用户名: 密码: 验证码:
机动卫生装备舱室空气质量及振动环境与人体舒适性、工效性、安全性关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
舱室空气质量及振动环境是机动卫生装备舱室微环境的重要构成因素,直接关系到舱室内医护人员和伤病员的身体健康、工作效率以及生命安全。本文以提高机动卫生装备舱室微环境质量、实现舱室内人员“安全、高效、舒适”为目标,研究了常规和生化防护两种条件下舱室空气质量及振动环境与人体舒适性、工效性、安全性的关系。
     分析了常规条件下舱室空气质量与人体舒适性的影响因素,建立了评价指标体系,确定了舒适性各影响因素的等级标准,提出了舒适性评价的灰色关联度方法。以某急救车为例,研究了高温、高湿条件下开启制冷空调30min和60min时舱室内卧姿伤病员、坐姿伤病员和站姿医护人员的舒适性。结果表明:高温高湿初始条件下舱室内人体舒适性为“不舒适”等级;30min时卧姿伤病员、坐姿伤病员、站姿医护人员的舒适性等级达到“最舒适”和“舒适”等级;60min时舒适性进一步提高;卧姿伤病员的舒适性优于坐姿伤病员和站姿医护人员的舒适性。
     分析了常规和生化防护条件下舱室空气质量与人体工效性的影响因素,分别建立了评价指标体系,确定了工效性各影响因素的等级标准,提出了工效性评价的模糊综合方法。以某急救车和手术方舱为例,分别研究了常规条件下高温、高湿环境开启制冷空调30min和60min时舱室内站姿医护人员的工效性和舱室升、降温过程中医护人员的工效性以及生化防护条件下医护人员的工效性。结果表明:高温高湿初始条件下舱室内站姿医护人员处于“工效性一般”等级,开启空调30min时达到“工效性优”等级、60min时工效性进一步提高;外界环境-41时,开启加热系统30min,舱室达到“工效性一般”等级,40min时达到“工效性良”等级;外界环境46时,开启制冷空调12min,舱室达到“工效性一般”等级,28min时达到“工效性良”等级。急救车通过生物污染区域运送和急救伤病员时,在超压防护不开空调和超压防护开启空调两种工况下,舱室整体和医护人员在各采样时刻的工效值均大于4,属于“工效性优”等级,能确保舱室内医护人员工效性不受影响;急救车运送生物污染伤病员或烈性传染病员时,在负压防护不开空调和负压防护开启空调两种工况下,随着舱室内生物污染物的扩散,舱室整体和医护人员工效值急剧降低,5min时工效值降为1,属于“工效性差”等级,舱室内医护人员若无采取有效的个人防护措施,将丧失作业能力。当手术方舱舱室外维埃克斯(VX)气溶胶浓度为0.1mg/L时,除左半区医生1和麻醉师出现中毒症状,基本丧失作业能力外,其他人员工作效率未受到太大影响;舱室右半区医护人员工作效率未受影响。
     分析了生化防护条件下舱室空气质量与人体安全性的影响因素,建立了评价指标体系,确定了安全性各影响因素的等级标准,提出了安全性评价的污染损失率方法。以某急救车和手术方舱为例,分别研究了急救车运送生物污染伤病员或烈性传染病员时在负压防护条件下舱室内医护人员的安全性和手术方舱遭遇氢氰酸(HCN)袭击时在过滤净化超压防护条件下舱室内医护人员和伤病员的安全性。结果表明:急救车在负压防护不开空调和负压防护开启空调两种工况下,随着舱室内生物污染物的扩散,5min时舱室整体和站姿医护人员的安全性均属于“极危险”等级,舱室内医护人员若无采取有效的个人防护措施,生命安全将受到威胁;当手术方舱舱室外HCN浓度为5mg/L时,除左半区医生1安全性受到威胁外,其他人员安全状况良好;舱室外HCN浓度增加到20mg/L时,舱室内安全程度明显下降,左半区医生1和麻醉师生命安全受到威胁,其他人员作业能力受到影响;在两种情况中,舱室右半区安全性均明显优于左半区,人员安全性较好。
     分析了舱室振动环境中振动频率、振动加速度和振动暴露时间对伤病员舒适性的影响,依据相关标准确定了舱室振动环境对坐姿和卧姿伤病员舒适性影响的评价方法。选取采用橡胶阻尼减振器和三自由度零刚度减振器两级减振的某履带卫生急救车,通过各种工况条件下的行驶试验,研究了两级减振措施的减振效率以及坐姿和卧姿乘员的振动舒适性。结果表明:一级减振器起到了较好的减振效果,减振效率在56%~80%之间;二级减振器对卧姿乘员的减振效率优于坐姿乘员的减振效率,卧姿乘员舒适性优于坐姿乘员舒适性;两侧卧姿乘员舒适性评价等级处于“舒适”和“基本舒适”之间,且左侧卧姿舒适性总体优于右侧;左侧坐姿乘员舒适降低界限值为0.426h~1.348h,右侧坐姿乘员舒适降低界限值为0.175h~1.401h;左侧隔振型减振器减振效果优于右侧冲击型减振器减振效果。
The air quality and vibration condition of compartment play an important role in microenvironment of mobile medical equipment compartment, which have a significant impact on physical health, work efficiency and safety protection of medical personnel and the wounded in compartment. In order to improve the microenvironment and ensure person’s safety, effectiveness, comfortableness , the relationship between human’s comfortableness, effectiveness, safety and air quality, vibration in Mobile Medical Equipment Compartment is studied in this paper, considering normal condition, biology and chemistry protection condition. The indicator system of evaluation is established by analyzing the influencing factors on comfortableness of air quality in compartment under normal condition.
