用户名: 密码: 验证码:
不同结合相的梯度薄膜扩散技术(DGT)评估土壤重金属生物有效性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤重金属污染对农产品的质量安全造成了严重威胁,探寻土壤重金属生物有效态的评价方法一直是农业环境科研领域研究的热点。由于重金属元素有效态的提取与元素种类、土壤类型、pH值、温度、提取剂的性质等有着密切的关系,因此国际上土壤重金属生物有效态提取方法缺乏统一的标准。梯度薄膜扩散技术(DGT)是一种新型原位采集并测量重金属有效态或生物可给性的方法,大量研究表明,DGT技术比传统的形态分析方法提取的重金属生物有效态浓度更接近生物可利用态的浓度,能更好地反映值物体所吸收的重金属。目前DGT技术的知识产权为英国,材料一般为英国及美国产,需要进口,导致成本较高,难以在我国大面积推广。开发具有自主产权的DGT技术,实现DGT装置的国产化,并在我国土壤上进行推广应用,以此来指导农业生产,是亟待解决的问题之一。
     本研究在引进国外DGT技术的基础上,吸收并创新了DGT装置的扩散相和结合相,选择市售的9种膜为扩散相,以聚丙烯酸钠(PAAS)作为结合相,考察Cd在不同扩散层中的扩散系数及离子强度对Cd在不同扩散层中扩散系数的影响;在16个不同理化性质实际Cd污染土壤上进行种植黑麦草盆栽试验,研究了两种结合相的DGT技术预测黑麦草吸收Cd的效果,并与传统提取方法进行了比较;采用两种结合相的DGT技术对广西桑田土壤中有效态Pb进行了累积和测定,融合土壤理化各项指标,运用多元统计分析建立了逐步回归预测模型;以两种结合相的DGT技术为基础,研究了CO_2浓度升高及真菌诱导条件下黑麦草及美洲商陆根际土中生物有效态Cd含量的变化。得出以下几点结论:
     (1)选择截留分子量为14000,7000,5000,3500,1000的透析膜、氟膜、聚醚砜膜、醋酸纤维素膜和混合纤维素膜为扩散相,以PAAS作为结合相测定Cd在9种不同扩散层的扩散系数。总体来说,在低离子强度条件下(尤其是离子强度小于5mM),扩散系数有一定的波动;当离子强度大于25mM时,扩散系数变化不大。从成本、扩散通量、精密度等方面综合考虑,截留分子量为14000的透析膜是液体结合相DGT技术中扩散层的首选。
     (2)综合考虑土壤理化指标(pH、有机质、机械组成、CEC)的影响,建立DGT方法和传统方法提取的有效Cd含量对黑麦草吸收Cd的多元回归预测模型,结果表明基于两种不同结合相的DGT技术(chelex100-DGT和PAAS-DGT)提取的土壤有效态Cd含量所构建的预测模型要显著优于4种传统方法(土壤溶液、CaCl2提取法、 EDTANa2提取法和HAc提取法)。4种传统提取方法构建的多元回归预测模型受到了pH和CEC的显著影响,而DGT技术综合了两种主成分对土壤有效态Cd含量的影响,所构建的模型几乎不受土壤基本理化性质的影响,且模型回归关系极显著,说明DGT技术可以预测重金属污染土壤中Cd的生物有效性而不受土壤理化性质的影响,是一种预测黑麦草吸收Cd的较好方法。以PAAS为液体结合相,截留分子量为14000的透析膜为扩散相的PAAS-DGT在本研究中较好地预测了黑麦草对土壤中Cd的吸收,大大扩展了DGT技术的应用范围。
     (3)采用两种不同结合相的DGT技术(chelex100-DGT和PAAS-DGT)对广西桑田土壤中有效态Pb进行了累积和测定,融合土壤pH、阳离子交换量(CEC)、有机质(OM%)和土壤颗粒组成等理化指标影响,运用多元统计分析,建立了逐步回归模型。多元统计分析表明,两种结合相的DGT技术所构建的回归模型是可靠的,其调整判定系数R_(adj)~2分别为0.87,0.89,0.96和0.95,且预测结果融合了影响土壤有效态Pb含量的pH、CEC、有机质和土壤质地等主要因素,研究结果表明两种结合相的DGT装置均能较好预测桑田土壤中Pb的生物有效性。
     (4)CO_2浓度升高或接种真菌的单独或联合作用均能显著增加黑麦草和商陆的Cd的生物量及对Cd的吸收总量,两种不同结合相的DGT技术的测定结果均表明CO_2浓度升高和接种真菌可以显著增加植物根际土中生物有效态重金属的含量,揭示了CO_2浓度升高以及真菌诱导能够增强植物吸收重金属的直接原因。与正常CO_2浓度相比,CO_2浓度升高使黑麦草地上部和地下部干重增加了42.08-89.63%和17.93-51.43%;相比之下, CO_2浓度升高条件下, DGT测得黑麦草根际土中有效态Cd含量的增加只有2.01-25.17%。CO_2浓度升高条件下,根际土生物有效性重金属的增加远远低于植物生物量的增加的幅度,从而影响了对植物对重金属的吸收,因此产生了“稀释效应”。CO_2浓度升高条件下,商陆也存在相同的现象。
     综上,chelex100-DGT和PAAS-DGT是一种快速、准确的土壤重金属有效态表征和预测方法。DGT技术具有传统化学提取方法无法比拟的优势,它可以很好的模拟预测植物对重金属的吸收而不受土壤理化性质的影响。以PAAS为结合相,截留分子量14000的透析膜为扩散相的DGT装置也成功的预测了植物对重金属Pb、Cd的吸收,研究扩大了DGT技术的应用范围,同时为DGT技术在我国大范围推广提供了理论依据和技术支撑。
Heavy metal pollution in soils poses a serious threat to the quality and safety of agriculturalproducts. Thus developing effective methods for evaluate heavy metal bioavailability has been a hottopic in the field of agricultural environment research. The extraction of heavy metals depended onelement types, soil texture, pH, temperature, the nature of the solvent, and so on. There was still a lackof effective uniform standards of extraction bioavailable heavy metals from soil. A new technique,diffusive gradients in thin films (DGT), measures labile species and bioavailability of heavy metals insitu. Many studies have shown the heavy metals measured by DGT were closer to the bioavailabilityconcentrations, and DGT technique could better predict the potential runoff of heavy metals in plantsthan conventional methods. The intellectual property right of DGT technique was belongs to U.K., andthe masteries were generally product by U.K. and U.S.A., which needed to be imported and resulting inhigher cost, so it was hard to promote it in a large area in China. Developing DGT technique with ourown intellectual property right, producing DGT device localization, and promoting the application ofDGT technique in China in order to guide agricultural production, is one of the problems to be solved.
