (2006) Activated carbons and low cost adsorbents for remediation of tri-and hexavalent chromium from water. J Hazard Mater 137:762
    [18]Vassileva P, Tzvetkova P, Lakov L, Peshev O (2008) Thiouracil modied activated carbon as asorbent for some precious and heavy metal ions. J PorousMater 15:593
    [19]Karim MM, Das AK, Lee SH (2006) Treatment of colored effluent of the textile industry in Bangladesh using zinc chloride treated indigenous actibated carbons. Anal Chim Acta 576:37
    [20]Li Z, Chang X, Hu Z, Huang X, Zou X, Wu Q, Nie R (2009) Zincon modified activated carbon for solid phase extraction, preconcentration of trace lead and chromium from environmental samples. J Hazard Mater 166:133
    [21]He Q, Hu Z, Jiang Y, Chang XJ, Tu ZF, Zhang LN (2010) Preconcentration of Cu(Ⅱ), Fe(Ⅲ) and Pb(Ⅱ) with 2-((2-aminoethylamino)methyl)phenol-functionalized activated carbon followed by ICP-OES determination. J Hazard Mater 175:710
    [22]Karacan MS, Aslantas N (2008) Simultaneous preconcentration and removal of iron, chromium, nickel with N,N'-etylenebis-(ethane sulfonamide) ligand on activated carbon in aqueous solution and determination by ICP-OES. J Hazard Mated155:551
    [23]Ghaedi M, Shokrollahi A, Kianfar AH, Pourfarokhi A, Khanjari N, Mirsadeghi AS, Soylak M (2009) Preconcentration and separation of trace amount of heavy metal ions on bis(2-hydroxyacetophenone)ethylendiimine loaded on activated carbon. J Hazard Mater162: 1408
    [24]Tang H (1992) Organic compound spectra determination. Publishing house of Beijing University, Beijing, pp124-159
    [25]Dong Q (1979) IR Spectrum Method. Publishing house of the Chemical Industry, Beijing, pp 104
    [26]Pu QS, Su ZX, Hu ZH, Chang XJ, Yang MJ (1998) 2-Mercaptobenzothiazole-bonded silica gel as selective adsorbent for preconcentration of gold, platinum and palladium prior to their simultaneous inductively coupled plasma optical emission spectrometric determination. J Anal AtSpectrom13:249
    [27]Liu R, Liang P (2007) Determination of gold by nanometer titanium dioxide immobilized on silica gel packed microcolumn and flame atomic absorption spectrometry in geological and water samples. Anal Chim Acta 604:114
    [28]Tuzen M, Saygi K, Soylak M (2008) Novel solid phase extraction procedure for gold(Ⅲ) on Dowex M 4195 prior to its flame atomic absorption spectrometric determination. J Hazard Mater 156:591
    [29]Liang P, Zhao E, Ding Q, Du D (2008) Multiwalled carbon nanotubes microcolumn preconcentration and determination of gold in geological and water samples by flame atomic absorption spectrometry. Spectrochim Acta Part B 63:714
    [30]Senturk HB, Gundogdu A, Bulut VN, Duran C, Soylak M, Elci L, Tufekci M (2007) Separation and enrichment of gold(Ⅲ) from environmental samples prior to its flame atomic absorption spectrometric determination. J Hazard Mater 149:317
    [31]Hang CZ, Hu B, Jiang ZC, Zhang N (2007) Simultaneouson-line preconcentration and determination of trace metals in environmental samples using a modified nanometer-sized alumina packed micro-column by flow injection combined with ICP-OES. Talanta 71:1239
    [31]Long GL, Winefordner JD (1980) Guidelines for data acquisition and data quality evaluation in environmental chemistry. Anal Chem 52:224
    [1]R Pasternack, C Bustamante, PJ Collings, A Giannetto, EJ Gibbs, Prophyrin as semblies on DNA as studied by a resonance light-scattering technique, J. Am. Chem. Soc.115 (1993) 5393-5399.
    [2]J. Li, M.J. Li, J.L. Tang, X.Z. Li, H.Q. Zhang, Y.H. Zhang, Resonance light-scattering spectrometric study of interaction between enzyme and MPA-modified CdTe nanoparticles, Spectrochim. Acta Part A.70 (2008) 514-518.
    [3]L.J. Dong, X.G. Chen, Z.D. Hu, Total internal reflected resonance light scattering determination of protein in human blood serum at water/tetrachloromethane interface with Arsenazo-TB and Cetyltrimethylammonium bromide, Talanta.71 (2007) 555-560.
    [4]R.P. Jia, L.J. Dong, Q.F. LI, X.G. Chen, Z.D. Hu, A highly sensitive assay for protein with dibromochloro-arsenzao-A13+ using resonance light scattering technique and its application, Talanta.57 (2002) 693-700.
    [5]L.J. Dong, Y. Li, Y.H. Zhang, X.G. Chen, Z.D. Hu, A flow injection sampling resonance light scattering sustem for total protein determination in human serum. Spectrochim, Acta Part A. 66(2007)1317-1322.