     The grade standards of comfortableness are ascertained and the method of comfortableness evaluation with grey correlation grade is brought out. With the case of emergency ambulance, the comfortableness of the standing medical personnel and the recumbent and seating wounded is studied under high temperature and high humidity condition when air-condition has worked 30min and 60min. Results show that the comfortableness grade of human in compartment is uncomfortable at beginning. The comfortableness grade of human in compartment is best comfortable and comfortable at 30min. The comfortableness is improved at 60min. Besides, the comfortableness of the recumbent wounded is better than standing medical personnel and the seating wounded.
     The two indicator systems of evaluation are established by analyzing the influencing factors on effectiveness of air quality in compartment under normal condition, biology and chemistry protection condition. The grade standards of effectiveness are ascertained and the method of effectiveness evaluation with fuzzy comprehensive is brought out. With the case of emergency ambulance, the effectiveness of the standing medical personnel is studied under high temperature and high humidity condition when air-condition has worked for 30min and 60min, and the effectiveness in extreme condition is also studied when temperature is rising and falling. With the case of operation shelter, the effectiveness of the medical personnel is studied under biology and chemistry protection condition. Results show that the effectiveness grade of the standing medical personnel in compartment is generally effective at beginning under high temperature and high humidity condition. When the air-condition is on, the effectiveness grade of the standing medical personnel is best effective at 30min and the effectiveness is improved at 60min. When the outside temperature is -41 , the effectiveness grade of compartment is generally effective at 30min and better effective at 40min. When the outside temperature is 46 , the effectiveness grade of compartment is generally effective at 12min, better effective at 28min. When the emergency ambulance carry and rescue the wounded passing through the biological contamination zone. The effectiveness value of whole compartment and medical personnel are more than 4 under overpressure protection when air-condition is on and off at every sampling time. The effectiveness grade is best effective and the effectiveness of medical personnel in compartment is uninfluenced. When the wounded infected by biological contamination or the patients with strong infectious disease are carried by emergency ambulance, the effectiveness of whole compartment and medical personnel are falling under negative-pressure protection when air-condition is on and off. The effectiveness value is 1 belonging to best effective at 5min. The effectiveness of the medical personnel in compartment is losed if unadopt available protection. When the VX concentration is 0.1mg/L outside the operation shelter, the doctor1 and anaesthetist is poisoned and lose the working ability in left part compartment. The effectiveness of the medical personnel is uninfluenced in right part compartment.