     The diffusive phase and binding phase of DGT device were absorbed and improved based on theDGT technique introduced form foreign country. Nine kinds of commercially available membraneswere selected as diffusive layers to study the diffusion coefficients of Cd in these diffusive layers andthe impact of ionic strength on the diffusion coefficients of Cd, with sodium polyacrylate (PAAS) asbinding phase.16natural Cd contaminated soils with diverse properties were collected, and ryegrasswas grown on these soils by pot experiment. Prediction models for evaluating cadmium accumulation inryegrass were built based on Cd bioavailable concentrations measured by DGT technique with twodifferent binding phases, which was also compared with prediction models built by traditional chemicalmethods. The bioavaliability of lead in the rhizosphere soils of Moraceae was accumulated andmeasured by different binding phases DGT devices. Multivariate analyses were performed andregression models were established, which also consider the impact of the physical and chemicalindicators of soils. The bioavailability concentrations of Cd in rhizosphere soils of ryegrass andpokeweed grown under fungal inoculation and elevated CO_2were measured by DGT withtwo different binding phases.The main conclusions were as follows:
     (1)The dialysis membranes with14000,7000,5000,3500and1000interception molecularweight, fluoride membrane, polyethersulfone membrane, cellulose acetate membrane and mixedcellulose membrane were chosen as diffusive phases. The diffusion coefficients of Cd in these9kindsof diffusive phases were determined with sodium polyacrylate (PAAS) as binding phase. In general,the diffusion coefficients had a flux under low ionic strength (ionic strength greater than5mM), andthe diffusion coefficients had no change nearly when the ionic strength higher than25mM. Considerfrom all aspects, such as cost, the diffusive flux, scientific and so on, it was the best choose to usedialysis membranes with14000interception molecular weight as diffusive layer in liquid binding phaseDGT technique.
     (2)Multiple regression prediction models for evaluating cadmium accumulation in ryegrasswere built based on Cd bioavailable concentrations extracted by DGT technique and traditional methods,which also the impact of pH, cation exchanged capacity (CEC), organic materials (OM) and textureof the soils. Results showed that prediction models based on chelex100-DGT and PAAS-DGTtechniques were significantly better than those built by traditional techniques (soil solution, CaCl2,EDTANa2and HAc extractions). Results showed that pH and CEC had significant effects on predictionmodels built by4traditional methods, but there was little effect on the prediction model based on DGTtechnique. DGT measurement incorporated the main factors affected bioavailability, and could betterpredict the potential runoff of Cd from soil and the accumulation of Cd in ryegrass than traditionalchemical methods. Results also showed that DGT technique with dialysis membranes with14000interception molecular weight as diffusive layer and PAAS as binding phase could predict the potentialrunoff of Cd from soil and the accumulation of Cd in s ryegrass, which expanded the applicable range ofDGT technique.
     (3)The bioavaliability of lead in the rhizosphere soils of Moraceae was accumulated and measuredby different binding phases DGT devices (chelex100-DGT and PAAS-DGT). Multivariate analysisshowed that the regression models established by the two binding phase DGT were reliable, and theadjusted coefficients were0.87,0.89,0.96and0.95, respectively. Predicted results from these modelsincorporated the main factors affecting available Pb in soils, such as pH, cation exchanged capacity(CEC), soil organic matter (OM) and texture. Results showed that both DGT devices could predict thepotential runoff of Pb from soil and the accumulation of Pb in leaves of Moraceae, which expanded theapplicable range of DGT technique.
     (4)Elevated CO_2and fungal inoculation, either singly or in combination, could significantlyincreased plant biomass and total Cd uptake per pot ryegrass and pokeweed. The bioavailable Cdconcentrations in the rhizosphere soils measured by DGT were increased, which revealed the directcause that elevated CO_2and fungal inoculation could enhance the heavy metals accumulated in plants.Our present study showed that the shoot and root dry weight biomass of ryegrass grown at elevated CO_2increased by42.08–89.63and17.93–51.43%, respectively, compared to the ambient CO_2control. Bycontrast, the increase in DGT-measured Cd concentrations in the rhizosphere soil of ryegrass at elevatedCO_2was only2.01–25.17and15.79–38.31%, respectively, compared to the ambient CO_2control. It isclear that there was a substantial difference between the increased rate of the shoot and root dry weightbiomass of ryegrass grown at elevated CO_2, and the increased magnitude of DGT-measured Cdconcentrations in the rhizosphere soil of ryegrass elevated CO_2. This implies that the apparent increasein size of the bioavailable metal pools in the rhizosphere of ryegrass due to elevated CO_2might not meetthe potential for plant uptake of metals in association with the plant biomass increase and, as a result, a‘dilution effect’ took place under elevated CO_2. The situation was similar for pokeweed.