    [6]L.H. Wu, D. Mu, D.J. Gao, X.Y. Deng, Y. Tian, H.Q. Zhang, A.M. Yu, Determination of protein by resonance light scattering technique using dithiothreitol-sodium dodecylbenzene sulphonate as probe, Spectrochim. Acta Part A.2 (2008) 714-719.
    [7]X. Wu, S.N. Sun, J.H. Yang, M.Q. Wang, L.Y. Liu, C.Y. Guo, Study on the interaction between nucleic acid and Eu3+-oxolinic acid and the determination of nucleic acid using the resonance light scattering technique, Spectrochim. Acta Part A.62 (2005) 896-901.
    [8]Q. Wang, Z.F. Liu, L. Kong, S.P. Liu, Absorption and resonance rayleigh scattering spectra the interaction for copper nanoparticles with vitamin B1, Chinese J. Anal. Chem.35 (2007) 365-369.
    [9]J. Li, M.J. Li, X.Z. Li, J.L. Tang, J. Kang, H.Q. Zhang, Y.H. Zhang, Study on the resonance light-scattering spectrum of lysozyme-DNA/CdTe nanoparticles system, Colloid Surfaces B: Biointerfaces.67 (2008) 79-84.
    [10]Z.G. Chen, W.F. Ding, F.L. Ren, J.B. Liu, Y.Z. Liang, A simple and sensitive assay of nucleic acids based on the enhanced resonance light scattering of zwitterionics, Anal. Chim. Acta.550 (2005) 204-209.
    [11]H. Zhong, J.J. Xu, H.Y. Chen, A rapid and sensitive method for the determination of trace proteins based on the interaction between proteins and ponceau 4R, Talanta.67 (2005) 749-754.
    [12]H. Zhong, N. Li, F.L. Zhao, K.A. Li, Determination of proteins with Alizarin Ted S by Rayleigh light scattering technique, Talanta.62 (2004) 37-42.
    [13]Y. Liu, J.H. Yang, S.F. Liu, X.Wu, B.Y. Su, T. Wu, Resonance light scattering technique for the determination of protein with rutin and cetylpyridine bromide system, Spectrochim. Acta Part A.61 (2005)641-646.
    [14]S.P. Liu, L. Fan, H.L. Hu, Z.F. Liu. Y.H. Chen. Study on the interaction between proteins and some complexon dyes by resonance rayleigh scattering method, Acta Chim. Sin.62 (2004) 1635.
    [15]S.P. Liu, H.Q. Luo, H. Xu, N.B. Li, Resonance Rayleigh scattering study of interaction of heparin with some cationic surfactants and their analytical application, Spectrochim. Acta Part A.61 (2005)861-867.
    [16]R.T. Liu, J.H. Yang, C.X. Sun, X. Wu, L. Li, Z.M. Li, Resonance light-scattering method for the determination of BSA and HSA with sodium dodecyl benzene sulfonate or sodium lauryl sulfate, Anal. Bioanal. Chem.377 (2003) 375-379.
    [17]C.Z. Huang, Y. Liu, Y.H. Wang, H.P. Guo, Resonance light scattering imaging detection of proteins with α,β,γ,δ-tetrakis(p-sulfophenyl)porphyrin, Anal. Biochem.321 (2003) 236-243.
    [18]A.H. Liang, M.J. Zou, Z.L. Jiang, Immunonanogold-catalytic resonance scattering spectral assay of trace human chorionic gonadotrophin, Talanta.75 (2008) 1214-1220.
    [19]L.D. Burtnick, Tb3+ as a luminescent probe of actin structure:Effects of polymerization, K1, and the binding of deoxyribonuclease, Arch. Biochem. Biophys.216 (1982) 81-87.
    [20]W.D. Horrocks, J.M. Yingey, Time-resolved europium(Ⅲ)luminescence excitation spectroscopy:characterization of calcium-binding sites of calmodulin, Biochemistry.27 (1988) 413-419.
    [21]J. Bruno, W.D. Horrcks Jr., R.J. Zauhar, Europium(Ⅲ) lumonescence and tyrosine to terbium(Ⅲ) energy-transfer studies of invertebrate(octopus) calmoduin, Biochemistry.31 (1992)7016-7026.
    [22]C.X. Sun, J.H. Yang, L. Li, X. Wu, Y. Liu, S.F. Liu, J. Advances in the study of luminescence probes for proteins. J. Chromatogr. B 803 (2004) 173-190.
    [23]H. Zhong, K. Wang, H. Chen, Protein analysis with tetra-substituted sulfonated cobalt phthalocyanine by the technique of Rayleigh light scattering, Analytical Biochemistry.330 (2004)37-42.
    [24]H. Zhong, N.Li, F. Zhao, K.Li, Determination of proteins with Alizarin Red S by Rayleigh lights cattering technique, Talanta.62 (2004) 37-42.
    [25]Z. Guo, H. Shen, Sensitive and simple determination of protein by resonance Rayleigh scattering with 4-azochromotropic acid phenylfluorone, Analytica Chimica Acta.408 (2000) 177-182.
    [26]D. Li, H.Yang, H. Zhen, Y. Fang, Q. Zhu, J. Xu, Fluorimetric determination of albumin and globulin in human serum using tetra-substituted sulphonated aluminum phthalocyanine, AnalyticaChimicaActa.401 (1999) 185-189.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700