     The indicator system of evaluation is established by analyzing the influencing factors on safety of compartment air quality under biology and chemistry protection condition. The grade standards of safety are ascertained and the method of safety evaluation with pollution loss rate is brought out. With the case of emergency ambulance, the safety of the medical personnel is studied when the wounded infected by biological contamination or the patients with strong infectious disease are carried. With the case of operation shelter, the safety of the wounded and medical personnel is also studied under filtration and decontamination protection when attacked by HCN. Results show that the safety grade of whole compartment and the medical personnel are most dangerous at 5min under negative-pressure protection when air-condition is on and off. The safety of medical personnel in compartment is most threatened if unadopt available protection. When the HCN concentration is 5mg/L outside the operation shelter, human is safy except the doctor1 in left part compartment. The safety of compartment is falling when the outside HCN concentration is 20mg/L. The safety of doctor1 and anaesthetist in left part compartment is threatened while others’working ability is influenced. Under the both condition, the safety of person in right part compartment is better than the person in left part compartment.
     The frequency, acceleration, exposure time of vibration are analysed. The method of comfortableness evaluation for the seating and recumbent wounded is confirmed by relevant standards under compartment vibration condition. The tracked emergency ambulance with two-level damping device (rubber damper and 3-dof zero stiffeness damper) is experimented through running test under various road and speed condition. The two-level damping efficiency and ride comfortableness (included recumbent comfortableness and seating comfortableness) is analysed. Results show that the first level damping device has performed good damping efficiency between 56% and 80%. Condidering the second level damping device, the damping efficiency of recumbent is better than seating position while the recumbent comfortableness is better than seating comfortableness. The evaluation grade of recumbent comfortableness on the two sides is comfortable and generally comfortable . The recumbent comfortableness on left is better than recumbent comfortableness on right. The value of reduced comfort boundary is 0.426h~1.348h ( left seating position) and 0.175h~1.401h (right seating position). The damping efficiency of isolation type damper on left is better than the damping efficiency of impact type damper on right.
引文
[1]傅征,王政,霍仲厚等.军队卫生装备学[M].北京:人民军医出版社,2004:338.
    [2]徐新喜,刘亚军,王太勇,等.机动卫生装备人-机-环境系统中舱室环境与人的相互作用[J].军事医学科学院院刊,2006,4(30):357-360.
    [3]王德刚.机动卫生装备舱室微环境质量要求与评价方法研究[D].北京:军事医学科学院,2008,5:12-71.
    [4] GB/T18883-2002.室内空气质量标准[S].中国标准出版社,2003.
    [5]陈冀胜,于义风,夏治强.反化学恐怖对策与技术[M].北京:科学出版社,2005,9:89-127.
    [6]黄培堂,沈倍奋.生物恐怖防御[M].北京:科学出版社,2005,4:58-77.
    [7] GJB2793-96.战时参战人员的核辐射控制量[S].中国人民解放军总后勤部,1997,4.
    [8] Meredith C.McCormack, Patrick N.Breysse, Elizabeth C.Matsui, et al.In-Home Particle Concentrations and Childhood Asthma Morbidity[J]. Environment Health Perspect,2009,117(2):294-298.
    [9] Chang B, Wei ZC, Qiu WX, et al.Inhalation exposure assessment on gaseous PAHs in indoor air of folk houses in Beijing[J].Huan Jing Ke Xue,2008,29(3):557-561.
    [10] P.S.Hui,L.T.Wong,K.W.Mui.Feasibility Study of an Express Assessment Protocol for the Indoor Air Quality of Air-conditioned Offices[J].Indoor and Built Environment,2006, 15(4):373-378.
    [11]张金萍,张寅平,高鹏,等.奥运场馆室内空气品质测评[J].建筑科学,2009,25(6):26-32.