     In conclusion, chelex100-DGT and PAAS-DGT techniques could be used as an effective andaccurate method to characterize and predict heavy metal bioavailable concentrations in soils.PAAS-DGT technique with14000interception molecular weight dialysis membranes as diffusive layer could predict the potential runoff of Cd and Pb from soil and the accumulation of Cd and Pb in plants,which expanded the applicable range of DGT technique, and provided theoretical basis and technicalsupport for promoting the application of DGT technique in China.
引文
1.曹仁林,贾晓葵,张建顺.镉污染水稻土防治研究[J].天津农林科技,1999,152(6):12-17.
    2.陈飞霞,魏世强.土壤中有效态重金属的化学试剂提取法研究进展[J].干旱环境监测,2006,20(3):153-158.
    3.陈宏,王冬梅,刘永生,等.聚丙烯酸钠为结合相的薄膜扩散梯度技术测定水中Cu2+[J].环境化学,2011,30(5):1034-1038.
    4.程晓东.几种化学浸提剂对底泥重金属生物有效部分浸提效果的比较[J].农业环境保护,2002,21(3):215-217.
    5.仇浩. DGT技术评估化学固定对土壤重金属生物有效性影响研究[硕士学位论文].广州:中山大学,2010.
    6.丁中元.重金属在土壤—作物中分布规律研究[J].环境科学,1989,10(5):78-84.
    7.窦磊,周永章,高全洲,等.土壤环境中重金属生物有效性评价方法及其环境学意义[J].土壤通报,2007,38(3):576-583.
    8.范洪涛,孙挺,隋殿鹏,等.环境监测中两种原位被动采样技术—薄膜扩散平衡技术和薄膜扩散梯度技术[J].化学通报,200a9,72(5):421-426.
    9.范洪涛,孙挺,隋殿鹏,等.聚丙烯酸钠作为新型结合相的薄膜扩散梯度装置-对水中重金属选择性的累积和测量[J].环境化学,2009b,28(2):247-250.
    10.范英宏,林春野,何孟常.大辽河水系表层沉积物中重金属的迁移特征及生物有效性研究[J].环境科学,2008,29(12):3469-3476.
    11.高怀友,赵玉杰,师荣光,等.非连续时空统计条件下土壤中Cd有效态含量与全量的相关性分析[J].农业环境科学学报,2005,24(增刊):165-168.
    12.黄立章,金腊华,万金保.土壤重金属生物有效性评价方法[J].江西农业学报,2009,2l(4):129-132.
    13.姜利兵,张建强.土壤重金属污染的形态分析及生物有效性探讨.云南农业大学学报,2007,22(1):122-126.
    14.蒋先军,骆永明,赵其国.重金属污染土壤的微生物学评价[J].土壤,2000,32(3):130-134.
    15.孔文杰,鲁洪娟,倪吾钟.土壤重金属生物有效性的评价方法[J].广东微量元素科学,2005,12(2):1-6.
    16.李亮亮,张大庚,李天来,等.土壤有效态重金属提取剂选择的研究[J].土壤,2008,40(5):819-823.
    17.廖敏,黄昌勇,谢正苗. pH对镉在土水系统中的迁移和形态的影响[J].环境科学学报,1999,19(1):81-86.
    18.刘斌.薄膜扩散技术测水中Cu2+、Cd2+、Ni2+含量的可行性研究[硕士学位论文].沈阳:东北大学,2008.
    19.刘畅.薄膜扩散梯度技术对水体中不同形态Cu(II)的测量[硕士学位论文].沈阳:东北大学,2006.
    20.刘玉荣,党志,尚爱安,等.几种萃取剂对土壤中重金属生物有效部分的萃取效果[J].生态环境,2002,11(3):245-247.
    21.刘玉荣,党志,尚爱安.污染土壤中重金属生物有效性的植物指示法研究[J].环境污染与防治,2003,25(4):215-217.
    22.鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000,12-24.
    23.陆文利,聂俊华,周琨.土壤重金属元素测定方法比较[J].农业环境与发展,2004,5:44-46.
    24.罗军,王晓蓉,张昊,等.梯度扩散薄膜技术(DGT)的理论及其在环境中的应用I:工作原理、特性与在土壤中的应用[J].农业环境保护,2011,30(2):205-213.
    25.孟昭福,张增强,薛澄泽,等.替代黑麦幼苗测定土壤中重金属生物有效性的研究[J].农业环境保护,2001,20(5):337-340.
    26.尚爱安,刘玉荣,梁重山,等.土壤中重金属的生物有效性研究进展[J].土壤,2000,32(6):294-300.
    27.沈学优,陈曙光,王烨,不同粘土处理水中重金属的性能研究[J].环境污染与防治,1998(6):15-18.
    28.石元值,韩文炎,马立峰,等.龙井茶中重金属元素铅含量的影响因子探究[J].农业环境科学学报,2004,23(5):899-903.
    29.隋殿鹏,孙挺,范洪涛,等.薄膜扩散梯度技术-一种原位富集采样技术[J].化学通报,2007,70(12):954-960.
    30.孙歆,韦朝阳,王五一.土壤中砷的形态分析和生物有效性研究进展[J].地球科学进展,2006,21(6):625-632.
    31.唐世荣.污染环境土壤植物修复的原理和方法[M].北京:科学出版社,2006,1–5.
    32.王芳丽,宋宁宁,王瑞刚,唐世荣.土壤-甘蔗作物系统中镉的生物有效性研究.农业环境科学学报,2012,31(5):904-912.
    33.王芳丽,唐世荣,宋宁宁,赵玉杰.梯度扩散薄膜技术评价土壤中镉对甘蔗的生物有效性.第四届全国农业环境科学学术研讨会论文集,2011,7:1039-1048.
    34.王庆仁,崔岩山,董艺婷.植物修复—重金属污染土壤整治有效途径[J].生态学报,2001,2l(2):326-331.
    35.王亚平,黄毅,王苏明,等.土壤和沉积物中元素的化学形态及其顺序提取法[J].地质通报,2005,24(8):728-734.
    36.王仲文.土壤中重金属及稀土元素的形态分析和生物可给性研究[D].北京:中国科学院生态环境研究中心,2002.
    37.魏树和,周启星.重金属污染土壤植物修复基本原理及强化措施探讨[J].生态学杂志,2004,23(1):65-72.
    38.夏增禄,穆从如,李森照,等.北京东郊作物对重金属的吸收及其与重金属在土壤中的含量和存在形态的关系[J].生态学报,1983,3(3):277-287.
    39.肖振林,王果,黄瑞卿,等.酸性土壤中有效态镉提取方法研究[J].农业环境科学学报.2008,27(2):795-800.
    40.谢建治,尹君,王殿武.土壤中有效态重金属Cd、Hg提取方法研究[J].农业环境保护,1998,17(3):116-119.
    41.杨景辉.土壤污染与防治[M].科学出版社,1995:4-7.
    42.易丽.朱咏煊,洪业汤,等.土壤中游离重金属离子的测定-唐南膜平衡法[J].地球与环境,2004,32(2):87-91.
    43.于霞. CMC溶液为新结合相的薄膜扩散梯度(DGT)技术富集和测量水中痕量的铜、镉、锌浓度[硕士学位论文].沈阳:东北大学,2008.
    44.余涛,杨忠芳,钟坚,等.土壤中重金属元素Pb、Cd地球化学行为影响因素研究[J].地学前沿,2008,15(5):67-73.
    45.袁林喜,龙南烨,谢周清.北极新奥尔松地区现代污染源及其指示植物研究[J].极地研究,2006,18(1):9-19.
    46.赵磊,崔岩山,杜心,等.利用道南膜技术(DMT)研究土壤中重金属自由离子浓度[J].环境科学学报,2005,25(11):1565-1569.
    47.仲维科,樊耀波,王敏健.我国农作物的重金属污染及其防止对策[J].农业环境保护,2001,20(4):270-272.
    48.周启星.土壤环境污染化学与化学修复研究最新进展[J].环境化学,2006,25(3):257-265.
    49.朱海云.以CMC、PASS、PSS为结合相的薄膜扩散梯度技术富集和检测水中可溶性铅[硕士学位论文].沈阳:东北大学,2008.
    50. Adams P., De-Leij F.A.A.M., Lynch J.M. Trichoderma harzianum Rifai1295-22mediatesgrowth promotion of crack willow (Salix fragilis) saplings in both clean andmetal-contaminated soil. Microbial Ecology,2007,54(2):306-313.
    51. Almas A.R., Lombnaes P., Sogn T.A., et al. Speciation of Cd and Zn in contaminated soilsassessed by DGT-DIFS, and WHAM/Model VI in relation to uptake by spinach and ryegrass[J]. Chemosphere,2006,62(10):1647-1655.
    52. Arriagada C.A., Herrera M.A., Garcia-Romera I., et al. Tolerance to Cd of soybean (Glycinemax) and eucalyptus (Eucalyptus globulus) inoculated with arbuscular mycorrhizal andsaprobe fungi. Symbiosis,2004,36(3):285-299.
    53. Bacon J.R., Hewitt I.J., Cooper P. Reproducibility of the BCR sequential extraction procedurein a long term study of the association of heavy metals with soil components in an uplandcatchment in Scotland [J]. Science of the Total Environment,2005,337:191-205.
    54. Bargagli R., Moci F., Borghini F., et al. Mosses and lichens as biomonitors of trace metals-Acomparison study on Hypnum cupressiforme and Parmelia caperata in a former miningdistrict in Italy [J]. Environmental Pollution,2002,116:279-287.
    55. Batley G.R., Giles M.S. A solvent displacement technique for the separation of sedimentinterstitial waters [A]. In: Baker R A (eds). Contaminants and sediments [C]. Ann ArborScience., Michigan, USA, l980,101-1l8.
    56. Benson W.H., Alberts J.J., Allen H.E., et al. Bioavailability: physical chemical andbioavailability interactions [M]. Boca Raton, Lewis Publishers,1994:63-71.
    57. Bhogal A., Nicholson F.A., Chambers B.J., et al. Effects of past sewage sludge additions onheavy m etal availability in light textured soils: implications for crop yields and metal uptakes[J]. Environmental Pollution,2003,121(3):413-423.
    58. Boekhold A.E., Temminghoff E.J.M., Van der Zee S.E.A.T.M., Influence of electrolytecomposition and pH on cadmium sorption by an acid sandy soil [J]. Journal of Soil Science,1993,44(1):85-96.
    59. Campbell K.M., Root R.O., Day P.A., et al. A Gel Probe Equilibrium Sampler for MeasuringArsenic Porewater Profiles and Sorption Gradients in Sediments: I. Laboratory Development[J]. Environmental Science&Technology,2008,42(2):497-503.