    [12]朱广萍,王李管.室内空气质量灰色聚类决策评价[J]安全与环境工程,2009,16(2):33-39.
    [13]张文渊,陈建华,贾铭椿,等.基于AHP的密闭环境空气质量评价模型及应用[J].环境监控与预警,2010,2(1):44-46.
    [14]乔波,卢龙,吴敏.未确知测度模型在室内空气质量评价中的应用研究[J].广东化工,2010,37(11):137-139.
    [15]徐新喜,韩浩,王太勇,等.化学事故救援方舱舱室环境安全性模拟研究[J].中国安全科学学报,2007,17(4):25-31.
    [16]徐新喜,刘亚军,赵秀国.负压防护急救车车厢内生物污染物运动扩散的数值模拟与试验验证[J].中国安全科学学报,2009,19(8):28-33.
    [17]徐新喜,刘亚军,王太勇,等.具有超压/负压防护功能的急救车防生物污染的安全性试验研究[J].中国安全科学学报,2008,18(7):105-110.
    [18]徐新喜,刘亚军,崔向东等.防生物污染伤病员急救车的车厢环境质量研究[J].医疗卫生装备,2009,7(30):2-6.
    [19]韩浩.机动卫生装备舱室核生化防护的安全性研究[D].北京:军事医学科学院,2006:93-112.
    [20]刘亚军,徐新喜,王政,等.具有超压和负压防护功能的车用生物防护系统研究[J].军事医学科学院院刊,2008,36(6):550-554.
    [21]余志生.汽车理论(第5版)[M].北京:机械工业出版社,2009,3:203.
    [22] P.E.Uys, P.S.Elsa, M.Thoressona. Suspension settings for optimal ride comfort of off-road vehicles travelling on roads with different roughness and speeds[J]. Journal of Terramechanics,2007,44(2):163-175.
    [23]严世榕.影响汽车振动特性的几个参数研究[J].机械强度,2006,28(s):22-25.
    [24]陶利民.基于ADAMS/Car的非独立悬架轻型客车操纵稳定性和行驶平顺性仿真研究[D].上海交通大学机械与动力工程学院,2010,2:53-71.
    [25]张洪亮,杨万桥.基于人—车—路五自由度振动模型的路面平整度评价方法[J].交通运输工程学报,2010,10(4):16-22.
    [26]张丙强,李亮.人—车—路耦合系统振动分析及舒适度评价[J].振动与冲击,2010,30(1):1-5.
    [27]徐新喜,祁建城,李若新等.救护车卧姿乘员受振舒适性的评价研究[J].汽车技术,1996,4(27):9-13.
    [28]王猛.基于ADAMS的急救车担架支架减振特性仿真分析与优化研究[D].北京:军事医学科学院,2009:24-90.
    [29]孙景工,牛福,高振海等.基于磁流变隔振技术的某型越野救护车乘卧舒适性试验与分析[J].噪声与振动控制,2009,6(12):156-160.
    [30]孙景工,任旭东,高振海等.一种应用于车辆的磁流变减振器的实验研究[J].机床与液压,2007,3(35):54-58.
    [31]段德光,任旭东,牛福等.急救车担架支架隔振系统空气弹簧力学性能试验研究[J].医疗卫生装备,2010,6(31):24-25.
    [32]任旭东,段德光,高振海等.空气弹簧在车载担架隔振系统中的应用研究[J].医疗卫生装备,2009,10(30):20-22.
    [33]龙升照,黄端生,陈道木,等.人-机-环境系统工程理论及应用基础[M].科学出版社,2004,8:160-216.
    [34]纪秀玲,李国忠,戴自祝.室内热环境舒适性的影响因素及预测评价研究进展[J].卫生研究,2003,32(3):295-299.
    [35]徐小林,李百战,罗明智.室内热湿环境对人体舒适性的影响分析[J].制冷与空调,2004,4:55-58.
    [36] GJB6805.野战卫生舱室微环境质量要求和评价方法[S].中国人民解放军总后勤部,2009.