    60. Cao L., Jiang M., Zeng Z., et al. Trichoderma atroviride F6improves phytoextractionefficiency of mustard (Brassica juncea (L.) Coss. var. foliosa Bailey) in Cd, Ni contaminatedsoils. Chemosphere,2008,71(9):1769-1773.
    61. Carignan R., Rapin F., Tessier A. Sediment pore water sampling for metal analysis:acomparison of techniques [J]. Geochim Cosmochim Acta,1985,49(11):2493-2497.
    62. Chojnacka K., Chojnacki A., Górecka H., et al. Bioavailability of heavy metals from pollutedsoils to plants [J]. Science of the Total Environment,2005,337(1-3):175-182.
    63. Chomchoei R., Shiowatana J, Pongsakul P. Continuous-flow system for reduction of metalreadsorption during sequential extraction of soil [J]. Analytica Chimica Acta,2002,472(1-2):147-159
    64. Davies B.E. Inter-relationship between soil properties and uptake of Cd, Cu, Pb, and Zn fromcontaminated soils by radish (Raphanus sativa L)[J]. Water, Air and Soil Pollution,1992,63(3-4):331-342.
    65. Davison W., Hooda P.S., Zhang H., et al. DGT measured fluxes as surrogates for uptake ofmetals by plants [J].Advances in Environmental Research,2000,3(6):550-555.
    66. Davison W., Zhang H. In situ speciation measurements of trace components in natural watersusing thin-film gels [J]. Nature,1994,367:546-548.
    67. DiToro D.M., Mahony J.D., Hansen D.J., et al. Acid volatile sulfide predicts the acute toxicityof cadmium and nickel in sediments [J]. Environmental Science and Technology,1992,26(1):96-101.
    68. Docekalova H., Divis P. Application of diffusive gradient in thin films technique (DGT) tomeasurement of mercury in aquatic systems [J]. Talanta,2005,65(5):1174-1178.
    69. Duquène L., Vandenhove H., Tack F., et al. Diffusive gradient in thin films (DGT) comparedwith soil solution and labile uranium fraction for predicting uranium bioavailability toryegrass [J]. Journal of Environmental Radioactivity,2010,101(2):140-147.
    70. Ernstberger H., Davison W., Zhang H., et al. Modeling trace metal mobilization in soils usingDGT and DIFS [J]. Environmental Science&Technology,2002,36(3):349-354.
    71. Fan H.T., Sun T., Li W.J., et al. Sodium polyacrylate as a binding agent in diffusive gradientsin thin-films technique for the measurement of Cu2+and Cd2+in Waters [J]. Talanta,2009,79(5):1228-1232.
    72. Feng M., Shan X., Zhang S., et al. Acomparison of the rhizosphere-based method with DTPA,EDTA, CaCl2, and NaNO3extraction methods for prediction of bioavailability of metals insoil to barley [J]. Environmental Pollution,2005,137(2):231-240.
    73. Fischerova Z., Szakova J., Pavlíková D., et a1. The application of diffusive gradient technique(DGT) for assessment of changes in Cd, Pb and Zn mobility in rhizosphere [J]. Plant, Soil andEnvironment,2005,51(12):532-538.
    74. Fitz W.J., Wenzel W.W., Zhang H., et al. Rhizosphere characteristics of the arsenichyperaccumulator Pteris vittata L. and monitoring of phytoremoval efficiency [J].Environmental Science&Technology,2003,37(21):5008-5014.
    75. Garmo., R yset O., Steinnes E., et al. Performance study of diffusive gradients in thin filmsfor55elements [J]. Analytical Chemistry,2003,75(14):3573–3580.
    76. Gaur A., Adholeya A. Prospects of arbuscular mycorrhizal fungi in phytoremediation of heavymetal contaminated soils [J]. Current Science,2004,86(4):528-534.
    77. Gavito M.E., Curtis P.S., Mikkelsen T.N., et al. Atmospheric CO2and mycorrhiza effects onbiomass allocation and nutrient uptake of nodulated pea (Pisum sativum L.) plants[J]. Journalof Experimental Botany,2000,51(352):1931-1938.
    78. Gupta A.K., Sinha S., Assessment of single extraction methods for the prediction ofbioavailability of metals to Brassica juncea L. Czern.(var. Vaibhav) grown on tannery wastecontaminated soil[J]. Journal of Hazardous Materials,2007,149(1):144-150
    79. He Q.B., Singh B.R. Effect of organic matter on t he dist ribution, extractability and uptake ofcadmium in soils [J]. Journal of Soil Science,1993,44(4):641-650.
    80. Impellitteri C.A., Saxe J.K., Cochran M., et a1. Predicting the bioavailability of copper andzinc in soils: Modeling the partitioning of potential bioavailable copper and zinc from solid tosoil solution [J]. Environmental Toxicology and Chemistry,2003,22(6): l380-1386.
    81. Inaba S., Takenaka C. Effects of dissolved organic matter on toxicity and bioavailability ofcopper for lettuce sprouts [J]. Environment International,2005,31(4):603-608.
    82. Jia H.X., Guo H.Y., Yin Y., et al. Responses of rice growth to copper stress under free-air CO2enrichment (FACE)[J]. Chinese Science Bulletin,2007,52(19):2636-2641.
    83. Jia Y., Tang S.R., Wang R.G., et al. Effects of elevated CO2on growth, photosynthesis,elemental composition, antioxidant level, and phytochelatin concentration in Loliummutiforum and Lolium perenne under Cd stress. Journal of Hazardous Materials,2010,180(1-3):384-394.
    84. Jongen M., Fay P., Jones M.B. Effects of elevated carbon dioxide and arbuscular mycorrhizalinfection on Trifolium repens. New Phytologist,1996,132(3):413-423.
    85. Kauherine F.M., Christine M.D. Comparison of original and modified BCR sequentialextraction procedures for the fraction of copper, iron, lead, manganese and zinc in soils andsediments[J]. Analytica Chimica Acta,2003,478(1):111-118.
    86. Knezovich J.P., Hardson F.L. A new method for determining the concentrations of volatileorganic compounds in sediment interstitial water [J]. Bulletin Environmental Contaminationand Toxicology, l987,38(6):937-940.
    87. Koster M., Reijnders L.,van Oost N.R., et al. Comparison of the method of diffusive gels inthin films with conventional extraction techniques for evaluating zinc accumulation in plantsand isopods [J]. Environmental Pollution,2005,133(1):103-116.
    88. Kraaij R., Mayer R, Busser F.J.M., et al. Measured pore water concentrations makeequilibrium partitioning work-a data analysis [J]. Environmental Science and Technology,2003,37(2):268-274.
    89. Larner B.L., Seen A.J., Evaluation of paper-based diffusive gradients in thin film samplers fortrace metal sampling [J]. Analytica Chimica Acta,2005,539(1-2):349-355.
    90. Li F.L., Shan X.Q., Zhang T.H., et a1. Evaluation of plant availability of rare earth elements insoils by chemical fractionation and multiple regression analysis [J]. Environmental Pollution,l998,102(2-3):269-277.
    91. Li J.X., Yang X.E., He Z.L., et al. Fractionation of lead in paddy soils and its bioavailability torice plants [J]. Geoderma,2007,141(3-4):174-180.
    92. Li W., Teasdale P.R., Zhang S., et al. Application of a poly(4-styrenesulfonate) liquid bindinglayer for measurement of Cu2+and Cd2+with the diffusive gradients in thin-films technique[J],Analytical Chemistry,2003,75(11):2578-2583.
    93. Li W., Zhao H., Teasdale P.R., et al. Preparation and characterisation of a poly(acrylamidoglycolicacid-co-acrylamide) hydrogel for selective binding of Cu2+andapplication to diffusive gradients in thin films measurements [J]. Polymer,2002a,43(17):4803-4809.
    94. Li W., Zhao H., Teasdale P.R., et al. Trace metal speciation measurements in waters by theliquid binding phase DGT device [J]. Talanta,2005,67(3):571-578.
    95. Li W., Zhao H., Teasdale P.R., John R. et al. Application of a cellulose phosphate ionexchange membrane as a binding phase in the diffusive gradients in thin films technique formeasurement of trace metals [J]. Analytica Chimica Acta,2002b,464(2):331-339.
    96. Li W., Zhao H., Teasdale P.R., John R. et al. Synthesis and characterisation of apolyacrylamide-polyacrylic acid copolymer hydrogel for environmental analysis of Cu and Cd[J]. Reactive and Functional Polymers,2002c,52(1):31-41.
    97. Li Z.Y., Tang S.R., Deng X.F., et al. Contrasting effects of elevated CO2on Cu and Cd uptakeby different rice varieties grown on contaminated soils with two levels of metals: Implicationfor phytoextraction and food safety [J]. Journal of Hazardous Materials,2010,177(1-3):352-361.
    98. Loladze I. Rising atmospheric CO2and human nutrition: toward globally imbalanced plantstoichiometry? Trends in Ecology Evolution,2002,17(10):457-461.
    99. Luoma S.N. Can we determine the biological availability of sediment bound trace elements?[J]. Hydrobiologia,1989,176/177(1):379-396.
    100.Ma Y., Prasad M.N.V., Rajkumar M., et al. Plant growth promoting rhizobacteria andendophytes accelerate phytoremediation of metalliferous soils. Biotechnology Advances,2011,29(2):248-258.
    101.Maiz I., Esnaolam V. Evaluation of heavy metal availability in contaminated soils by a shortsequential extraction procedure [J]. Science of the Total Environment,1997,206(2-3):107-115.
    102.McCarthy L.S., Mackay D. Enhancing ecotoxicological modeling and assessment, bodyresidues and modes of action [J]. Science of the Total Environment,1993,27(9):1719-1728.
    103.Meers E., Samson R., Tack F.M.G., et al. Phytoavailability assessment of heavy metals insoils by single extractions and accumulation by Phaseolus vulgaris [J]. Environmental andExperimental Botany.2007,60(3):385-396.
    104.Mehlich A. Mehlich3soil test extractant: A mdification of Mehlich2extractant [J].Communications of Soil Science and Plant Analysis,1984,15(12):1409-1416.
    105.Melaughlin M.J., Zarcinas B.A., Stevens D. R.., et a1. Soil testing for heavy metals [J].Communications in Soil Science and Plant Analysis,2000,(31):1661-l700.
    106.Menzies N.W., Donn M.J., Kopittke P.M. Evaluation of extractants for estimation of thephytoavailabletrace metals in soils [J]. Environmental Pollution.2007,145(1):121-130.
    107.Meyer J.S. The utility of the terms "bioavailability" and "bioavailable fraction" for metals [J].Marine Envrionmental Research,2002,53(4):417-423.
    108.Michaelson G.J., Peng C.L., Mithchell G.A. Correlation of mehlich-3, bray l and ammoniumacetate extractable phosphorus, potassium, cadmium, and magnesium for Alaska agriculturalsoils [J].Communications of Soil Science and Plant Analysis,1987,18(9):1003-1015.
    109.Miner G.S., Gutierrez R., King L.D. Soil factors affecting plant concentrations of cadmium,copper, and zinc in sludge-amended soils [J]. Journal of Environmental Quality,1997(26):989-994.