    [37] GB50019-2003.采暖通风与空气调节设计规范[S].中国标准出版社,2003.
    [38]殷平.冰蓄冷低温送风系统设计方法(1):室内计算参数、舒适感、室内空气品质[J].暖通空调,2004,34(5):59-65.
    [39]苗平.湿空气对人体舒适性的影响[J].洁净与空调技术,2003,4:13-16.
    [40]周西文,马爱华,王雨.湿热和热舒适性与空调节能的探讨[J].山西建筑,2008,34(6):245-246.
    [41] GB/T18204.18.公共场所室内新风量测定方法[S].中国标准出版社,2000.
    [42]吴勇华.空调房间舒适性的一种评价方法[J].制冷,1997,61(4):22-26.
    [43]晏辉.舒适性空调建筑的IAQ[J].华东交通大学学报,2002,19(3):5-8.
    [44] GB50189.旅游旅馆建筑热工与空气调节节能设计标准[S].中国标准出版社,1993.
    [45] GB9663.公共场所卫生标准[S].中国标准出版社,1996.
    [46]丁玉兰.人机工程学[M].北京理工大学出版社,2005,1:174-204.
    [47]李先庭,石文星.人工环境学[M].北京:中国建筑工业出版社,2006,5:15-29.
    [48] GJB11.3.常规动力潜艇舱室空气组分容许浓度[S].国防科学技术工业委员会,1991.
    [49] GB/T17096.室内空气中氮氧化物卫生标准[S].中国标准出版社,1997.
    [50] GJB11.2.水面舰艇舱室空气组分容许浓度[S].国防科学技术工业委员会,1991.
    [51]徐新阳,于庆波,孙丽娜.环境评价教程[M].北京:化学工业出版社,2004,7:35-36.
    [52] GB/T17097.室内空气中二氧化硫卫生标准[S].中国标准出版社,1997.
    [53] GJB4400.飞船乘员舱有害气体评价标准和评价方法[S].中国人民解放军总装备部,2002.
    [54]王世俊.工业卫生与职业病学[M].北京:化学工业出版社,1990:112-116.
    [55]彭莺峰.氨对作业工人健康的影响[J].职业卫生与应急救援,2004,22(4):205-206.
    [56]朱玉华,曹钟兴,田明秋,等.氨对作业工人健康的慢性影响[J].中国工业医学杂志,2003,16(2):105-106.
    [57]陈建泉,柯一川,傅海文.苯对健康危害研究的若干动态[J].中国职业医学,2001,28(6):48-49.
    [58] GJB5834.装甲车辆舱室内有害气体浓度限值[S].中国人民解放军总装备部,2006.
    [59]王秀玲.二甲苯毒理学研究进展[J].国外医学卫生学册,1997,24(2)77-79.
    [60]张殿中,张凤林,金书云,等.长期低浓度甲醛作业工人健康状况调查[J].中华劳动卫生与职业病,1999,7(5):291-292.
    [61]李艳莉,尹诗,黄宝妍.室内甲醛污染来源及其对人体的危害[J].佛山科学技术学院学报(自然科学版),2003,1(21):49-52.
    [62] GB/T16127.室内空气中甲醛的卫生标准[S].中国标准出版社,1995.
    [63] GB/T18202.室内空气中臭氧卫生标准[S].中国标准出版社,2000.
    [64]梁宝生,田仁生.总挥发性有机化合物室内空气质量评价标准的制定[J].重庆环境科学,2003,25(5):1-3.
    [65] GB15982.医院消毒卫生标准[S].中国标准出版社,1995.
    [66]王子介.室内热舒适性的综合定量评价方法与应用[J].南京师范大学学报(工程技术版),2003,3(2):22-26.
    [67] Fanger PO.Prediction of themal sensation in non-air-conditioned buildings in warm climates[J].Indoor Air,2002,15:48.
    [68]贾庆贤,赵荣义,许为全,等.吹风对舒适性影响的主观调查与客观评价[J].暖通空调,2000,30(3):15-17.