    110.Miyazawa M., Sonia M.N., Edsonl O., et al. Absorption and toxicity of copper and zinc inbean plants cultivated in soil treated with chicken manure[J].Water, Air and Soil Pollution,2002,138(1-4):211-222.
    111.Mohammed R.S., Michael J.H., Keith A.H. Use of the diffusion gradient thin film method tomeasure trace metals in fresh waters at low ionic strength [J]. Analytica Chimica Acta,2002,456(2):241-251.
    112.Moreno J.L., Garcla C., Landi L., et al. The ecological dose value (ED50) for assessing Cdtoxicity on ATP content and dehydrogenase and urease activities of soil [J]. Soil Biology andBiochemistry,2001,33(4-5):483-489.
    113.Motelica-Heino M., Naylor C., Zhang H., et al. Simultaneous release of metals and sulfide inLacustrine sediment [J]. Environmental Science&Technology,2003,37(19):4374-4381.
    114.Nelson A.T. Use of biominitoring of control toxics in the US, EPA/600/R-3/157FishPhysiology, Toxicology, and Water Quality Management[R]. Processings of an internationalsymposium sacramento, California, USA, Sep.1993:18-19.
    115.Nolan A.L., Mclaughlin M.J., Masno S.D. Chemical speciation of Zn, Cd, Cu, and Pb in porewaters of agricultural and contaminated soils using donnan aialysis [J]. EnvironmentalScience and Technology,2003,37(1):90-98.
    116.Nolan A.L., Zhang H., Mclaughlin M.J. Prediction of znic, cadmium, lead and copperavailability to wheat in contaminated soils using diffusive gradients in thin films, extractionand isotopic dilution technique [J]. Journal of Environment Quality,2005,34(2):496-507.
    117.Nowack B., Koehler S., Schulin R. Use of diffusive gradients in thin films (DGT) inundisturbed field soils [J]. Environmental Science&Technology,2004,38(4):1133-1138.
    118.Olesniewicz K.S., Thomas R.B. Effects of mycorrhizal colonization on biomass productionand nitrogen fixation of black locust (Robinia pseudoacacia) seedlings grown under elevatedatmospheric carbon dioxide. New Phytologist,1999,142(1):133-140.
    119.Panther J.G., Stillwell K.P., Powell K.J., et al. Perfluorosulfonated ionomer-modified diffusivegradients in thin films: Tool for inorganic arsenic speciation analysis [J]. Analytical Chemistry,2008,80(24):9806-9811.
    120.Pott U., Turpin D.H. Changes in atmospheric trace element deposition in the Fraser Valley,B.C., Canada from1960to1993measured by moss monitoring with Isothecium stoloniferum.Canadian Journal of Botany,1996,74(8):1345-1353
    121.Pueyo M., Mateu J., Rigol A., et al. Use of the modified BCR three-step sequential extractionprocedure for the study of trace element dynamics in contaminated soils [J]. EnvironmentalPollution,2008,152(2):330-341.
    122.Rao C., Sahuquillo A., Lopez Sanchez J. A review of the different methods applied inenvironmental geochemistry for single and sequential extraction of trace elements in soils andrelated materials [J]. Water, Air, and Soil Pollution,2008,189(1):291-333.
    123.Rauret G., López-Sánchez J.F., Sahuquillo A., et al. Improvement of the BCR three-stepsequential extraction procedure prior to the certification of new sediment and soil referencematerials [J]. Environmental Monitoring and Assessment,1999,1:57-61.
    124.Rodriguez J.H., Klumpp A., Fangmeier A., et al. Effects of elevated CO2concentrations andfly ash amended soils on trace element accumulation and translocation among roots, stemsand seeds of Glycine max (L.) Merr. Journal of Hazardous Materials,2011,187(1-3):58-66.
    125.Rouhier H., Read D.J. The role of mycorrhiza in determining the response of Plantagolanceolata to CO2enrichment. New Phytologist,1998,139(2):367-373.
    126.Ruello M.L., Sileno M., Sani D., et al. DGT use in contaminated site characterization: Theimportance of heavy metal site specific behavior [J]. Chemosphere,2008,70(6):1135–1140.
    127.Sauve S., Cook N. Linking plant tissue concentrations and soil copper pools in urbancontaminated soils [J]. Environmental Pollution,1996,94(2):153-157.
    128.Sauve S., Hendershot W., Alien H.E. Solid-solution partitioning of metals in contaminatedSoils: Dependence on pH, totaI metaI burden, and organic matter [J]. Environmental Scienceand Technology,2000,34(7):1125-1131.
    129.Sauve S., McBride M.B., Hendershit W.H. Speciation of lead in contaminated soil [J].Environmental Pollution,1997,98(2):149-155.
    130.Selck H., Palmqvist A., Forbes V.E. Uptake, depuration, and toxicity of dissolved andsediment-bound fluoranthene in the polychaete [J]. Environmental Toxicology and Chemistry,2003,22(10):2354-2363.
    131.Sheng X., Xia J., Jiang C., et al. Characterization of heavy metal-resistant endophytic bacteriafrom rape (Brassica napus) roots and their potential in promoting the growth and leadaccumulation of rape. Environmental Pollution,2008,156:1164-1170.
    132.Smith C.J., Hopmans P., Cook F.J. Accumulation of Cr, Pb, Cu, Ni, Zn and Cd in Soilfollowing irrigation with untreated urban effluent in Australia [J]. Environmental Pollution,1996,94(3):317-323
    133.Song J., Zhao F.J., Luo Y.M., et al. Copper uptake by Elsholtzia splendens and Silene vulgarisand assessment of copper phytoavailability in contaminated soils [J]. Environmental Pollution,2004,128(3):307-315.