    [69]胡定科,荣先成,罗勇.大空间建筑室内气流组织数值模拟与舒适性分析[J].暖通空调,2006,36(5):12-16.
    [70]刘思峰,郭天榜,党耀国,等.灰色系统理论及其应用(第二版)[M].科学出版社,1999,10:40-77.
    [71] GJB898A-2004.工作舱室温度环境的通用医学要求与评价[S].中国人民解放军总装备部,2004.
    [72]谢庆森,牛占文.人机工程学[M].中国建筑工业出版社,2005,8:144-172.
    [73]谢在永.空气湿度与健康[J].科技潮,1999,13(9):41.
    [74] Sunwoo Y, Chou C, Takeshita J, et al. Physiological and subjective responses to low relative humidity[J]. J Physiol Anthropol Appl Hum Sci,2006,25:7-14.
    [75] Fang L, Wyon D.P., Clausen G, et al. Impact of indoor air temperature and humidity in an office on perceived air quality, SBS symptoms and performance [J] Indoor Air, 2006,14(7):74-81.
    [76] P. Wolkoff, S.K.Kj?rgaard. The dichotomy of relative humidity on indoor air quality [J] Environment International, 2007,33:850-857.
    [77]贾树队,唱斗,王生,等.相对湿度对装修后室内空气中甲醛和氨浓度的影响[J].职业与健康,2005,21(4):482-483.
    [78] N?jgaard JK, Christensen KB, Wolkoff P. The effect on human eye blink frequency by exposure to limonene oxidation products and methacrolein[J]. Toxicol Lett, 2005,156:241-51.
    [79]唐桂香.飞机座舱环境毒理的研究概况[J].卫生毒理学杂志, 1997,11(1):14-16.
    [80]何丽.二氧化硫及其酸雨(雾)对人体的危害[J].湖北气象,1999,(1):42-44.
    [81]牟凤英.长期接触低浓度二氧化硫对工人健康的影响[J].预防医学论坛,2005,11(3):298-299.
    [82]杨连润,余冬梅.浅谈氨对人体的危害及防护[J].贵州化工,2003,28(6):49-51.
    [83]夏昭林,孙品,张忠彬,等.苯的职业健康危害研究的回顾与展望[J].中华劳动卫生职业病,2005,23(4):241-243.
    [84]陈敏娴.二甲苯毒理学综述[J].劳动医学,1995,2(2)61-65.
    [85]田晓燕,贾西平.长期接触低浓度甲苯、二甲苯对机体行为功能的影响[J].中国公共卫生,1992,12(8):548.
    [86]孔琴心,刘广仁,李桂忱.近地面臭氧浓度变化及其对人体健康的可能影响[J].气候与环境研究,1999,4(1):61-66.
    [87]黄培堂.如何应对生物恐怖[M].北京:科学出版社,2006,6:47-193.
    [88]杨瑞馥.防生物危害医学[M].北京:军事医学科学出版社,2008,3:234-257.
    [89]汪致远,陈冀胜.化学、生物武器与防化装备[M].北京:原子能出版社、航空工业出版社、兵器工业出版社,2003,7:22-70.
    [90] GB/T17093-1997.室内空气中细菌总数卫生标准[S].中国标准出版社,1997.
    [91]陈冀胜.如何应对化学恐怖与化学毒性灾害[M].北京:科学出版社,2006,6:33-75.
    [92]林嗣豪,王治明.工作场所工效学负荷暴露评估方法[J].海峡预防医学杂志,2007,13(4):24-27.
    [93] Dane D,Feuerstein M,Huang G,et al.Measurement properties of a self-report index of ergonomic exposures for use in an office environment[J].Journal Occupational Environment Medicine,2002,44:73-81.
    [94]唐志文,刘忠权,梁振福,等.船舶舱室某些物理因素对人体工效的影响[J].人类工效学,1997,3(3):9-11.