    134.Song N.N., Wang F.L., Zhang C.B., et al. Fungal inoculation and elevated CO2mediategrowth of Lolium mutiforum and Phytolacca americana, metal uptake, and metalbioavailability in metal-contaminated soil: Evidence from Diffusive Gradients in Thin-filmsmeasurement. International Journal of Phytoremediation,doi:10.1018/15226514.2012.694500.
    135.Song Y., Wilson M.J., Moon H.S., et al. Chemical and mineralogical forms of lead, zinc andcadmium in practical size fractions of some wastes, sediments and soils in Korea [J]. AppliedGeochemistry,1999,14(5):621-633.
    136.Sonmez O., Pierzynski G.M. Assessment of zinc phytoavailability by diffusive gradients inthin films. Environmental Toxicology and Chemistry,2005,24(4):934-941.
    137.Spark K.M., Wells J.D., Johnson B.B. Sorption of heavy metals by mineral-humic acidsubstrates [J]. Australian Journal of Soil Research,1997,35(1):113-122.
    138.Tang S.R., Xi L., Zheng J., et al. Response to elevated CO2of Indian mustard and sunflowergrowing on copper contaminated soil. Bulletin os Environmental Contamination Toxicology,2003,71(5):988-997.
    139.Teasdale P.R., Hayward S., Davison W. In situ, high-resolution measurement of dissolvedsulfide using diffusive gradients in thin films with computer-imaging densitometry [J],Analytical Chemistry,1999,71(11):2186–2191.
    140.Temminghoff E.J.M., Pletttel A.C.C., Van Eck R., et al. Determination of the chemicalspeciation of trace metals in aqueous systems by the Wageningen Donnan MembraneTechnique [J]. Analytica Chimica Acta,2000,417(2):149-157.
    141.Temminghoff E.J.M., Van der Zee S.E.A.T.M., De Haan Frans A.M. Copper mobility in acopper-contaminated sandy soil as affected by pH and solid and dissolved organic matter [J].Environmental Science and Technology,1997,31(4):1109-1115.
    142.Tessier A., Campbell P.G.C., Bisso N.M. Sequential extraction procedure for the speciation ofparticulate trace metals [J]. Analytical Chemistry,1979,51(7):844-851.
    143.Tian Y., Wang X., Luo J., et al. Evaluation of holistic approaches to predicting theconcentrations of metals in field-cultivated rice [J]. Environmental Science and Technology,2008,42(20):7649-7654.
    144.Tokaliogly S., Kartal S., Elci L. Determination of heavy metals and their speciation in lakesediments by flame atomic absorption spectrometry after a four-stage sequential extractionprocedure [J]. Analytica Chimica Acta,2000,413(1-2):33-40.
    145.Tusseau-Vuillemin M-H, Gourlay C, Lorgeoux C, et al. Dissolved and bioavailablecontaminants in the Seine river basin [J]. Science of the Total Environment,2007,375(1-3):244-256.
    146.Vandenhove H., Antunes K., Wannijn J., et al. Method of diffusive gradients in thin films(DGT) compared with other soil testing methods to predict uranium phytoavailability. Scienceof the Total Environment,2007,373(2-3):542-555.
    147.Wang F.Y., Lin X.G., Yin R. Role of microbial inoculation and chitosan in phytoextraction ofCu, Zn, Pb and Cd by Elsholtzia splendens–a field case. Environmental Pollution,2007,147(1):248-255.
    148.Wang W.S., Shan X.Q., Wen B., et al. Relationship between the extractable metals from soilsand metals taken up by maize roots and shoots[J]. Chemosphere,2003,53(5):523-530.
    149.Weissenhom I., Leynaloi C. Spore germination of arbuscular mycorrhizal fungi in soilsdifering in heavy metal content and other parameters [J]. European Journal of Soil Biology,1996,32(4):165-172.
    150.Weng L.P., Vanrw H., Temminghoffe J.M. Kinetic aspects of donnan membrance techniquefor measuring free trace cation concentration [J]. Analytical Chemistry,2005,77(9):2672-2681.
    151.Zhang H., Davison W. Gadi R., et al. In situ measurement of dissolved phosphorus in naturalwaters using DGT [J]. Analytica Chimica Acta,1998,370(1):29-38.
    152.Zhang H., Davison W. Performance characteristics of diffusion gradients in thin films for thein situ measurement of trace metals in aqueous solution [J]. Analytical Chemistry,1995,67(19):3391-3400.
    153.Zhang H., Davison W., Mortimer R. J. G., et al. Localized remobilization of metals in marinesediment [J]. Science of the Total Environment,2002,296(1-3):175-187.
    154.Zhang H., Lombi E., Smolders E., Mcgrath S. Kinetics of Zn release in soils and prediction ofZn concentration in plants using diffusive gradients in thin films [J]. Environmental Science&Technology,2004,38(13):3608-3613.
    155.Zhang H., Zhao F.J., Sun B., et al., A new method to measure effective soil solutionconcentration predicts copper availability to plants [J]. Environmental Science andTechnology,2001,35(12):2602-2607.
    156.Zhao F.J., Rooney C.P., Zhang H., et al. Comparison of soil solution speciation and diffusivegradients in thin-films measurement as an indicator of copper bioavailability to plants[J].Environmental Toxicology and Chemistry,2006,25(3):733-742.
    157.Zhu D., Schwab A.P., Banks M.K. Heavy metal leaching from mine tailings as affected byplants. Journal of Environmental Quality,1999,28(6):1727–1732.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700