    [95]杨纶标,高英仪.模糊数学原理及应用(第三版)[M].华南理工大学出版社,2004,2:139-146.
    [96]刘东华,鲁艳,王少敏.神经外科粘质沙雷菌所致下呼吸道感染分析[J].医药论坛杂志,2009,30(9):47-48.
    [97]陆德源.医学微生物学(第五版)[M].北京:人民卫生出版社,2001.
    [98]徐新喜.急救车生物污染防护技术与担架支架减振性能优化研究[D].天津大学,2008:42-53.
    [99]徐新喜,刘亚军,韩浩,等.机动卫生装备舱室温度环境与超压集体防护研究[J].医疗卫生装备,2006,27(2):37-40.
    [100]杜新安,曹务春.生物恐怖的应对与处置[M].北京:人民军医出版社,2005,7:157-228.
    [101] Martin Hansen.Environmental risk assessment of ionophores[J].Trends in Analytical Chemistry,2009,5(28):534-542.
    [102]林刚,赵鑫,杜莹,等.可吸入大气颗粒物暴露对居民每日死亡短期影响的Meta分析[J].首都公共卫生,2009,4(3):156-161.
    [103] Pearson J,Windsor R,El-Mohandes A,et al.Evaluation of the immediate impact of the Washington, D.C., smoke-free indoor air policy on bar employee environmental tobacco smoke exposure[J].Public Health Report,2009,4:34-42.
    [104]袁丽丽.室内空气环境安全性评价研究[D].长沙:中南大学,2008,41-58.
    [105]袁丽丽,李孜军,阳富强,等.污染损失率法在室内空气品质评价中的应用[J].安全与环境工程,2007,14(3):11-14.
    [106]袁丽丽等.污染损失率法在室内空气品质评价中的应用[J].安全与环境工程,2007,14(3):11-14.
    [107]宋新山,阎百兴,何岩.污染损失率模型的构建及其在环境质量评价中的应用[J].环境科学学报,2001,21(2):229-233.
    [108]李凡修,辛焰,陈武.大气环境质量综合评价的污染损失率法[J].环境工程,2008,18(4):51-52.
    [109]方楠,张江山.密切值法与污染损失率法在大气环境质量评价中的综合应用[J].环境科学导刊,2007,26(2):64-66.
    [110]唐传茵,张天侠,李华,等.汽车振动舒适性评价研究[J].振动与冲击,2008,27(9):158-161.
    [111] GB/T13442.人体全身振动暴露的舒适性降低界限和评价标准[S].中国标准出版社,1992.
    [112] GB4970.汽车平顺性随机输入行驶试验方法[S].中国标准出版社,1985.
    [113]唐传茵,张天侠,宋桂秋.基于烦恼率模型的振动舒适度评价方法[J].东北大学学报(自然科学版),2006,27(7):802-805.
    [114]杜子学.基于乘用车型平顺性分析的新指标—汽车综合振动舒适度[J].西南交通大学学报,2000,35(2):152-154.
    [115] GB/T18368.卧姿人体全身振动舒适性的评价[S].中国标准出版社,2002.
    [116] QC/T677.卧铺客车平顺性随机输入行驶试验方法[S].中国标准出版社,2001.
    [117]戴瑜,刘少军.履带车多刚体建模与仿真分析[J].计算机仿真,2009,26(3):281-285.
    [118]彭学彦.汽车家族的履带车成员[J].汽车运用,2006,170,(12):17-20.
    [119]白士红,张春林,李晓雷.履带装甲车振动对驾乘人员乘坐舒适性影响的模糊评价[J].机械设计与制造,2004,2:8-10.
    [120] GJB59.15.装甲车辆试验规程—野外振动试验[S].国防科学技术工业委员会,1988.
    [121]靳晓雄,张立军,江浩,等.汽车振动分析[M].同济大学出版社,2005,5:180-182.
    [122]段德光,牛福,高振海,等.野战救护车担架支架隔振效果对比试验研究[J].医疗卫生装备,2010,31(2):39-42.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700